Chapter 24

The Role of Climatic Change in Alluvial Fan Development

Ronald I. Dorn

The Persistence of Climatic Change
in Alluvial-Fan Studies

Alluvial fans develop at the base of drainages
where feeder channels release their solid load (Blair
and McPherson, 2009; Leeder et al., 1998; Har-
vey et al., 2005). A classic fan-shape forms where
there is a well-defined topographic apex. Multiple
feeder channels, however, often blur the fan-shape
resulting in a merged bajada. Alluvial fans can be
found in almost all terrestrial settings. These include
alpine (Beaudoin and King, 1994), humid tropical
(Iriondo, 1994; Thomas, 2003), humid mid-latitude
(Bettis, 2003; Mills, 2005), Mediterranean (Ro-
bustelli et al., 2005; Thorndrycraft and Benito, 2006),
periglacial (Lehmkuhl and Haselein, 2000), and
different paraglacial settings (Ballantyne, 2002). The
geographical focus of this chapter, however, rests on
alluvial fans in regions that are currently deserts or
that experienced episodes of aridity in the Quaternary.

The research literature contains a host of different
ways of thinking about and conducting research
on desert alluvial fans (Table 24.1). Despite the
wealth of research hypotheses and perspectives, many
researchers keep returning to climate change as a
vital forcing factor on desert fan evolution. Although
some reject climatic change as important (De Chant
et al., 1999; Webb and Fielding, 1999; Rubustelli
et al., 2005), the following sorts of judgments com-
monly pepper the literature on fans found in arid and
semi-arid regions:
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Hence, climate is an exclusive controlling factor of the
transition from periods of geomorphodynamic activity to
periods of stability (Gunster and Skowronek, 2001: 27).

The field evidence indicates that the Tabernas fan/lake
system responded to regional tectonics, but that the fan
sediment sequences were primarily climatically driven
(Harvey et al., 2003: 160).

It is probably no coincidence that the first major
episode of fan sedimentation occurred in MIS 5, the
longest and more severe episode of cold and arid climates
during the Pleistocene. .. (Pope and Wilkinson, 2005:
148).

Even along Dead Sea, climatic changes appear to be
more important in fan development than base level or
tectonic changes (Bowman, 1988; Klinger et al., 2003).
A persistent return to the importance of variable
climate may result, in some small part, to the his-
tory of geomorphic thought where climatic change
remains a major theme (Tricart and Cailleux, 1973;
Besler, 1976; Mabbutt, 1977; Biidel, 1982; Hage-
dorn and Rapp, 1989; Derbyshire, 1993; Twidale
and Lageat, 1994; Wendland, 1996; Elorza, 2005).
Even if the tradition of climatic geomorphology
shapes thought, it is the newly gathered evidence that
drives researchers towards climate as an allocyclic
process along with tectonic and base-level fluctuations
(Roberts, 1995; Bettis, 2003; Harvey et al., 2005). The
next section, however, argues that there are substantial
obstacles to scientific investigations of the role of
climatic change in desert alluvial-fan research.

Limitations of a Climatic Change Focus

This section makes three arguments that climatic
change studies of desert alluvial fans should be viewed
with considerable methodological skepticism. Sedi-
mentology cannot be used to match fan depositional
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Table 24.1 Examples of different research foci on desert alluvial fan research

Focus Synopsis

Accommodation space Different tectonic (Viseras et al., 2003), sea-level (Robustelli et al., 2005), base-level (Harvey, 1984;
Calvache et al., 1997), basin width and sediment supply (Weissmann et al., 2005), accommodation
space (Posamentier and Vail, 1988; Muto and Steel, 2000) conditions alter fan dynamics.

Catastrophism Catastrophic changes dramatically alter fans (Beaty, 1974) where sediment-generating events can
derive from fire (Wohl and Pearthree, 1991; Moody and Martin, 2001), anthropogenic landscape
use (Eriksson et al., 2000; Gomez et al., 2003; Gomez-Villar et al., 2006), release of glacial damned
lakes (Benn et al., 2006), rock avalanches (Blair, 1999), or high magnitude floods (Beaty, 1974;
Kale et al., 2000; Baker, 2006).

Complex response A variable response to the same external stimuli (Schumm, 1977) has been used interpreting alluvial
fans experiencing different responses to similar conditions of climate, land cover and sediment
supply (Harvey, 1997; Kochel et al., 1997; Coulthard et al., 2002).

Coupling Coupling fosters linkage of processes at different spatial, temporal scales (Brunsden, 1993;
Allen, 2005). As applied to alluvial fans (Harvey, 2002a), coupling analyses explain fan events over
pp Y pling y P
short and long time scales and small and large drainage basins.

Dynamic Equilibrium Alluvial fans may represent a dynamic equilibrium in transportation of course debris from range to
basin (Denny, 1965; Denny, 1967), but a dynamic equilibrium that may require millennial (Davies
and Korup, 2006) or longer (Tricart and Cailleux, 1973) time scales.

Hazards Fan hazard studies include process geomorphology (Chawner, 1935; Schick et al., 1999; Field, 2001),
historical geomorphology (Kochel et al., 1997; Crosta and Frattini, 2004), Quaternary studies
(Keefer et al., 2003; House, 2005), as well as engineering and policy issues (Committee on Alluvial
Fan Flooding, 1996).

Megafans The causes of and processes on megafans may involve periods of aridity (Krohling and Iriondo, 1999;
Leier et al., 2005), and arid drainages may require different conditions to produce megafans
(Rodgers and Gunatilaka, 2002; Arzani, 2005) than in other climates.

