
Chapter 7

Desert Rock Coatings

Ronald I. Dorn

Introduction

Desert landforms are characterized by an abundance
of ‘bare’ rock and mineral surfaces. Mountains host
widespread exposures of bedrock. Gravel desert pave-
ments cap alluvial terraces and fans. Even sand dunes
are themselves composed of rock fragments exposed
to the atmosphere without substantive plant cover. This
chapter focuses on an irony, that the supposed funda-
mental bare-rock nature of desert landforms stretches
the truth.

In reality, rock coatings, even those thinner than
10 μm (0.010 mm) substantially alter the appearance
of almost all of the rock surfaces found in deserts
(Fig. 7.1). Consider just a few of the icons of desert
geomorphology. The main Petra tourist attraction of
the Al-Khazneh Tomb façade is coated with a black
manganese-rich varnish, allowing the carved portions
of the elaborate burial chamber to stand out. The
almost white colour of Ayers Rock is coated by mostly
iron-clay orange accretions, facilitating photogenic
displays. Dramatic sandstone escarpment faces of the
Colorado Plateau in such places as Monument Valley
are frequently coated by a reddish-brown silica glaze
formed inside the unopened joint fracture and then
exposed by block wasting.

The systematic study of rock coatings started tens
of millennia ago, as prehistoric peoples targeted very
specific rock coatings for petroglyph manufacturing
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as well as application of artificial rock coatings to
create paintings (Whitley, 2001; Whitley, 2005).
The scientific study of rock coatings started in 1799
(von Humboldt, 1812), when major differences in
manganese composition between coatings and the
underlying rock led to recognition of rock varnish’s
accretionary nature.

There are over a dozen different types of rock
coatings (Table 7.1). Within each type, tremendous
variety exists at spatial scales from kilometres to
micrometres. For example, there are at least six
different types of silica glazes (Dorn, 1998: 294–312).
Interdigitation also exists between different types
of rock coatings, resulting in complex microstrati-
graphic sequences. For example, lava flows in the
arid Ashikule Basin of Tibet host carbonate skins,
dust films, lithobiontic coatings, oxalate crusts, phos-
phate skins, rock varnish, silica glazes, and sulfate
crusts. In another example, lithobionts like lichens are
normally associated with rock weathering, but they
can also play key roles in generating silica glazes
(Lee and Parsons, 1999) and oxalate crusts (Beazley
et al., 2002). Given the variety and complexity of rock
coatings, it should be of no surprise that researchers
not infrequently confuse different types of coatings in
their data collection and analysis.

This chapter introduces the field of desert rock coat-
ings. After introducing the paradigm perspective of
landscape geochemistry that drives an overall concep-
tual understanding of rock coatings, I present current
hypotheses of how different rock coatings form, fol-
lowed by a summary of their use in desert geomorphol-
ogy. This chapter ends by identifying future research
needs.
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Fig. 7.1 Rock coatings change the appearance of bare rock land-
forms. Upper Left: A vertical face at Canyon de Chelly, Arizona,
is streaked with heavy metal skins, iron films, lithobiont coat-
ings, oxalate crusts, rock varnish, and silica glaze. Upper Right:
Lava flows in the arid regions of Mauna Loa show a distinct color
change within decades as a direct result of accumulation of sil-
ica glaze. The true color image, courtesy of NASA, has a length

of 3.6 km with west at the top. The electron microscope images
(backscatter detector) demonstrate that rock coatings are external
accretions, exemplified by an oxalate crust from the arid Olary
Province in South Australia in the lower left image that is about
500 μm thick. Rock varnish on the lower right from Kitt Peak in
the Sonoran Desert is about 100 μm thick
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Table 7.1 Major categories of rock coatings

Coating Description Related terms

Carbonate Skin Composed primarily of carbonate, usually CaCO3, but
sometimes MgCO3

Calcrete, travertine

Case Hardening Addition of cementing agent to rock matrix material; the
agent may be manganese, sulfate, carbonate, silica,
iron, oxalate, organisms, or anthropogenic.

Sometimes called a particular type
of rock coating

Dust Film Light powder of clay- and silt-sized particles attached to
rough surfaces and in rock fractures.

Clay skins; clay films; soiling

Heavy Metal Skins Coatings of iron, manganese, copper, zinc, nickel,
mercury, lead and other heavy metals on rocks in
natural and human-altered settings.

Sometimes described by chemical
composition

Iron Film Composed primarily of iron oxides or oxyhydroxides;
unlike orange rock varnish some films do not have clay
as a major constituent.

Ferric oxide red staining, iron
staining

Lithobiontic Coatings Organisms forming rock coatings, for example lichens,
moss, fungi, cyanobacteria, algae.

Organic mat, biofilms, biotic crust

Nitrate Crust Potassium and calcium nitrate coatings on rocks, often in
caves and rock shelters in limestone areas.

Saltpeter; niter; icing

Oxalate Crust Mostly calcium oxalate and silica with variable
concentrations of magnesium, aluminum, potassium,
phosphorus, sulfur, barium, and manganese. Often
found forming near or with lichens.

Oxalate patina, lichen-produced
crusts, patina, scialbatura

Phosphate Skin Various phosphate minerals (e.g. iron phosphates or
apatite) sometimes mixed with clays and sometimes
manganese.

Organophosphate film; epilithic
biofilm

Pigment Human-manufactured material placed on rock surfaces by
people.

Pictograph, paint

Rock Varnish Clay minerals, Mn and Fe oxides, and minor and trace
elements; color ranges from orange to black in color
produced by variable concentrations of different
manganese and iron oxides

Desert varnish, patina, Wüstenlack

Salt Crust Chloride precipitates formed on rock surfaces Halite crust, efflorescence
Silica Glaze Usually clear white to orange shiny lustre, but can be

darker in appearance, composed primarily of
amorphous silica and aluminum, but often with iron.

Desert glaze, turtle-skin patina,
siliceous crusts, silica-alumina
coating, silica skins

Sulfate Crust Sulfates (e.g., barite, gypsum) on rocks; not gypsum
crusts that are sedimentary deposits

Sulfate skin

Landscape Geochemistry Model of Rock
Coating Development

Landscape geochemistry, as developed in Soviet
geography (Polynov, 1937; Perel’man, 1961, 1966;
Glazovskaya, 1968; Glazovskaya, 1973) and brought
into the English literature (Fortescue, 1980), integrates
studies of element abundance, element migration,
geochemical flows, geochemical gradients, and geo-
chemical barriers with the classification, interpretation,
and spatial laws pertaining to geochemical landscapes.
No other conceptual framework of looking at rock
coatings explains the quantity or diversity of data, is as
relevant to a variety of disciplines, or provides such a

clear framework to analyze rock coatings (Dorn, 1998:
20–27). Furthermore, there is no alternative; landscape
geochemistry currently provides the only larger
theoretical framework for the study of desert rock
coatings.

Viewed from the spectacles of landscape geochem-
istry, rock coatings occur where geochemical, biolog-
ical, or physical barriers exist to the flow of coat-
ing constituents, so long as a rock surface is stable
long enough to allow coatings to accrete. The geo-
graphical expression of these barriers can be extensive
in area, such as the overall alkaline nature of desert
rock surfaces facilitating the stability of iron (Fe) and
manganese (Mn) in rock varnish (Fig. 7.2A). There
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Fig. 7.2 Desert rock coatings accumulate at different types of
geochemical barriers. (A) In southern Death Valley, California,
the geochemical environment is alkaline enough to permit the
accumulation of Fe and Mn on alluvial-fan cobbles. (B) The
undersides of buried boulders on Panamint Valley shorelines,
California, have accumulated carbonate, but in the case of this
prehistoric cairn, the carbonate slowly dissolves from exposure

to rain. (C) Lichen growth at Yunta Springs, South Australia,
has dissolved most of previous iron film, rock varnish and silica
glaze. (D) Rock varnish microlaminations of black Mn-rich lay-
ers record wetter climates, while orange Mn-low layers record
drier conditions in the Zunggar Desert, western China (Zhou
et al., 2000). The image is courtesy of Tanzhuo Liu (Liu, 2008)

are also linear barriers at chemical discontinuities, al-
lowing such coatings as carbonate skins to accumu-
late on the undersides of desert boulders (Fig. 7.2B).
These barriers shift in space and on timescales of 10−3

to 103 years, causing temporary coatings of ice to
melt within a day (Hetu et al., 1994), silica glazes to
form within decades (Fig. 7.1) carbonate skins to dis-
solve within centuries (Fig. 7.2C), or rock varnishes
to accrete evidence of millennial-scale climatic change
(Liu, 2003; Liu, 2008; Liu and Broecker, 2007; Liu and
Broecker, 2008a, 2008b) (Fig. 7.2D).

