Geomorphology GLG362/598

Field exercise: Factor of Safety Calculation for slope stability

I derived this equation in the class notes for the Factor of Safety (FS) for the infinite slope case:

$$FS = \frac{c' + hg\cos^2\theta(\rho_r - \rho_w m)\tan\phi}{\rho_r hg\sin\theta\cos\theta}$$

where

c' is the (effective) cohesion (as reduced by loss of surface tension)

h is the thickness of the potential slide

g is acceleration of gravity

 θ is the dip angle of the potential failure plane

 ρ_r is the density of rock in the potential slide

 ρ_w is the water density

m is the portion of saturated thickness of the slide m = 1 for a fully saturated slide and m = 0 for a completely dry slide

 ϕ is the angle of internal friction or $\tan \phi = \mu$ (plane friction)

$$FS > 1 \rightarrow \text{STABLE}; \ FS < 1 \rightarrow \text{UNSTABLE}; \ FS = 1 \rightarrow \text{CRITICAL}$$

Using that equation, answer the following. Show your work.

You are a landslide guru and a couple of different projects for estimating slope stability have been contracted to your company. You make the following observations:

Density of material in the slope: 2000 kg/m³

Cohesion of material in the slope: $11900 \text{ kg s}^{-2} \text{ m}^{-2}$

Angle of internal friction: $\phi = 15^{\circ}$

- 1. If a 10 m thick slide mass is 50% saturated above a 17° potential failure surface, is it safe?
- 2. If the 10 m thick slide mass is unsaturated above a 17° potential failure surface, is it safe?
- 3. It is impractical to completely dry the above slide out (m > 0). What saturation is the maximum to have a safe slide?

The above figure shows a plot of FS versus theta for the general parameters (ρ_r , c', and ϕ and slide thickness of 5 m) specified on the previous page given saturations of m=1 and m=0.1. Use this chart for the following 2 questions.

- 4. If this is in Oregon or Washington where the hill is completely saturated in the winter, what is the maximum stable slope (FS = 1) if the thickness of the potential slide mass is 5 m?
- 5. If the slide is in Arizona where the maximum saturation of the hill is only 10% of the slide thickness (again, h = 5 m), what is the maximum stable slope?