Modeling Modeling (Schumm et al., 1987; Coulthard et al., 2002) helps understand sediment waves (Tucker and
Slingerland, 1997), high-frequency variations in sediment supply (Hardy and Gawthorpe, 2002;
Davies and Korup, 2006), landscape evolution (Coulthard et al., 2002; Clevis et al., 2003), how fan
morphology affects groundwater recharge (Blainey and Pelletier, 2008) and understanding linkages
between specific geomorphic processes and corresponding forms (Weaver and Schumm, 1974).

Morphometry Rich understanding of fan and landscape change develops from morphometry studies (Hooke and
Rohrer, 1977; Kostaschuk et al., 1986; Jansson et al., 1993; Calvache et al., 1997; Harvey
et al., 1999a; Viseras et al., 2003; Staley et al., 2006; Volker et al., 2007; Wasklewicz et al., 2008),
including links to steady-state (Hooke, 1968), allometry (Bull, 1975; Crosta and Frattini, 2004) and
other larger concepts.

Process studies Process research forms the core of fan theory development (Hooke, 1967; Kostaschuk et al., 1986;
Blair, 1987; Wohl and Pearthree, 1991; Blair and McPherson, 1994; Blair, 1999; Schick et al., 1999;
Al Farraj and Harvey, 2004; Crosta and Frattini, 2004; Benn et al., 2006; Griffiths et al., 2006).

Remote Sensing Digital image processing of satellite (White, 1993; Farr and Chadwick, 1996; Robinson, 2002;
Garcia-Melendez et al., 2003) and ground-based imagery (Crouvi et al., 2006) generates valuable
perspectives on mapping and fan processes.

Sedimentology Sedimentary and stratigraphic analyses (Robinson, 2002) yields insight about processes (Blair and
McPherson, 1994; Robinson, 2002; Harvey et al., 2005), high magnitude events (Lafortune
et al., 2006), low-magnitude changes in a basin (Calvache et al., 1997; Robinson, 2002), fan
fossilization (Stokes et al., 2007), and sometimes potential sources (Krzyszkowski and
Zielinkski, 2002; Harvey et al., 2003).

Tectonics Tectonic setting permits most fan development (Singh et al., 2001; Hartley et al., 2005). Although
some disregard tectonics as important in certain settings (Klinger et al., 2003; Colombo, 2005),
tectonism can alter relief, generate headward erosion, alter stratigraphy, change fan gradients, drop
base levels, and change accommodation space (Kesel and Spicer, 1985; Owen et al., 1997; Clevis
et al., 2003; Guerra-Merchan et al., 2004; Pope and Wilkinson, 2005; Rubustelli et al., 2005;
Quigley et al., 2007; Sancho et al., 2008).
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records with climatic changes. Dating methods are
simply not up to the task of correlating geomorphic
events with climatic changes, and even a new method
that directly connects climatic change with aggra-
dational events can only suggest millennial-scale
correlations. Lastly, controlled experiments are not
possible with field-based studies.

Sedimentology Limitations

Processes leading to alluvial-fan deposits “differ re-
markably little between humid and arid environments,
or between arctic and subtropical environments”
(Harvey et al., 2005: 3), a conclusion reached in
many different studies (Brierley et al., 1993; Ibbeken
et al., 1998; Ballantyne, 2002; Krzyszkowski and
Zielinkski, 2002; Lafortune et al., 2006). Although
researchers sometimes connect climatic changes
to sedimentological changes using independent
chronometric control (Calvache et al., 1997; Singh
et al., 2001), there is a danger that sediment-based
analyses alone could suffer from circular reasoning in
inferring the importance of climatic change (Jain and
Tandon, 2003).

No matter how detailed the geomorphological and strati-
graphic examination that is undertaken of alluvial fan sys-
tems, no estimate of age obtained by these methods can
ever be deemed reliable except in the grossest possible
terms. It is only with the application of chronometric dat-
ing that a reliable temporal framework can be constructed,
and only with such a framework can the triggers of fan-
forming processes be independently assessed (Pope and
Wilkinson, 2005: 149).

Unlike lake shorelines, periglacial features and glacial
moraines whose existence directly connects to climatic
events, alluvial-fan studies cannot currently infer cli-
matic change through sedimentological, stratigraphic,
or geomorphological analyses.

Are Dating Methods Up to the Task?

The Target is Decadal, Century and Millennial
Climatic Changes

With the growth of increasingly precise proxy records,
the last few decades has seen a substantial trans-

formation in palaeoclimatology. Whereas much of
the alluvial-fan research in the twentieth century fo-
cused on correlations with Milankovitch-scale (Shaffer
et al., 1996) oscillations (Wells et al., 1987; Bull, 1991;
Reheis et al., 1996), twenty-first century geomorphic
research must articulate to records of millennial, cen-
tury and even decadal climatic change (Starkel, 1999;
Birks and Ammann, 2000; Viles and Goudie, 2003;
Thomas, 2004; Anderson, 2005). There exists a clearly
identified need for research on fluvial responses to
allogenic forcing over sub-Milankovitch time scales of
10%-103 years (Blum and Tornqvist, 2000: 2).

The vast preponderance of newer palaeoclimato-
logical research now emphasizes sub-Milankovitch
high frequency and high magnitude climatic events
(Fig. 24.1). Examples of millennial events include
iceberg surges generating Heinrich Events (Vidal
et al., 1997) and Dansgaard-Oeschger cycles with an
asymmetry of decadal warming (Taylor et al., 1997)
and then longer cooling (Bond et al., 1997; Curry and
Oppo, 1997).