Desert rock coatings can be interpreted by following
a five-order hierarchical sequence of landscape geo-
chemical controls (Dorn, 1998: 324–344).

First-Order Process: Geomorphic Controls

An obvious first control rests in the need for pro-
cesses that generate the bare rock on which coatings
accrete. Deserts are dominated by rock coatings,
because deserts are weathering-limited landscapes
where detachment and transport exceeds weather-
ing (Gilbert, 1877). Rock coatings also dominate
desert landforms because host rock surfaces remain
stable long enough to accumulate coatings. Some
surfaces can remain stable for 105 years (Nishiizumi
et al., 1993; Liu and Broecker, 2000; Liu, 2003),
although most rock surfaces do erode more rapidly
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(Gordon and Dorn, 2005a). For example, biotite
weathering promotes granite grussification that limits
the development of rock coatings on granitic surfaces
(Fig. 7.3A).

Second-Order Process: Inheritance
from the Subsurface

Rock coatings can and do originate in soil (Engel and
Sharp, 1958; Ha-mung, 1968; Hayden, 1976; Robinson
and Williams, 1992) and in rock fissures (Dorn and
Dragovich, 1990; Douglas et al., 1994; Mottershead
and Pye, 1994; Frazier and Graham, 2000; Cerveny
et al., 2006; Kim et al., 2006). Subaerial exposure
occurs from soil erosion (Hunt and Wu, 2004) or
spalling of the overlying block (Villa et al., 1995).
These inherited rock coatings are extremely common,
even though very few investigators note the possibility
that the samples they collected may have originated
underground. This general lack of appreciation may
be because there are many possible trajectories for
what happens to inherited coatings after exposure. The
more common post-exposure sequences are: continued
erosion exposes even more subsurface coatings; the
rock under the inherited coatings erodes — effectively
removing weathering rind and coating; inherited
coatings erode, only to be replaced by a different sub-
aerial coating; lithobionts grow on inherited coatings
(Fig. 7.3B); or a similar or different coating grows on
top of the inherited coating (Fig. 7.3C).

Third Order Process: Habitability
for Lithobionts

Faster growing coatings such as lichens dominate
over slower-growing accretions. Unless they are
overcome by anthropogenic application of pigments
(Lee et al., 1996; Wang and Hua, 1998; Saiz-Jimenez
and Hermosin, 1999; Li et al., 2001), lithobiontic
(Golubic et al., 1981) coatings such as lichens and
fungi (Urzı̀ et al., 1992; Souza-Egipsy et al., 2004)
grow much faster than most natural inorganic coatings,
effectively ‘taking out’ the competition (Fig. 7.3B).
Some have even speculated that bacteria precipitate
black Mn-rich coatings like rock varnish just to heat up

desert surfaces in order to reduce surface habitability
for lichens. The latest research reveals that desert rock
surfaces host an incredible variety of adventitious
extreme organisms (Benzerara et al., 2006; Fajardo-
Cavazos and Nicholson, 2006; Kuhlman et al., 2006).
The speedy ones take possession of the surface.

Fourth- and fifth-order processes — typically the
starting point for rock coating research — involve
movement of coating constituents and their fixation on
rock surfaces. However, these processes only influence
the nature of desert rock coatings when: (1) rock
faces are exposed by erosion; (2) exposed rock faces
are stable enough to support rock coatings; and (3)
lithobionts do not outcompete other coatings.

Fourth-Order Process: Transport Pathways

Transport of raw mineral ingredients involves two
steps. The constituents must be present, and they
must migrate to the rock face. Bird droppings (Aro-
cena and Hall, 2003) or microorganisms (Konhauser
et al., 1994), for example, generate the requisite
material for a phosphate skin that is then mobilized
and re-precipitated (Fig. 7.3D). Many oxalate-rich
crusts found in deserts similarly rely on lithobionts
to manufacture the oxalate that is then transported by
water flow over rock surfaces (Beazley et al., 2002).
Constituent availability alone, however, can be a factor
in determining what type of rock coating grows. For
example, water flows over sandstone cliff faces have
an abundance of Mn and Fe precipitation, but these
water-flow deposits often lack clay minerals; since
clays are vital to the formation of rock varnish (Potter
and Rossman, 1977; Potter, 1979), the net result is
often the formation of a heavy metal skin (Dorn, 1998:
ch 8) instead of a rock varnish. Similarly, the basalt
flows of semi-arid Hawai’i lack the overwhelming ae-
olian deposition of clay minerals found in continental
deserts, resulting in the dominance of silica glazes
(Dorn, 1998: ch 13) over relatively rare Hawaiian rock
varnish (Fig. 7.3E).

Fifth-Order Process: Barriers to Transport

Physical, geochemical, and biological barriers come
into play only after all of above processes do not
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Fig. 7.3 Landscape geochemistry influences coating develop-
ment. A. Petroglyph carved into varnished granodiorite, south-
central Arizona (A1), where biotite oxidation and hydration from
this site (A2) limits the accretion of rock varnish to the length of
time it takes to erode a grus grain. B. Lichens, cyanobacteria, and
fungi (right side of image) have almost completely eroded silica
glaze from a sandstone joint face, Wyoming. The new lithobiont
community now plays a key role in case hardening the surface,
as has been found elsewhere (Viles and Goudie, 2004). C. Slow
soil erosion at Karolta, South Australia, exposes two rock coat-
ings. Erosion first exposed the ground-line band (glb), a very
thin and shiny accretion of silica glaze and manganese that orig-

inally forms at the soil-rock-atmosphere interface (Engel and
Sharp, 1958). Then, continued erosion exposed iron film. Sub-
aerial rock varnish then started to grow over both of these former
subsurface coatings. D. Phosphate skin over sandstone, eastern
Wyoming, where a bird droppings were mobilized then and pre-
cipitated (inside dashed area) over mostly silica glaze. E. Basalt
boulder on the rainshadow side of Kaho’olawe Island, Hawai’i,
is mostly coated by silica glaze, but pockets of rock varnish (v)
and fungi (f) also grow. F. Dust film deposited over sandstone in
a Colorado Plateau alcove that is protected from rainsplash and
water flow
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rule out coating accretion. Dust coatings (Fig. 7.3F),
for example, form at locales (Johnson et al., 2002)
where the physical barrier of Van der Waals forces
are not overcome by shear stresses imposed by water
flow. Iron films, carbonate skins, and natural heavy
metal skins are examples of coatings that may accrete
at either geochemical (Krauskopf, 1957; Collins
and Buol, 1970; Scheidegger et al., 1993; Huguen
et al., 2001; Nanson et al., 2005) or biological barriers
(Ha-mung, 1968; Chukhrov et al., 1973; Mustoe, 1981;
Robbins et al., 1992; Robbins and Blackwelder, 1992).
These geochemical barriers, in turn, can trap additional
elements; for example, rock varnish forms at a barrier
to Mn and Fe mobility where the Mn-Fe oxides in
turn capture dozens of trace and rare elements (Wayne
et al., 2006).

Formation

The processes by which different desert rock coat-
ings form are best organized through the hierarchy
discussed in the previous section. Since the first-order
processes of exposing bare rock and the fourth-order
processes of constituent transport do not in and of
themselves produce accretions, the examples presented
below focus on key steps making some of the more
common desert rock coatings.

Second-Order Process: Fissuresol Coatings

A common cause of desert rock spalling is the grad-
ual growth of fissuresols (Fig. 7.4A). Fissuresols are
formed by the accumulation of rock coatings and sed-
iment fill inside joints (Coudé-Gaussen et al., 1984;
Villa et al., 1995; Frazier and Graham, 2000). As coat-
ings and fill accrete, the fissure opens slowly until
detachment occurs, exposing coatings originating in-
side of the crevice. Exposed fissuresols might only be
a few centimetres across (Fig. 7.4B), or they might
run completely through a 3-metre-diameter boulder
(Fig. 7.4F).

Three types of rock coatings form inside fissures in
drier deserts, and all three are exposed by rock spalling.
Carbonate skins form in the deepest parts of the frac-
ture (Fig. 7.4C, E, G), but this carbonate coating is not

long-lived since it dissolves from exposure to carbonic
acid in precipitation. The perimeter of a fracture de-
velops a distinct zonation of an inner wider band of
orange iron film and a narrow outer band of black rock
varnish (Fig. 7.4B, E, F, G). These are not the Mn-Fe
coatings found in saprolite fractures (Weaver, 1978).
Rather, the iron films are clay-iron accretions similar
to the orange coating found on the underside of desert
pavement cobbles, and black coatings are manganese-
rich rock varnish.

After exposure, if conditions are too xeric for fast-
growing lithobionts (cf. Fig. 7.3B), then subaerial rock
varnish grows on top of the fissuresol coatings (cf.
Fig. 7.4D). The darkest rock varnishes seen on any
given landform are usually those that start as a fis-
suresol, because there is foundation of a fairly com-
plete coverage on the host rock. In contrast, those var-
nishes that start out on abraded clasts are not as dark
and not as well coated. On rock surfaces exposed by
abrasion processes (e.g., fluvial , glacial, littoral ac-
tion), the rock varnish must first accumulate in nucle-
ation sites in isolated microtopographic basins. Then,
only after taking millennia to get this foothold does
rock varnish grow together horizontally to form a com-
plete coating. In contrast, the fissuresol acts like a
paint primer that covers the whole surface, helping
the black subaerial varnish to accrete a darker and
more complete cover. This is why the sample selec-
tion criteria used by researchers (Harrington and Ray-
mond, 1989; McFadden et al., 1989; Reneau, 1993) is
based on an incomplete understanding of rock coating
formation.

Fissuresol sequences (Fig. 7.4A) are the most com-
mon type of inherited rock coatings in drier deserts,
but fractures in rocks in semi-arid environments typ-
ically contain silica glaze (Fig. 7.5D, E) that can be
dense (Fig. 7.5F–H) or can be a more porous clay-rich
fracture coating (Graham and Franco-Vı`zcaino, 1992;
Thoma et al., 1992; Frazier and Graham, 2000).

Silica glaze in fractures is just the start. In the
semi-arid sandstone cuestas of the Colorado Plateau
and Wyoming basins, joint faces often accumulate
black rock varnish after faces are exposed by erosion.
Then, some of the iron and manganese in the varnish
is leached (Dorn and Krinsley, 1991) to mix with silica
glaze. The net effect is a case hardening of sandstone
surfaces through a mixture of inherited silica glaze and
iron and manganese leached out of varnish and washed
into the rock (Fig. 7.5A, B, C).
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Fig. 7.4 Rock coatings formed within fractures in drier deserts.
A: Generalized sequence of rock coatings found inside a still-
closed desert rock fracture. B–G: Fissuresol sequences occur in
all deserts and all rock types such as: B, granodiorite, south-
ern Nevada; C. sandstone, southern Utah; D and F, basalt,

eastern California; E, silicified dolomite, South Australia; G,
hornfel, Sonoran Desert, Arizona. rv = rock varnish; if =
iron film; c = carbonate skin. Horizonal photo dimensions
are 0.7 m (B), 1.3 m (C), 0.4 m (D), 0.6 m (D), 2.5 m (F), and
0.6 m (G)

Third-Order Process: Lithobionts

Life coatings on rocks (lithobionts) include epiliths
that live on the surface, euendoliths that bore tubes,
chasmoendoliths occupying fissures, and cryptoen-
doliths that that live in weathering-rind pores (Golubic
et al., 1981). Lithobionts can also be grouped into
≤1 mm biofilms, ∼1–5 mm biorinds, and >5 mm
biocrusts (Viles, 1995) that may be composed of
bacteria, cyanobacteria, fungi, algae, and lichens.
Although the general consensus in the past was that
desert lithobiontic communities had low diversity, new
methods reveal an astounding variety of organisms liv-
ing on rock surfaces (Kuhlman et al., 2005; Benzerara
et al., 2006; Fajardo-Cavazos and Nicholson, 2006). A
single gram of rock varnish, for example, contains 108

microorganisms of Proteobacteria, Actinobacteria,
eukaryota, and Archaea (Benzerara et al., 2006;
Kuhlman et al., 2006).

A critical aspect of fast-growing lithobionts such as
fungi and lichens is their capability of weathering in-
organic rock coatings (Fig. 7.6A, B), as well as the
underlying rock (Fig. 7.6B, C, D). By eroding the rock
coating or its underlying substrate, lithobionts obtain
possession of the surface.

Viles (1995: 32) modelled the weathering activity
of lithobionts in conditions of varying moisture and
rock hardness. A similar graphical presentation for
rock varnish had considered growth also in terms of
two simple factors, moisture and competition from
lithobionts (Dorn and Oberlander, 1982). While these
authors all acknowledge the simplicity of two variable
perspectives, the interplay of lithobiont weathering
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Fig. 7.5 Silica glaze rock coatings formed within fractures
in semi-arid environments. Images A–E come from Wyoming
sandstone cuestas and F–G from Portugal schist. Images A–C
show how Mn and Fe leached from a very surface layer of rock
varnish migrates into the sandstone, mixing with the pre-existing
silica glaze to case harden the outer millimetres. Images D and
E present silica glaze from an unopened joint face, collected

∼40 cm up into a joint covered by an overlying sandstone block,
but opened for sampling. A schist joint face in northern Por-
tugal (F) hosts a fairly uniform layer of mostly silica under a
clay-rich silica glaze (G–H). Images A–E and G are backscat-
tered electron micrographs with image widths of: A (1800 μm);
B (140 μm); C (140 μm); D (210 μm); E (260 μm)
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Fig. 7.6 Weathering activity of lithobionts. A. Varnished basalt
boulder in the Mojave Desert with inset photo of petroglyph and
showing location of the electron microscope image of a euen-
dolith (tube boring) microcolonial fungi that is effectively dis-
solving rock varnish. B. Both silica glaze and rock varnish are
being weathered and eroded by lichen growing on sandstone at
Legend Rock, Wyoming. When the lichen is removed, the rock

easily erodes, because the sandstone had become a silty pow-
der under the lichen cover. C and D present backscattered elec-
tron microscopy imagery of weathering of lava flow f7dh7.9 on
the desert side of Hualalai Volcano, Hawai’i. The less weathered
sample (C) was collected away from lichens, and the sample with
more porosity (dark ‘holes’ in D) was collected directly beneath
Stereocaulon vulcani (image D)

and rock varnish growth can be understood at a general
level by combining these two conceptualizations
(Fig. 7.7).

Consider first the rock varnish perspective, viewed
as the varnish rate deposition line in Fig. 7.7. In the
drier deserts, varnish grows slowly, but subsurface
lithobionts offer little competition. In conditions

wetter than semi-arid South Australia, lichens and
other epilithics reach a point that varnish erosion from
the secretion of acids is faster than varnish formation.