Climatic variability exists at all timescales, and pro-
cesses that drive climatic changes are closely coupled.
Accordingly, there has been increased attention to ever
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Fig. 24.1 Researchers advocating the importance of climatic
change on desert fans originally argued for the role of (A)
Milankovitch-scale oscillations reflecting global ice volume.
A new generation of palacoclimatic studies emphasize sub-
Milankovitch sudden climate shifts such as the (B) changing lo-
cation of global moisture recorded in Greenland Ice Core Project
(GRIP) records. Vertical lines identify examples of rapid cli-
matic change GRIP events of the Younger Dryas and Dansgaard-
Oeschger (D/O) cycles 11, 12 and 22. Diagram is adapted from
(Masson-Delmotte et al., 2005)
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shorter climate-change time scales. These fluctuations
include the El Nifio Southern Oscillation over a sub-
decade time scale (Philander, 1999), the North Atlantic
Oscillation over a decadal scale (Wanner et al., 2001),
the Pacific Decadal Oscillation over a bi-decade scale
(Houghton et al., 2001), the Atlantic Multidecal Oscil-
lation over a seventy-year scale (Enfield et al., 2000)
and others. Sub-Milankovitch oscillations show up
in a variety of high resolution biotic and geological
proxy records (Arz et al., 1998; Proctor et al., 2000;
House and Baker, 2001; Benson et al., 2002; Madsen
et al., 2003; Rohling and Palike, 2005; Ellwood and
Gose, 2006; Henderson, 2006; Schaefer et al., 2006),
but not in desert-fan research for reasons made clear in
the next section.

Fan Dating Methods Have Trouble Distinguishing
High Frequency Events

At issue here is whether methods used to date alluvial-
fan events are up to the task of a correlation with
millennial-scale changes, let alone century or decadal
oscillations. This challenge was issued a decade ago
with the argument that climatic change hypotheses
for desert alluvial fans are not testable, because even
the most precise time intervals for a fan event could
be assigned to wet, dry, or transition climatic events
(Dorn, 1996). The problem was repeated again: “no
detailed assessment of the response of the clastic
sedimentary depositional environment to such abrupt,
high amplitude changes. .. is available.” (Fard, 2001)
The same difficulty was explained a bit later for
northeast Queensland:

The switch from fan building to fanhead trenching con-
stitutes an ‘abrupt’ change in the behaviour of the flu-
vial system, but we have little idea of the transitional time
from one mode of flow to the other. It is likely that such
changes were (a) diachronous between basins, and (b) in
response to more than one threshold-crossing event. But
both these sources of variation may have occurred within
101-102 years, and when viewed across a 103 year time
period may appear synchronous (Thomas, 2004: 112).

The challenge was issued yet again in the context of
modelling and field-based studies:

we wish to demonstrate that persistent alluvial fanhead
morphology may result from rare, large sediment inputs
not necessarily related to climatic or tectonic perturba-
tions. This possibility has largely been ignored when us-

ing alluvial fans as indicators of past climatic or tectonic
regimes (Davies and Korup, 2000).

Proponents of fan-climate correlations have yet to ad-
dress these critiques.

The mainstay of alluvial-fan climatic change
research in the arid western USA has been soil-
stratigraphic  studies punctuated with occasional
tephrachronology and radiometric (e.g. U-series, '4C,
cosmogenic) data (Wells et al., 1987; Bull, 1991;
Harvey et al., 1999a; Harvey et al., 1999b; McDon-
ald et al., 2003; Western Earth Surface Processes
Team, 2004; Harkins et al., 2005; Knott et al., 2005).
These studies yield fan depositional events where
the highest precision generates broad age ranges
for correlated surfaces that span 103 to 10° years.
Even lower precision derives from such morphologic
evolution dating strategies as scarp diffusion (Hsu and
Pelletier, 2004). This is not to infer that geomorphic
or traditional soil-stratigraphy strategies have no
value. They certainly do (Huggett, 1998), but not to
test scientific hypotheses of alluvial-fan development
related to climatic change. No method has yet enabled
a correlation of fan surfaces, based on soils and geo-
morphic parameters, with sub-Milankovitch climatic
fluctuations.

Radiocarbon measurement is certainly precise
enough to discriminate millennial-scale climatic
events, especially with the use of accelerator mass
spectrometry (Keefer et al., 2003). Aside from tremen-
dous problem of a general lack of availability of
suitable material on arid fans, there are concerns
about whether precise measurements are truly accu-
rate. Worries occur over the effect of groundwater
(Bird et al., 2002), whether extant models of pe-
dogenic carbonate accumulation are appropriate
(Stadelman, 1994; Wang et al., 1996; Alonso-Zarza
et al., 1998), over contamination by old carbon
sources (Chitale, 1986; Falloon and Smith, 2000;
Six et al.,, 2002), contamination by younger carbon
(Ljungdahl and Eriksson, 1985), and the importance
of experienced and rigorous lab processing (Gillespie
et al., 1992).

Alluvial-fan climate change researchers outside
of the USA often employ optically stimulated lu-
minescence (OSL) (White et al., 1996; Krohling
and Iriondo, 1999; Roberts et al., 1999; Eriksson
et al., 2000; Singh et al., 2001; Suresh et al., 2002;
Stokes et al., 2003; McLaren et al., 2004; Robinson
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et al., 2005; Gardner et al., 2006; Suresh et al., 2007;
Spencer et al., 2008; Zazo et al., 2008), while OSL has
seen very limited application in the arid southwestern
USA (Hanson, 2005; DeLong and Arnold, 2007;
Mahan et al., 2007; Sohn et al., 2007). With the
best available protocol it is difficult, but possible,
for OSL to obtain reliable and precise enough ages
to discriminate millennial-scale oscillations (Olley
et al., 2004).