Then, consider impact of lithobiont activity on
rock varnish. The thinner lines in Fig. 7.7 represent
the potential euendoliths that bore holes in varnish
(Fig. 7.6A), biofilms of fungi, cyanobacteria, and
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Fig. 7.7 Graphical conceptualization of how lithobionts and
rock varnish interact together, adapted from Viles (1995) and
Dorn and Oberlander (1982). The graph is a generalization of
how moisture impacts the growth of rock varnish and the weath-

ering efficiency of lithobionts. In the case of rock varnish, a sec-
ond key factor other than moisture is competition from litho-
bionts. In the case of lithobionts, a second key factor is the
hardness of the rock

algae that prevent varnish from growing, and lichen
biorinds that secrete enough acid to completely
dissolve away varnish (Figs. 7.3B and 7.6B). The
efficiency of lithobionts in weathering both rock and
varnish is highest on the wettest side of the graph,
where varnishes are not found except under special
conditions. The only circumstances where rock varnish
can form in wetter environments are where epilithics
have not yet colonized subglacial features, moraines
and stream-side surfaces (Klute and Krasser, 1940;
Whalley et al., 1990; Dorn, 1998).

Finally, examine the lithobiont’s weathering ef-
ficiency in Fig. 7.7. Organisms impose three major
‘styles’ of biological weathering in their possession
of rock surfaces: (1) epilithic biofilms and lichen-
dominated surfaces; (2) endolithic-dominated; and (3)
mixed biorinds (Viles, 1995). Epilithic biofilms and
lichens dominate in the most mesic locales. Endolithic
lithobionts can survive in extremely xeric settings. In
the middle ground epilithic biofilms, epilithic lichens,
and endolithic communities all mix together with
varnish growth and varnish erosion. The hardness

or softness of the rock comes into play as a way of
modelling how another factor can make life harder or
easier on a lithobiont.

An important point must be made for those
concerned about the impact of lithobionts on
preservation of cultural resources such as rock
art and stone monuments. The vast majority of the
literature reveals overwhelming evidence of the
weathering power of lithobionts (Jones and Wil-
son, 1985; Dragovich, 1986b; Cooks and Fourie, 1990;
Viles, 1995; Banfield et al., 1999; Viles, 2001; Stretch
and Viles, 2002; Souza-Egipsy et al., 2004; Gordon
and Dorn, 2005b), and some may be tempted to
remove this erosive force. However, it is often far
better to leave lithobionts alone because of their
ability to hold rock fragments in place (Gehrmann
et al., 1988; Bjelland and Thorseth, 2002). Simply
killing the lithobionts can end up ‘releasing sediment
behind a dam’, allowing millimetres to centimetres
of weathered fragments to erode in a short time (e.g.
Fig. 7.6B). Another reason to why it is often better to
leave lithobionts alone is because some have an ability
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to case harden surfaces (Viles and Goudie, 2004);
others can help generate a protective coating of silica
glaze, (Lee and Parsons, 1999); and still others help
generate a protective coating of oxalate crust (Bea-
zley et al., 2002; Souza-Egipsy et al., 2004). Thus,
while it would be better for the stability of inorganic
rock coatings and stone surfaces if lithobionts had
never colonized, it is often far worse to intervene
and use chemical or mechanical means to remove
firmly-established lithobionts.

Fifth-Order Process: Rock Varnish

The most important aspect of understanding rock var-
nish formation was recognized more than two cen-
turies ago, when the great enhancement of manganese
(Mn) over iron (Fe) was first identified by Alexan-
der von Humboldt. Mn is typically enhanced over Fe
more than a factor of fifty above potential source ma-
terials such as dust, soils, water, and the underlying
rock (von Humboldt, 1812; Lucas, 1905; Engel and
Sharp, 1958; Dorn, 1998). The second most impor-
tant varnish characteristic that must be explained is
the dominance of clay minerals in rock varnish (Potter
and Rossman, 1977; Potter and Rossman, 1979c; Dorn
and Oberlander, 1982; Krinsley et al., 1990; Krinsley
et al., 1995; Israel et al., 1997; Dorn, 1998; Krins-
ley, 1998; Diaz et al., 2002; Probst et al., 2002; Allen
et al., 2004). Clay minerals make up about two-thirds
of a typical subaerial varnish, Mn and Fe oxides a quar-
ter, with several dozen minor and trace elements com-
prising the remainder of this black accretion that can
grow to thicknesses exceeding 200 μm.

The composition of rock varnish must be tied to
and explained by processes that fix Mn and Fe. Even
though clay minerals abound in desert dust that falls
on varnished rocks, it is the fixation of clays by Mn-
minerals (Potter and Rossman, 1977; Potter and Ross-
man, 1979a; Potter and Rossman, 1979c) that explains
why the dust remains cemented onto rock surfaces for
millennia. Although minor and trace elements arrive al-
ready adsorbed to the desert dust, many are enhanced
by the scavenging properties of Mn-Fe oxyhydroxides
(Forbes et al., 1976), redistributed by wetting (Thia-
garajan and Lee, 2004). Thus, all of the major, minor,
and trace components of varnish depend on the biogeo-
chemical barrier that fixes Mn and Fe.

Four general conceptual models have been pro-
posed to explain varnish formation. The first model
that saw general acceptance for almost a century
invokes abiotic geochemical processes (Linck, 1901;
Engel and Sharp, 1958; Hooke et al., 1969; Moore and
Elvidge, 1982; Smith and Whalley, 1988) to increase
Mn:Fe ratios two to three orders of magnitude above
concentrations found in dust and rock material. Small
pH/Eh fluctuations to more acid conditions dissolve
Mn but not Fe (Krauskopf, 1957). The Mn released by
slightly acidic precipitation is then fixed in clays after
water evaporation or an increase in pH, as idealized in
Fig. 7.8.

Although an abiotic geochemical barrier to Mn has
not yet been falsified, there are a number of varnish
characteristics that are incompatible with this model.
First, varnishes are found in environments simply too
wet and acidic to oxidize Mn (Dorn, 1998). Second,
rock varnish is not very common in environments, such
as coastal fog deserts or the rainshadows of Mauna
Loa in Hawai’i, where repeated pH fluctuations would
be at their maximum. Third, there is no extreme rate-
limiting step in the abiotic model. Multiple dust deposi-
tion and carbonic acid wetting iterations take place an-
nually, even in drought years. A bit of Mn leached from
dust with each wetting event would generate varnish
accretion hundreds to tens of thousands times faster
than rates seen in typical varnishes (Dorn, 1998; Liu
and Broecker, 2000; Liu and Broecker, 2007). While
abiotic processes are involved in clay cementation and
in trace-element enhancement, and while some abiotic
oxidation may prove to be important in some locales,
these and other characteristics of rock varnish are in-
compatible with an abiotic geochemical barrier to Mn
transport.

The second general model holds that litho-
bionts or their organic remains produce and bind
the constituents of varnish, including Mn. Lichens
(Laudermilk, 1931; Krumbein, 1971), cyanobacteria
(Scheffer et al., 1963; Krumbein, 1969), microcolonial
fungi (Staley et al., 1982), pollen (White, 1924),
peptides (Linck, 1928), refractory organic fragments
(Staley et al., 1991), gram-negative bacteria (Drake
et al., 1993; Sterflinger et al., 1999), gram-positive
bacteria (Hungate et al., 1987), amino acids from
gram-positive chemo-organotrophic bacteria (Nagy
et al., 1991; Perry et al., 2004), fatty acid methyl
esters (Schelble et al., 2005), a host of gram-
negative Proteobacteria groups and Actinobacteria
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Fig. 7.8 The abiotic model of varnish formation postulates
that acid solutions separate divalent Mn2+ from dust or tiny
rock fragments that come to rest on surfaces. Then, oxidiz-

ing conditions trap the Mn4+ in varnish. This cycle would
then repeat thousands of times to produce a 100 μm thick
varnish
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(Kuhlman et al., 2005), and a variety of microbial
forms (Jones, 1991; Allen et al., 2004; Benzerara
et al., 2006) are found on, in, or under rock varnish.

The vast majority of these lithobionts do not play
a role in the fixation of Mn or Fe, and many of them
actively erode varnish (Figs. 7.6 and 7.7). Because
there are so very many adventitious organisms and
organic remains associated with varnish, and because
Mn-oxidizing organisms cultured from rock varnish
(Krumbein and Jens, 1981; Palmer et al., 1985; Hun-
gate et al., 1987) may not necessarily be those that form
varnish, the only reliable evidence for a biotic origin of
varnish must come from in situ observations of micro-
bial forms coated with enhanced Mn and Fe (Dorn and
Oberlander, 1981, 1982; Dorn et al., 1992; Dorn and
Meek, 1995; Dorn, 1998; Krinsley, 1998). Such forms
resemble budding bacteria that grow very slowly.

The most recent proposal to explain varnish for-
mation is silica binding (Perry and Kolb, 2003; Perry
et al., 2005; Perry et al., 2006) where silica is dissolved
from dust and other mineral matter. The silica then gels
and condenses, ‘baking black opal in the desert sun’
(Perry et al., 2006). This process, however, cannot pro-
duce rock varnish formation, since no aspect of the sil-
ica binding model explains either Mn enhancement in
varnish or the birnessite-family minerals observed in
varnish (Potter, 1979; Potter and Rossman, 1979a; Pot-
ter and Rossman, 1979b; McKeown and Post, 2001;
Probst et al., 2001). The silica binding model also fails
to explain slow rates of varnish accretion, since silica
precipitation in silica glaze forms in years to decades,
not millennia required by varnish. Other problems with
silica binding include: not being able to explain the
dominance of clay minerals; not accommodating the
geography of rock coatings, being unable to answer the
simple question of why would silica glazes dominate
on Hawaiian lava flows (Curtiss et al., 1985; Gordon
and Dorn, 2005b), but not rock varnish; and the ‘bak-
ing’ requirement fails to explain varnishes that grow
in cold and dark places (Anderson and Sollid, 1971;
Douglas, 1987; Dorn and Dragovich, 1990; Whalley
et al., 1990; Dorn et al., 1992; Douglas et al., 1994;
Villa et al., 1995; Dorn, 1998).

At the present time, a polygenetic model (Fig. 7.9)
is the only proposed hypothesis that explains existing
criteria (Table 7.2). As the polygenetic name suggests,
rock varnish formation derives a combination of pro-
cesses, where slow-growing bacteria fix Mn and Fe that
is then abiotically cemented by clay minerals. Simply

put, bacteria create the barrier to the movement of Mn.
Bacteria concentrate Mn and Fe in fairly equal propor-
tions in less alkaline times, but less Mn is enhanced
in conditions of greater alkalinity. The geochemical
barrier on bacterial casts breaks down over time, as
acidic water slowly dissolves Mn and Fe. The resul-
tant nanometre-scale granular fragments of Mn and Fe
then move nanometres into the interstratified clay min-
erals deposited as dust on rock surfaces (Fig. 7.9). This
process was predicted (Potter, 1979: 174–175) without
benefit of the high resolution transmission electron mi-
croscopy imagery that showed the predicted steps of
varnish formation (Dorn, 1998; Krinsley, 1998).

Fifth-Order Process: Silica Glaze

Hydrated silica (opal) accretes on the surfaces of
rocks in all deserts (Stevenson, 1881; Hobbs, 1917;
Jessup, 1951; Fisk, 1971; Haberland, 1975; Butzer
et al., 1979; Farr and Adams, 1984; Bourman and
Milnes, 1985; Watchman, 1985; Zhu et al., 1985;
Smith and Whalley, 1988; Fullagar, 1991; Weed
and Norton, 1991; Smoot, 1995). The mineralogy
of the silica is most often x-ray amorphous (Curtiss
et al., 1985), but some have noted silica minerals such
as mogonite (Perry et al., 2006).

The general appearance varies quite a bit, ranging
from almost transparent to opaque, from a charcoal
black to ivory (Fig. 7.10A), and from dull to highly
shiny (Fig. 7.10D). Thicknesses range from microns
(Fig. 7.10E, D) to almost a millimetre, even on the
same sample (Fig. 7.10F). Controls on thickness are
not well understood, but they include the type of sil-
ica glaze, moisture conditions, and whether or not the
silica glaze had experienced recent spalling along intra-
glaze fractures. Over time, a silica glaze slow rock dis-
solution (Gordon and Dorn, 2005b) and silica move-
ment into the underlying rock can case harden a weath-
ering rind (Figs. 7.10B and 7.5A–C).

Silica glazes fall into six general categories
(Dorn, 1998: 294–312), based on the abundance of
non-silica constituents of iron, aluminum, and micron-
sized bits of mineral detritus. Type I accretes as a
fairly homogeneous and texturally uniform deposit
of amorphous silica (Fig. 7.10B, C2; bottom glaze
in Fig. 7.5G, H). Type II hosts a large amount of
mineral detritus, where the silica acts as a glue for
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Fig. 7.9 The polygenetic model of rock varnish formation
(Dorn, 1998; Krinsley, 1998) combines bacterial enhancement
of Mn and Fe with abiotic fixation of the Mn by clay miner-
als. The process starts with bacteria fixing Mn on sheaths. Wet-
ting events dissolve Mn, creating a granular nanometre-scale tex-
ture. The desert dust supplies interstratified clay minerals, and
the nanometre-sized fragments of Mn-oxides fit into the weath-

ered edges of these clay minerals, tightly cementing clays. The
hexagonal arrangements of the oxygens in the tetrahedral or oc-
tahedral layers forms a template for the crystallization of layered
birnessite, the Mn-mineral found most frequently in varnish. The
net effect is highly layered texture at micrometre and nanometre
scales imposed both by clay minerals and the cementing Mn-
oxides
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Table 7.2 Key criteria of rock varnish formation explained by polygenetic model

Criteria The polygenetic model explains . . .

Accretion Rate . . . typical rates of accretion on the order of a 1-10 μm per millennia (Dorn, 1998; Liu and
Broecker, 2000). Although faster-growing varnishes occur (Dorn and Meek, 1995), varnish accretion
rates based on studies of over 105 microbasins (Liu, 2003; Liu, 2008; Liu and Broecker, 2007)
demands the extreme rate-limiting step of budding bacteria concentrating Mn very slowly.

Clay Minerals . . . the dominance of clay minerals in rock varnish (Potter and Rossman, 1977; Potter and
Rossman, 1979c; Dorn and Oberlander, 1982; Krinsley et al., 1990; Krinsley et al., 1995; Israel
et al., 1997; Dorn, 1998; Krinsley, 1998; Diaz et al., 2002; Probst et al., 2002; Allen et al., 2004),
because the granular fragments of nanometre-Mn fragments from bacterial casts cement the clays to
rock surfaces.

Fe behavior . . . the differential enhancement of iron in different varnish layers (Liu et al., 2000; Broecker and
Liu, 2001; Liu and Broecker, 2007) and different places (Adams et al., 1992; Dorn, 1998; Allen
et al., 2004), because changes in alkalinitity over time and space affect the ability of the bacteria to
concentrate Mn.

Laboratory creation . . . the creation of artificial varnish coatings by bacteria (Dorn and Oberlander, 1981; Krumbein and
Jens, 1981; Dorn and Oberlander, 1982; Jones, 1991) may considered by some to be a vital criteria.
However, given the extraordinary time scale jump between any laboratory experiment and natural
varnish formation, and the extreme rate-limiting step involved in natural varnish formation, rigid
application of this criteria may be problematic.

Lithobionts and organic
remains

. . . the occurrence of different types of lithobionts and the nature of organic remains. The
Mn-oxidizing bacteria actually making the varnish co-exist with these more abundant adventitious
organisms, but the adventitious lithobionts are competitors.