Considerable recent attention has been paid to
cosmogenic nuclide dating on alluvial fans (Liu
et al., 1996; Phillips et al., 1998; Keefer et al., 2003;
Matmon et al., 2005; Evenstar et al., 2006; DeLong
and Arnold, 2007; Diihnforth et al., 2007; Frankel
et al., 2007). By itself, cosmogenic nuclides do not
yield accurate enough results for millennial-scale
correlations. There exists 5% error in counting,
50% error in chemical and blank corrections, and
10—15% in production rates (Brown et al., 2003; Benn
et al., 2006). This is all before other uncertainties are
considered, such as boulder erosion rates, changes in
the geomorphic position of sampled surfaces, potential
sampling bias that often goes unidentified, prior expo-
sure history, and periodic cover by snow or soil—all
leading to potential offsets from reported exposure
dates. It is the rare researcher (Robinson, 2002; Brown
et al., 2003; Benn et al., 2006) who actually presents
real uncertainties associated with cosmogenic results.
This is not to say that cosmogenic nuclide data on fan
sediment lacks value. Far from it. New and creative
strategies for unraveling complex signals are under
development (Robinson, 2002). The simple point
here is that the magnitude of identified and often
unidentified errors simply makes it impossible at the
present time to link cosmogenic ages on fan sediment
to sub-Milankovitch climatic events.

New Strategy Linking Fan Events
with Climatic Change

The ideal research method would be one where the de-
posit can be directly correlated with a climatic event.
One such method has just passed from the experimen-
tal realm, varnish microlaminations (VML) developed
by Tanzhuo Liu. Liu subjected his VML method to a
successful blind test administered by Richard Marston,
editor of Geomorphology (Liu, 2003; Marston, 2003;
Phillips, 2003). Both general and specific aspects of ex-

tracting palaeoclimatic information from varnish lay-
ering have also been replicated (Dorn, 1984, 1990;
Cremaschi, 1992; Cremaschi, 1996; Diaz et al., 2002;
Lee and Bland, 2003; Thiagarajan and Lee, 2004). The
method was originally applied to Milankovitch-scale
correlations of alluvial fan units (Fig. 24.2) (Liu and
Dorn, 1996). However, since this original exploration
VML dating had another decade of development based
on scrutiny of more than 10,000 varnish microsedimen-
tary basins.

The latest technical advances in VML dating now
permit the resolution of twelve millennial-scale events
during the Holocene, at least in the southwestern USA
(Liu and Broecker, 2007). Such high resolution per-
mits the assignment of specific ages to deposits such
as found on a well-photographed debris-flow fan on
the east side of Death Valley (Fig. 24.3) (Liu, 2008).
Seven analyzed fan units were correlated with “rel-
atively wet periods during the Holocene” (Liu and
Broecker, 2007).

VML directly links climatic change with aggrada-
tional events on alluvial-fan surfaces, but at its best
VML can only resolve millennial-scale correlations.
Two difficulties still remain if this methodology
is to fulfill its potential of testing the importance
of climatic change in alluvial-fan development.
First, there must be a clear linkage between cli-
matic thresholds needed to change VML and the
millennial-scale climatic events altering alluvial
fans. In other words, the drainage-basin/fan under
examination may not necessarily respond to the
same climatic forcings as the varnish. Second, if
century and decade-scale wet phases were vital in
generating fan surfaces during a millennial-scale
dry period, even this finest-scale methodology could
misidentify the fan/climate correlation. For example,
it might be extreme events in decadal dry phases
during a millennial wet phase that actually generated
the alluvial-fan deposits in Fig. 24.3, and VML
would not be able to identify such high resolution
patterns.

The best strategy available today rests in utilizing
several high resolution methods together. For exam-
ple VML might be used in tandem with OSL, much
in the way that several fan researchers utilize as many
different methods as possible to identify systemic un-
certainties with a single method that might otherwise
go undetected (e.g., Roberts et al., 1999; Poisson and
Avouac, 2004; Owen et al., 2006).
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Fig. 24.2 Six Springs / 36°01'N
Alluvial Fan, Death Valley, )
where fan mapping
corresponds with the varnish
microlamination (VML)
sequence. In broad
Milankovitch-scale terms, \ N
VML layering units (LU) 2,
4, 6 and 8 correspond with
marine oxygen isotope stages
2,4, 6 and 8. At this course
scale of resolution, there is no
clear relationship between
Death Valley fan aggradation
and Milankovitch-scale
climatic change (Dorn, 1996;
Liu and Dorn, 1996)
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Intrinsic Lags responses. When we do not understand drainage basin
sediment production, storage or transport, it becomes
Beyond the chronometric limitations of a fan extraordinarily difficult to connect climatic change

event/climate event correlation, there are well
known inherent challenges offered by the geo-
morphic system (Brunsden, 2001; Harvey, 2002a;
Viles and Goudie, 2003; Oguchi and Oguchi, 2004;
Thomas, 2004). A few of these correlation challenges
include time lags in how fast a climatic change impacts
the ability of the geomorphic system to adjust with
changes of slope and drainage systems, mediation by
slow or fast (e.g. wildfire) shifts in vegetation cover,
available sediment stores and lags in its exhaustion,
the nature of climatic-vegetation discontinuities at
the onset of a change, magnitude of the change,
rate of change at the discontinuity, and complex

with alluvial-fan deposits over sub-Milankovitch
timescales.

Lack of a Control

Scientific research requires independent controls to
isolate the effect of a variable. Different types of
modelling (e.g. Clevis et al., 2003) do sometimes
permit researchers to isolate the impact of climatic
change. A quasi-steady approximation “suggests that
environmental variables (e.g. climate, lithology) play
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Fig. 24.3 A small debris-flow fan approximately 0.05 km? re-
veals distinct Holocene VML. Optical thin sections of varnish
on two of the older deposits are exemplified here, revealing VML
ages of ~11,100-12,500 cal BP and ~9400 cal BP (These im-

a less significant role in overall fan morphology than
do basic sedimentary and flow processes.” (De Chant
et al., 1999: 651). A cellular automaton model, in
contrast, “shows that the sediment discharge upstream
of the alluvial fan closely follows the climate signal”
(Coulthard et al., 2002: 280). Models can explore the
implication of climatically forced sediment waves
moving down channel networks (Tucker and Slinger-
land, 1997) or the implication of climatic changes
for fan progradation and aggradation (Hardy and
Gawthorpe, 2002).

Controlled studies evaluating the role of climatic
change, however, are simply not possible in field-based
research. Unlike tectonic and base-level allocyclic
processes, where it is possible to reasonably assume
no tectonic or base-level change influences to compare

ages are courtesy of T. Liu.) The seven distinct fan depositional
units appear to be correlated with millennial-scale wetter periods
during the Holocene (Liu and Broecker, 2008)

with field sites impacted by these variables (Har-
vey, 2002b; Harkins et al., 2005), all desert alluvial
fans have experienced climatic oscillations. This
makes it impossible to craft an experimental design
isolating just climate change. Thus, modelling research
will inevitably play an increasingly important role in
the future of the scientific study of the role of climatic
change on desert fans.

20th Century USA Research and the
Transition-To-Drier-Climate Model

The notion has been around a long time. A drier
climate leads to a sparser cover of woody vegetation.
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As infiltration capacity decreases, the location of the
channel head moves upslope and excavates weath-
ered material. Alluvium then moves down channels
towards alluvial fans. This transition-to-drier-climate
model (Fig. 24.4) had its birth in the southwestern
USA (Huntington, 1907; Eckis, 1928; Melton, 1965;
Knox, 1983; Wells et al., 1987; Bull, 1991). The
hypothesis of regional desiccation as the key process
forcing fan aggradation continues to dominate the con-
clusions of southwestern USA research (Throckmorton
and Reheis, 1993; Dorn, 1994; Bull, 1996; Harvey
and Wells, 1994; Harvey et al., 1999b; Monger and
Buck, 1999; Baker et al., 2000; McDonald et al., 2003;
Western Earth Surface Processes Team, 2004; Ma-
han et al., 2007; Sohn et al., 2007). The following
conclusions are typical of the regional literature:

Fan deposition was probably triggered by a change from
relatively moist to arid conditions causing a decrease in
vegetation cover and increases in flash floods and sedi-
ment yield. We think that this scenario applies to most of
the other valleys in the southern Basin and Range (Reheis
et al., 1996: 279).

Thus, it appears that the initiation of hillslope erosion,
fan building, and valley deposition was associated with a
climatic shift from moister to drier conditions and a sig-
nificant change in the nature of uplands vegetation (Miller
et al., 2001: 385).

Lakes & Flora & Weathering Alluvial
Climate Fauna & Soils Fans
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Fig. 24.4 The transition-to-a-drier-climate model has been
adopted by the U.S. Geological Survey’s Western Earth Sur-
face Processes Team (2004) that explains: “when dry condi-
tions return, the plant cover would eventually become reduced,
and episodic desert storms would strip away soil (formed during
the proceeding wet period), contributing to the influx of greater
amounts of sediments downstream onto alluvial fans”

The transition-to-drier-climate model has certainly
been used outside of the USA, in India (Kale and
Rajaguru, 1987), Israel (Bull and Schick, 1979;
Klinger et al., 2003), and elsewhere. In South Aus-
tralia incision into a ~45-40ka surface (Dorn, 1994:
607), perhaps correlated with a ~40-30ka paleosol
(Quigley et al., 2007), led to subsequent inset aggra-
dation thought to derive from a transition “from more
humid to more arid continental climatic conditions”
(Quigley et al., 2007). In Argentina, an abrupt des-
iccation led to a condition where “the large rivers of
the province built alluvial fans in their lower tracts”.
(Carignano, 1999: 130)

Although there has been international use of the
concept, the transition-to-dry hypothesis dominates
USA desert alluvial-fan thinking. One signal that a
strict mindset exists is when available information
is stretched to fit a desired conclusion. For example,
very precise pronouncements sometimes emerge from
what are truly very broad age ranges: “global climate
changes that caused synchronous pulses of alluviation
in the Mojave Desert at about 125, 55, and 10 (12 and
8) ka” (Bull, 1996: 217). No such pin-point millennial
precision actually supports such a sweeping regional
generalization. Another signal of a fixed paradigm
comes when one’s own evidence is passed over in
reaching a conclusion. Despite presenting evidence
of ongoing aggradation during transitions from drier
to wetter conditions, during wetter conditions, and
during a particular high magnitude event, cumulative
evidence is still interpreted according to the acceptable
southwestern USA paradigm: “[t]he pulse of sediment
at the Pleistocene-Holocene transition is consistent
with other depositional events identified elsewhere
and with geomorphic models (Bull, 1991; McDonald
et al., 2003).” (Nichols et al., 2006: 8).