Mn Enhancement . . . the enhancement Mn typically more than a factor of fifty above potential source materials (von
Humboldt, 1812; Lucas, 1905; Engel and Sharp, 1958), because the bacteria are seen in situ
enhancing Mn.

Mn-mineralogy . . . Mn-mineralogy characteristic of birnessite-family minerals (Potter, 1979; Potter and
Rossman, 1979a; Potter and Rossman, 1979b; McKeown and Post, 2001; Probst et al., 2001),
because the nanometre-scale fragments derived from bacteria fit well into the interstratified clays
where they form layered phases such as birnessite.

Not just a few samples . . . observations at sites around the world, because in situ enhancement of Mn-enhancing bacteria are
seen globally (Dorn and Oberlander, 1982; Dorn et al., 1992; Dorn and Meek, 1995; Krinsley
et al., 1995; Dorn, 1998; Krinsley, 1998; Spilde et al., 2002).

Paucity of microfossils . . . the extremely infrequent occurrence of preserved microfossils, because the Mn-casts of bacteria are
broken down by the varnish formation process Examination of 104 sedimentary microbasins
(Liu, 2003; Liu, 2008; Liu and Broecker, 2007), and decades of research has generated only a few
observations of microfossils (Dorn and Meek, 1995; Dorn, 1998; Krinsley, 1998; Flood et al., 2003),
just what would be expected from the polygenetic model.

Rock Coating
Geography

. . . why rock varnish grows in one place and other rock coatings elsewhere. Over a dozen major types
of coatings form on terrestrial rock surfaces, a plethora of varieties for each rock coating. The
polygenetic model explains this geography (Dorn, 1998).

Varnish Geography . . . why different types of rock varnishes occur where they occur (Dorn, 1998).
Laminations (VML) . . . the revolution in varnish microlamination (VML) understanding. Over ten thousand sedimentary

microbasins analyzed by Liu (Liu, 1994; Liu and Broecker, 2000; Liu et al., 2000; Broecker and
Liu, 2001; Liu, 2003; Liu, 2008; Liu and Broecker, 2007), a method subject to blind testing
(Marston, 2003), reveals clear late Pleistocene and Holocene patterns in abundance of major varnish
constituents connected to climate change. The characteristics of this single largest varnish data set
are explained by the polygenetic model by changes in wetness altering the alkalinity of desert
surfaces (Dorn, 1990; Drake et al., 1993; Diaz et al., 2002; Lee and Bland, 2003).

all of the bits and pieces of rock fragments coming
to rest on a rock surface (Fig. 7.10C1; upper glaze
in Fig. 7.5G, H). Silica is still dominant in Type III,
but iron and aluminum concentrations are substantive,
ranging from 5–40 oxide weight percent for FeO and
5–30% for Al2O3. Type III often has a dirty brown
appearance and is found extensively in Australia

(Watchman, 1992), in the Negev (Danin, 1985), in
dryland Hawai’i (Curtiss et al., 1985), and in wetter
climates (Matsukura et al., 1994; Mottershead and
Pye, 1994). Types IV and V are about half silica, but
aluminium is the only other dominant component in
Type IV, while iron is the only other major constituent
in Type V. Type VI glazes are dominated by Al2O3
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Fig. 7.10 (continued)

that sometimes reaches more than 50% by weight
(Fig. 7.10F). These aluminium glazes are not well
documented in the literature, and the reasons for
the major enhancement of aluminium is not well
understood.

Unlike rock varnish that typically accumulates only
a few microns over a millennium, silica glazes can

form very rapidly. Several different types have formed
on historic lava flows in Hawai’i (Fig. 7.1) (Farr
and Adams, 1984; Curtiss et al., 1985; Gordon and
Dorn, 2005b). I have measured silica glaze formation
within two years in the Owens Valley of eastern
California (Fig. 7.10E) and within two decades on
historic surfaces in the Mojave and Sonoran Deserts.
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In addition to rapid formation rates, silica glaze also
mechanically spalls along internal fractures. Thus,
connecting thickness to age is extremely problematic.

Silica glazes form where there is a geochemical
barrier to the migration of mobile silica. Since silica is
ubiquitous in the host rock, dust, precipitation, ground-
water seepage, and even opal phytoliths (Folk, 1978),
there is no shortage of raw silica. Similarly, there is
no great geochemical mystery in explaining silica
movement to coated rock surfaces, since silica is
easily dissolved in terrestrial weathering environments
(Krauskopf, 1956).

Exactly how silica glaze is fixed to rock sur-
faces probably involves several different processes.
The most common view is that monosilicic acid
(Si(OH)4) precipitates as a gel (Krauskopf, 1956;
Williams and Robinson, 1989), and experiments
indicate that dissolved silica does precipitates as
amorphous silica (Paraguassu, 1972; Whalley, 1978).
Others argue for the importance of evaporation
(Merrill, 1906; Fisk, 1971; Watchman, 1992) and
complexing with organic matter (Watchman, 1992;
Perry and Kolb, 2003; Perry et al., 2006). Still
others have made arguments that different litho-
bionts can play a role in forming silica glazes (Fyfe
et al., 1989; Urrutia and Beveridge, 1994; Lee and
Parsons, 1999).

The above mechanisms are not mutually exclusive,
and the great variety of silica glaze types (Dorn, 1998:
Ch13) do argue for different processes creating differ-
ent geochemical barriers to silica migration. Precipita-
tion of silicic acid gels certainly makes sense for Type
I silica glazes, for example, since the uniform texture
and chemistry of these homogeneous glazes would be
consistent with this simple silica-precipitation process.

Type II through Type VI silica glazes, however,
call for processes able to explain variable concentra-
tions of aluminium and iron. The explanation for abun-
dant aluminium probably rests with soluble aluminium
silicate complexes (Al(OSi(OH)3)

2+). Soluble Al-Si
complexes are ubiquitous at the water-rock interface
(Lou and Huang, 1988; Browne and Driscoll, 1992),
and they are easily released by weathering of phyllosil-
icate minerals (Robert and Tessier, 1992). The geo-
chemical fixation of Al-Si complexes probably requires
very gentle wetting events (Zorin et al., 1992) such as
drizzle, as opposed to harsh convective storms. Once
an initial silica glaze establishes itself, the silica acid or
soluble Al-Si complex then more readily bonds to the
pre-existing silica glaze (Casey et al., 1993). Other ele-
ments such as iron might be explained by strong adher-
ence to silica surfaces through Fe-O-Si bonds (Schei-
degger et al., 1993). The key to identifying processes
responsible for the geochemical barrier rests in linking
process to the type of silica glaze.

Fifth-Order Process: Other Coatings

The nature of this chapter does not permit a thor-
ough explanation of the origin of every desert rock
coating. Such information is presented in book form
(Dorn, 1998). This section, however, summarizes ex-
planations for the accumulation of four other desert
rock coatings.