In summary, Southwestern USA researchers have
largely restricted themselves to a narrow theoretical
framework and methodology that has very little po-
tential to resolve correlation difficulties outlined in the
second section of this chapter.

Diversity of Thought Outside of the USA

Alluvial-fan research on arid and semi-arid fans has
burgeoned in the last few decades outside of the USA.
Furthermore, this non-USA literature that explores
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connections between dryland fans and climatic change
has shown a far greater theoretical flexibility, hosting
a large number of alternatives to “transition-to-drier”
thinking.

One alternative model is that of paraglacial
processes (Ballantyne, 2002) generating large fans
found in deserts that can, in some cases, be traced
back directly to moraines (Krzyszkowski and
Zielinkski, 2002). Many of the large desert fan com-
plexes in central Asia appear to be paraglacial in origin
(Rost, 2000; Stokes et al., 2003; Owen et al., 2006). In
the southwestern USA, some researchers in the 20th
(Huntington, 1907; Dorn, 1994) and 21st centuries
(Weissmann et al., 2002; Benn et al., 2006; Diihnforth
et al.,, 2007) have invoked glacial processes as the
source of nearby desert-fan sediment. Similarly,
enhanced snowfall or periglacial processes might
increase sediment flow to fan heads (Dorn, 1994;
Carignano, 1999).

A number of researchers argue for enhanced
alluvial-fan aggradation during drier periods. The case
is made for Calabria, Italy (Sorriso-Valvo, 1988) and in
southern Greece (Pope and Millington, 2000; Pope and
Wilkinson, 2005). Drier conditions are also thought to
generate fan aggradation in the northeastern Tibetan
Plateau (Hetzel et al., 2004), western India (Chamyal
et al., 2003), and coastal Ecuador (Iriondo, 1994).

Other study sites produce evidence that fan aggra-
dation occurs during the transition period from drier
to wetter conditions (Roberts and Barker, 1993).
OSL dating in Death Valley, California indicates that
the “25ka Q2d alluvial-fan deposits correlate to a
globally and regionally low-effective moisture that is
followed by a relatively rapid increase in moisture”
(Sohn et al., 2007: 57), and cosmogenic ages from
Death Valley suggest fan aggradation also occurred at
the dry-wet transition between 63 and 70ka (Frankel
et al., 2007). In western India, it is thought that:

A sudden change from dry to wet climate can lead to a
sudden increase in the discharge resulting in gravel or
sand bedload streams with high aggradation rates in the
presence of high sediment availability (from the preced-
ing dry phase). . .On the other hand, a climatic transition
from wet to dry will eventually lead to decimation of the
fluvial activity and a simultaneous increase in aeolian ac-
tivity (Jain and Tandon, 2003: 2231).

A similar argument was made for Tanzania where: in
the northeast Irangi Hills, the shift from a dry to a
wet climate [deposition occurred]. . . during this “win-

dow” of high erosivity formed by increasing rainfall
combined with incomplete vegetation cover. (Eriksson
et al., 2000: 123). Commensurately, many argue that
a transition from dry to wetter conditions can be one
cause of fan-head incision (Owen et al., 1997; Nott
etal., 2001; Brown et al., 2003; Jain and Tandon, 2003;
Bowman et al., 2004; Poisson and Avouac, 2004) ex-
plained as follows:

[A climate change from cold and dry to warm and humid]
encouraged the expansion of vegetation cover over basin
slopes, thereby reducing the volume of sediment supplied
by each basin. With streams transferring less sediment, an
increase in the discharge (Q) to sediment load (Qs) ratio
(or more water per unit of sediment) resulted in major
entrenchment of the fanhead and proximal fan surfaces
(Pope and Millington, 2000: 611).

Another common model, mostly rejected in south-
western USA research, invokes enhanced aggradation
during wetter periods. Wet-phase fan aggradation
is thought to occur during high lake periods in the
Qaidam Basin (Owen et al., 2006), in the Gobi-Altay,
Mongolia (Fitz et al., 2003), Australia (Nanson
et al.,, 1992; Kershaw and Nanson, 1993), western
India (Bhandari et al., 2005), the northern United
Arab Emerites (Al Farraj and Harvey, 2004), Arabia
(Glennie and Singhvi, 2002), Oman (Mazels, 1990;
Rodgers and Gunatilaka, 2002), southern Spain (Zazo
et al.,, 2008), and Jordan (McLaren et al., 2004).
Only a few western USA studies have argued against
the transition-to-dry model, suggesting that wetter
conditions may generate southwestern USA fan
aggradation during the late Pleistocene (Dorn, 1988;
Hanson, 2005; DeLong and Arnold, 2007; Diihnforth
et al., 2007; DeLong et al., 2008) and Holocene (Liu
and Broecker, 2007).

Although the limitation of fan chronometry cannot
currently test these different climatic models of fan
aggradation, this methodological restriction may not
always be the case. The rich and diverse international
theory, based on detailed case study analysis, will offer
future chronometricians ample opportunity to evaluate
these and future theoretical options.

Coupling may also offer potential to sort out the
seemingly overwhelming problem of linking intrin-
sic geomorphic lags and dating uncertainties. Cou-
pling is a fluvial geomorphology concept that concep-
tually links processes at different spatial and tempo-
ral scales (Brunsden, 1993; Allen, 2005). As applied
to alluvial fans, coupling could potentially explain fan
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aggradation during all of the aforementioned climatic
conditions: dry intervals, wet phases, as well as transi-
tions to and from aridity (Harvey, 2002a: 189).

Increasing Importance of High
Magnitude Floods

There exists a growing momentum in international
alluvial-fan research favouring the importance of
high magnitude, low frequency floods—regardless of
whether the general climatic state is in an arid, humid
or transitional phase. Certainly, geomorphologists have
long recognized the importance of large, but infrequent
floods in deserts (Beaty, 1974; Schick, 1974; Wolman
and Gerson, 1978; Talbot and Williams, 1979; Frostick
and Reid, 1989; Pickup, 1991; Ely et al., 1993; Schick
and Lekach, 1993). However, the last decade has seen
a great expansion of interest in and evidence for high
magnitude storms as being vital to the interpretation of
desert alluvial fans.

Areas first recognized as being heavily impacted by
ENSO have been the focus of some of this research
(Grosjean et al., 1997). In northern Chile large floods
appear to be the dominant cause of sedimentation on
fans during the late Pleistocene and Holocene (Mather
and Hartley, 2005). Aggradational events in southern
Peru are “evidently associated with extremely heavy El
Nino-induced precipitation” (Keefer et al., 2003: 70),
and these events do appear to be generated by “Mega-
Nifos” with “higher amplitude climatic perturbations
than any in the Peruvian historical record except for the
AD 1607-1608 event.” (Keefer et al., 2003: 74). The
alluvial record in Ecuador indicates changing period-
icity of ENSO aggradation over the last 15,000 years
(Rodbell et al., 1999). Similarly in Argentina:

Holocene sedimentary accumulations which are present
over a large region, could have been controlled by one
specific climatic favor, the activity of the El Nifio South-
ern Oscillation (ENSO). The dynamics of this oscilla-
tion suggest. . .that very intense and randomly distributed
rainfall could cause floods that are locally very important
(Colombo, 2005: 81).

The importance of ENSO events has also been recog-
nized in other deserts (Ely, 1997).

Arid southern Asia also yields research pointing
to the key role of large storms. Western India studies
suggests that such events may have been more impor-

tant in the late Pleistocene ~10-14 ka (Jain and Tan-
don, 2003) and during marine oxygen isotope stages
3 and 5 (Juyal et al., 2000). “Development of alluvial
fans [in Pinjaur Dun] requires intense but infrequent
precipitation to create flash-flood discharge needed for
transporting sediments from the drainage basin to the
fan site. ..” (Suresh et al., 2002: 1273).

In southwestern Asia, in Iran’s Abadeh Basin
“episodic thundershowers, in an arid-semi-arid cli-
mate, resulted in periodic high magnitude runoff and
created flash floods towards the feeder channel at the
fan apex” (Arzani, 2005: 58). In Syria, there is field
evidence of “[a]brupt increases in storm activity, steep
talus slopes sensitive to erosion, and the hillslopes
directly connected to the alluvial fan over very short
distances together accounted for the rapid geomorphic
response.” (Oguchi and Oguchi, 2004: 138).

The Australian literature has long recognized the
importance of extreme events (Pickup, 1991). Even
in a situation where the Milankovitch-scale changes
suggest a correlation of fan aggradation during a
transition-to-drier climate, there is clear recognition of
the importance of high magnitude events:

Despite the general drying of the climate [after approx-
imately 27ka], the occurrence of major debris flows
during this period suggests that extreme rainfall events
must have occurred. These high rainfall events would
have resulted in dramatic erosion of soils and regolith on
slopes covered by the sparser vegetation communities
(Nott et al., 2001: 881).

In southeastern Australia, high-energy flood events
took place just before the last glacial maxima (Gardner
et al,, 2006). The Wilkatana alluvial fan displays
evidence of “very large magnitude flood events” at
millennial-scale intervals (Quigley et al., 2007) during
the Holocene.

Century-scale (Thorndrycraft and Benito, 2006) and
millennial-scale (Gunster and Skowronek, 2001) in-
creases in large magnitude floods are also recognized
as important in Spain. Millennial-scale increases in
flooding is viewed as important to understand fans
in the hyper-arid intermontane basins of central Asia
(Owen et al., 2006), in central Turkey (Kashima, 2002),
and in Italy where “infrequent but intense rainfalls”
played a key role in mobilizing slope debris (Zanchetta
et al., 2004). Recent southwestern USA fan research
also indicates importance of high magnitude floods, at
least during the Holocene (Griffiths and Webb, 2004;
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Lave and Burbank, 2004; Anderson, 2005; Griffiths
et al., 2006).

Information on event frequency and magnitude are
obviously critical for developing accurate hazard as-
sessment and mitigation strategies (Soeters and van
Westen, 1996). This is certainly the case in the Sonoran
Desert of Arizona where large infrequent floods have
led to channel avulsions on alluvial fans (Field, 2001).
Current strategies to assess hazards generate proba-
bilistic flood hazard maps with a constancy in climate
(Pelletier et al., 2005), an assumption that may not be
valid. Sub-Milankovitch oscillations may change the
frequency of high magnitude events in the southwest
(Ely, 1997) and elsewhere (Viles and Goudie, 2003).