Iron films (Fig. 7.11A, D) are ubiquitous in and
out of deserts, with at least three general categories.
Type I iron films are mostly homogeneous iron with
few other constituents (Fig. 7.11D). Type II iron films

�
Fig. 7.10 Silica glaze in different desert settings. A. This cen-
tral Utah petroglyph carved into sandstone is covered by light
and dark stripes of silica glaze. B. Backscattered electron mi-
croscope image of silica glaze on the boulder presented in
Fig. 7.3E, collected from the arid rainshadow of Kaho’lawe Is-
land, Hawai’i. Its composition of more than 90% silica moved
through pore spaces into the underlying rock, filling pores and
fractures. The net effect of case hardening is seen in Fig. 7.3E. C.
Two backscatter images of silica glaze on a lava flow in the arid
Ashikule basin, West Kunlun Mountains, Tibetan Plateau. Image
C1 illustrates loess cemented by silica where the line indicates
electron microprobe measurements of 50–60% SiO2, 5–15%
Al2O3, and 1–6% FeO by weight. Image C2 shows the layer-
by-layer deposition of 80–85% SiO2 with Al2O3 only ∼5%. D.
This flat surface, seen by secondary electrons, illustrates an ex-

tremely shiny, dark silica glaze collected from a Nasca trape-
zoid geoglyph, Peru. Its sheen derives from a combination of
the smooth surface and from ∼3% Mn. Silica glaze and man-
ganese rock varnish often combine in the shiny black ground-
line band (Engel and Sharp, 1958) found on many desert pave-
ment clasts. E. Silica glaze can form quite rapidly, in this case
from the Owens Valley, eastern California within two years,
freezing in place the weathered biotite mineral. F. This ex-
tremely thick accretion, collected from an opened joint face
of Haleakala, Hawai’i, lava flow displays thicknesses ranging
from <1 μm to almost a millimetre. The line on this backscat-
tered image indicates the location of an electron microprobe
transect along which Al2O3 values average 44%, but range
from 19% all the way to 60% by weight (data table in Dorn,
1998: 311)
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Fig. 7.11 (continued)
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include aluminium and silicon as major elements,
but still less abundant than iron. In Type III iron
provides the orange to red coloration with concen-
trations of less than a third iron oxide by weight.
The bulk of the coating comes from clay minerals
(Fig. 7.11A).

The causes of iron films all involve biotic processes
(Dorn and Oberlander, 1982; Adams et al., 1992;
Konhauser et al., 1993; Schiavon, 1993; Konhauser
et al., 1994; Dixon et al., 1995; Sterflinger et al., 1999;
Fortin and Langley, 2005). Unlike rock varnish, how-
ever, no need exists for lithobionts to immobilize the
iron. The barrier to iron movement on rock surfaces
can simply be purely abiotic oxidation of iron, since
the inorganic oxidation of Fe2+ to Fe3+ is rapid above
a pH of 5 (Collins and Buol, 1970; Marshall, 1977;
Holland, 1978). Desert rock surfaces typically have
pH values well above 5 (Dorn, 1990). However,
the processes behind iron film fixation are probably
far more complex, perhaps involving the formation
of chemical Fe-O-Si bonds in Type II iron films
(Hazel et al., 1949; Scheidegger et al., 1993), perhaps
involving photooxidation (McKnight et al., 1988) in
Type I iron films, and likely involving interaction with
interstratified clays in Type III iron films much like
rock varnish (cf. Fig. 7.9).

Oxalate crusts (Figs. 7.1 and 7.11B) are far less
common than any of the aforementioned rock coat-
ings, and they are more frequently found in wetter
microenvironments such as locales of water flow. Ox-
alate minerals include carbon, oxygen and a divalent
cation, such as magnesium, calcium, or manganese.
Whewellite (CaC2O4 • H2O) is the most common
mineral. Oxalate crusts can vary considerably in
appearance, including white, yellow, orange, red, red-
brown, brown or black colours. Thickness also ranges
considerably, from microns to a few millimetres. Al-

though the carbon can come from inorganic materials
(Zák and Skála, 1993) and a host of plant and microbial
sources (Lowenstam, 1981; Lapeyrie, 1988; Watch-
man, 1990; Cariati et al., 2000; Zhang et al., 2001),
most of the oxalate found in deserts likely derives
from the decay of lichens that synthesize the oxalate
(Del Monte et al., 1987; Whitney and Arnott, 1987;
Russ et al., 1996; Bjelland et al., 2002; Bjelland and
Thorseth, 2002; Souza-Egipsy et al., 2004). After
oxalate minerals crystallize, two additional steps are
still required to form desert oxalate crusts. First, the
oxalate must be mobilized away from the source, most
typically by water flowing over a rock face away from
lichens. Second, the oxalate must re-precipitate on
desert rock surfaces; it is this last step that has eluded
an explanation more detailed than evaporation.

Carbonate crusts (Figs. 7.2B and 7.11C) coat
desert rocks in a variety of settings, including
freshwater tufa, travertines and other carbonate de-
posits (Viles and Goudie, 1990; Carter et al., 2003),
caves (Fyfe, 1996), lake shorelines (Benson, 1994),
tropical beaches (Krumbein, 1979), subaerial rock
faces mixed with clays and silica (Conca and Ross-
man, 1982; Conca, 1985; Dorn, 1998), and soils
(Goudie, 1983). The mechanism of carbonate fixation
varies greatly depending on environment, but both
biotic (Krumbein, 1979; Viles and Goudie, 1990;
Folk, 1993; Rodriguez-Navarro et al., 2003) and
abiotic (Vardenoe, 1965; Gile et al., 1966; Bar-
gar, 1978; Dandurand et al., 1982; Dunkerley, 1987;
Benson, 1994) processes are invoked as key mecha-
nisms in creating a geochemical barrier to carbonate
movement.

Salt crusts (Fig. 7.11E) also appear as rock coatings
in certain desert settings (Oberlander, 1988), but
particularly associated with efflorescence (Goudie and
Cooke, 1984) on porous rock surfaces (Smith, 1994;

�
Fig. 7.11 Other types of rock coatings. A. Iron film illustrated
by secondary (left) and backscatter (right) electron microscope
images of an orthoclase feldspar sand grain from the bright or-
ange Parker Dune Field, western Arizona. Clay particles are ce-
mented to sand grains by iron oxides. B. Oxalate crust illustrated
by backscattered (left) and secondary (middle) electron micro-
scope images of a sandstone face in the semi-arid Black Hills,
Wyoming. Small pockets of rock varnish also occur, and a fi-
brous fungal mat has grown in the weathering rind underneath
the rock coating. C. Carbonate crust (C1 and C2) that formed on
top of a rock varnish (v), but only after a boulder had been flipped
to form a geoglyph at least 8440±60 14C years ago, according

to a radiocarbon age on the more silica-rich (C2) inner carbon-
ate crust (Cerveny et al., 2006). D. Iron film that impregnated
sandstone at Petra, Jordan (Paradise, 2005). The iron film seen
as bright white in this backscattered electron microscope image
is a rock coating, but it also acts as a case hardening agent as
the iron remobilizes and impregnates the host sandstone. E. At
Mushroom Rock (E1), Death Valley, salt exists as efflorescent
coatings seen on the surface, and as subflorescent deposits, as
shown in the backscattered electron micrograph of barite (bright
white) invading host basalt (mostly plagioclase) minerals (E1).
Halite (NaCl) and celestite (SrSO4) also coat surfaces on Mush-
room Rock (Meek and Dorn, 2000)
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Smith and Warke, 1996). Sulfates encrust desert sur-
faces (Goudie, 1972; Watson, 1988; Drake et al., 1993;
White, 1993b). Nitrate can also coat rock surfaces
(Mansfield and Boardman, 1932; Ericksen, 1981), as
can phosphate skins (Trueman, 1965; Zanin, 1989;
Konhauser et al., 1994; Arocena and Hall, 2003)
(Fig. 7.3D).

Use of Rock Coatings as a Chronometric
Tool

Desert geomorphologists and geoarchaeologists have
long used rock coatings as indicators of the antiquity
stone surfaces (Oberlander, 1994). Visual changes in
such features as alluvial-fan sequences (Fig. 7.2B)
(McFadden et al., 1989; Bull, 1991), the undersides
of desert pavement clasts (Helms et al., 2003), in-
selberg debris slopes (Oberlander, 1989), glacial
moraines (Staiger et al., 2006), and mass wasting
(Moreiras, 2006) have all led to an intuitive belief
that rock coatings can be used as way of obtaining
minimum ages for erosive processes that ‘wiped clean’
prior rock coatings.

Very few investigators utilizing rock coatings as
a chronometric tool, however, have written about the
possibility that they may be including in their analy-
ses ‘inherited’ rock coatings or that they may be sam-
pling completely different types of coatings that look
similar (McFadden et al., 1989; Harry et al., 1992; Re-
neau, 1993; Perry et al., 2006). I only present here
chronometric tools that are clearly constrained by a
landscape geochemistry perspective, grounded in hier-
archical rock coating processes.