Given this uncertainty, a study of VML in south-
central Arizona in metropolitan Phoenix has been
focusing on understanding whether fan avulsion
events took place during dry or wet phases of the
Holocene. This study utilizes the revolution in the
VML technique for analyzing Holocene desert sur-
faces (Liu and Broecker, 2007). Old channel avulsions
are represented by abandoned alluvial-fan segments
that occur throughout the metropolitan Phoenix region
(Committee on Alluvial Fan Flooding, 1996). In all 42
abandoned Holocene fan surfaces exiting three ranges
hosting development on the urban fringe (Fig. 24.5)
have been sampled for VML.

There does appear to be a weak association be-
tween fan avulsion events and millennial-scale climate
change in this northern portion of the Sonoran Desert
(Fig. 24.6). Avulsions leading to fan-surface abandon-
ment appear to have occurred three-quarters of the time
during wetter periods of the Holocene. Thus, there may
be a need to adjust current probabilistic strategies (Pel-
letier et al., 2005) for assessment of fan hazards in this
sprawling urban centre.

As indicated previously, there are inherent limi-
tations in the use of VML results to connect these
central Arizona fan events with climatic change.
First, the avulsion events—likely from large floods
but not necessarily (Field, 2001)—could have taken
place during decadal or century droughts that reduced
vegetation cover, all nested within a millennial-scale
wet phase. Second, single chronometric tools should
always be eschewed, especially when attempting cor-
relations with sub-Milankovitch-scale events. The use
of multiple chronometric tools such as OSL in tandem
with VML will help identify definitive clustering of
fan-altering flood events. Third, intrinsic geomorphic
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Fig. 24.5 VML analysis is used to study fan avulsion events
on the edges of a sprawling desert metropolis. Three study ar-
eas are on the southern (South Mountain piedmont), western
(western White Tank Mountains piedmont), and northeastern
(western McDowell Mountains piedmont) fringes of metropoli-
tan Phoenix, Arizona, as identified on a 2005 Landsat image
~75km across. The middle aerial photograph from the McDow-
ell Piedmont identifies the collection location of the lower image
of an ultra-thin section from this site. Annotations correspond
with the VML Holocene calibration (Liu and Broecker, 2007)
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Fig. 24.6 Number of different fan avulsions on the fringe
of metropolitan Phoenix, Arizona, associated with different
millennial-scale climatic intervals in the Holocene—as recorded
by varnish microlaminations (Liu and Broecker, 2007). For ex-

adjustments likely differ from one drainage basin to
another, setting the geomorphic table at different times
with differential time lags. Fourth, the climatic con-
ditions needed to cause a change in varnish layering
may not necessarily match the threshold needed to
alter alluvial fans. Lastly, just because these results
for central Arizona match a debris fan in Death Valley
(Liu and Broecker, 2007) should not in anyway be
used to infer a regional pattern. Similar studies in other
areas may identify broad correlations between extreme
fan-flooding events and drier periods of the Holocene.
Thus, even using the highest resolution dating method
available to desert alluvial-fan researchers, linkages
between fan development and climatic change are
tenuous.

Summary

The connection between desert alluvial fans and cli-
matic change runs very deep in desert geomorphology.
Initial thoughts in the early 20th century connected fan
evolution to wetter glacial periods and to times when
climate change reduced protective vegetation cover.
The mid-20th century saw desert fan research focused
in the southwestern USA, and a climatic-change
paradigm evolved for this region. The vast majority
of southwestern USA alluvial-fan research carried out
in the last two decades promotes the hypothesis that
alluvial-fan surfaces found throughout the region were
produced during transitions between wetter and drier
Milankovitch-scale climatic intervals.
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ample, WH1 is the wet Holocene period 1. Six identified avul-
sion events took place during this Little Ice Age interval. Three
avulsions took place in the time since WH1, and two avulsions
took place in the dry interval between WH1 and WH2

International desert alluvial-fan studies have bur-
geoned in the last decade and now carry the lead of in-
novation in method and theory building. This extensive
literature includes hypotheses that fan building may
have taken place during dry periods, wet phases, transi-
tions from dry to wet conditions, as well as transitions
from wet to dry times.

Despite the persistent focus by desert geomorpholo-
gists on linkages between climatic change and alluvial-
fan development, there are major limitations to this
entire subfield of desert geomorphology. First, fan de-
posits are not diagnostic of any particular climatic con-
dition, and thus sedimentology and stratigraphy cannot
be used as an indicator of climatic change without in-
dependent chronometric support. Second, dating meth-
ods are not capable of correlating geomorphic events
to sub-Milankovitch climatic changes with any degree
of certainty. The highest resolution methods available
to desert geomorphologists can only suggest group-
ings of events with millennial-scale climatic periods.
The ability to connect fan-building events to decadal or
century-scale oscillations is highly speculative at best.
Third, controlled research designs rest at the founda-
tion of our science, yet controlled experiments are not
possible in field research because all study sites have
experienced climatic change. Thus, modelling studies
that control climate must play an increasingly impor-
tant role in the future. Fourth, high magnitude storms
have taken on increased importance in the past decade
in alluvial-fan research, and there exists no mechanism
to falsify the hypothesis that “catastrophic” meteoro-
logical storms truly form desert fans, regardless of the
climatic period of the event. Fifth, perhaps the single



24 The Role of Climatic Change in Alluvial Fan Development

735

largest obstacle to understanding the role of climatic
change rests in the uncertainty of time scales of internal
geomorphic adjustments to climatic changes (Bruns-
den, 2001; Harvey, 2002a; Viles and Goudie, 2003;
Oguchi and Oguchi, 2004; Thomas, 2004). For these
reasons, understanding the role of climatic change on
desert alluvial-fan development remains an incredibly
challenging task.
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