Rock Varnish

Rock varnish has been studied more extensively than
any other rock coating, including more than a century
of exploration on its use as a possible method to date
desert landforms (Dorn, 1998: Ch 10). Several differ-
ent dating methods have been proposed (Table 7.3). Yet
up until only the last few years, all such proposed tech-
niques have been highly experimental — tried in only
a few selected circumstances and only rarely subjected
to blind testing (Loendorf, 1991; Marston, 2003). To

turn any dating method into a technique that can be
practised widely requires the study of thousands of
samples.

This level of extensive research has recently taken
place only for the use of rock varnish microlamina-
tions (VML) as a chronometric and palaeoclimatic
research tool in desert geomorphology. The VML of
orange (Mn-poor) and black (Mn-rich) layers accreted
in subaerial varnishes (Perry and Adams, 1978;
Dorn, 1990; Cremaschi, 1996; Leeder et al., 1998) can
now be used with regularity and consistency. This rev-
olution in varnish dating took detailed analyses of over
ten thousand sedimentary microbasins studied through
a decade of painstaking scholarship, laboratory work,
and testing by Tanzhuo Liu (Liu, 1994; Liu and
Dorn, 1996; Liu and Broecker, 2000; Liu et al., 2000;
Zhou et al., 2000; Broecker and Liu, 2001; Liu, 2003;
Marston, 2003; Liu, 2008; Liu and Broecker, 2007; Liu
and Broecker, 2008a, 2008b). A complete discussion
of the varnish microlaminations revolution for desert
geomorphology is summarized in Chapter 21.

Some other rock varnish dating methods (Table 7.3)
might also reach this stage of regular and consistent
use. Yet, that next step would similarly require the level
of funding and painstaking dedication achieved for the
VML method.

Carbonate

Carbonate crusts are used extensively as a chronomet-
ric tool in deserts. Tufa crusts are used to radiocarbon
date palaeoshorelines (Benson et al., 1995). Pedogenic
carbonate crusts, with an awareness of confounding
factors, can inform on palaeoclimate (Monger and
Buck, 1999) and can date soils through radiocarbon,
uranium-series, and its gradual accumulation (Gile
et al., 1966; Machette, 1985; Chen and Polach, 1986;
Bell et al., 1991; Amundson et al., 1994). Pedogenic
carbonate can also serve as a vessel for accumulating
cosmogenic 36Cl (Liu et al., 1994).

The major difficulty in using carbonate crusts de-
rives from uncertainties surrounding a vital assumption
that the sampled carbonate deposit is ‘closed’ to post-
depositional modification. Virtually all carbonate crust
chronometric methods require that nothing happens to
the carbonate minerals once they are deposited. Yet,
because carbonate is extremely mobile in the terres-
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Table 7.3 Different methods that have been used to assess rock varnish chronometry

Method Synopsis of method

Accumulation of Mn
and Fe

As more varnish accumulates, the mass of manganese and iron gradually increases. Occasionally this old
idea is resurrected (Lytle et al., 2002), but it has long ago been demonstrated to yield inaccurate results
in tests against independent control (Bard, 1979; Dorn, 2001).

Appearance The appearance of a surface darkens over time as varnish thickens and increases in coverage. However,
much of this darkening has to do with exposure of inherited coatings, and with the nature of the
underlying weathering rinds, that do not permit accurate or precise assignment of ages based on visual
appearance. There is no known method that yields reliable results.

Cation-ratio dating Rock varnish contains elements that are leached (washed out) rapidly (Dorn and Krinsley, 1991;
Krinsley, 1998). Over time, a ratio of leached to immobile elements decline over time (Dorn, 2001). If
the correct type of varnish is used, the method performs well in blind tests (Loendorf, 1991). This
method has also seen use in such places as China (Zhang et al., 1990), Israel (Patyk-Kara et al., 1997),
and South Africa (Whitley and Annegarn, 1994), Yemen (Harrington, 1986) and elsewhere.

Foreign Material
Analysis

Rock carvings made historically may have used steel. The presence of steel remains embedded in a
carving would invalidate claims of antiquity, whereas presence of such material as quartz would be
consistent with prehistoric antiquity (Whitley et al., 1999).

Lead Profiles 20th century lead and other metal pollution is recorded in rock varnish, because the iron and manganese in
varnish scavenges lead and other metals. This leads to a ‘spike’ in the very surface micron from 20th
century pollution. Confidence is reasonably high, because the method (Dorn, 1998: 139) has been
replicated (Fleisher et al., 1999; Thiagarajan and Lee, 2004; Hodge et al., 2005; Wayne et al., 2006)
with no publications yet critical of the technique that can discriminate 20th century from pre-20th
century surfaces.

Organic Carbon Ratio Organic carbon exists in an open system in the rock varnish that covers petroglyphs. This method
compares the more mobile carbon and the more stable carbon. The method is best used in soil settings
(Harrison and Frink, 2000), but it has been applied experimentally to rock varnish in desert pavements
(Dorn et al., 2001).

14C carbonate Calcium carbonate sometimes forms over varnish, and can be radiocarbon dated, providing a minimum
age for such features as rock art. The method has been used in Australia (Dragovich, 1986a) and eastern
California (Smith and Turner, 1975; Cerveny et al., 2006).

14C organic The hope is that carbon trapped by coating provides minimum age for the petroglyph. First developed in
1986, two independent investigators working in a blind test (Dorn, 1997; Watchman, 1997) both found
organic carbon that pre-dates and post-dates the exposure of the rock surface. The only person who still
uses organic carbon of unknown residues in radiocarbon dating (Watchman, 2000; Huyge et al., 2001),
Watchman now admits that he has not tested results against independent controls (Watchman, 2002;
Whitley and Simon, 2002a; Whitley and Simon, 2002b).

14C oxalate The inorganic mineral oxalate (e.g., whewellite: CaC2O4 · H2O) sometimes deposits on top of or
underneath rock varnish (Watchman et al., 2000). Because this mineral contains datable carbon, the
radiocarbon age can provide a minimum age for the underlying or overlying varnish. The most reliable
research on radiocarbon dating of oxalates in rock surface contexts has been conducted in west Texas
(Rowe, 2001; Spades and Russ, 2005) and in a rock art shelter (Watchman et al., 2005).

Uranium-series dating Since radionuclides are enhanced in varnish (Marshall, 1962), uranium-series isotopes show potential
(Knauss and Ku, 1980). Complications surround acquiring the necessary amount of material from the
basal layers and concerns over accounting for the abundant thorium that derives from clay detritus
instead of radioactive decay.

Laminations (VML) Climate fluctuations change the pattern of varnish microlaminations (VML). The confidence level is high,
because the method (Liu, 2003; Liu, 2008; Liu and Broecker, 2007) has been replicated in a rigorous
blind test (Marston, 2003), and the method is based on analyses of over ten thousand rock microbasins.

trial weathering environment, closed systems are rare
(Stadelman, 1994). Some of the most stable compo-
nents of carbonate crust are not actually carbonate, but
silica associated with and sealing carbonate (Ludwig
and Paces, 2002) and playing a role in generating lam-
inations that are better for dating (Wang et al., 1996).

The great potential of carbonate crusts to serve as
a geomorphic tool, depends on the identification of

those microsettings where silica helps generate a less
open system. This is illustrated where carbonate crusts
undergo a change in environment such that they ac-
tually interlayer with rock varnish. Radiocarbon dat-
ing carbonate superimposed over rock varnish (Smith
and Turner, 1975; Dragovich, 1986a) was originally
thought to be a very rare possibility. However, both
anthropogenic and natural processes can flip boulders,
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generating dating potential when the subaerial position
of rock varnish and pedogenic position of carbonate
crusts are inverted (Cerveny et al., 2006). An example
comes from rock cairns (cf. Fig. 7.2B) where carbonate
crusts are exposed to the atmosphere and also where
formerly varnished surfaces are thrust deep enough
into the soil to form a carbonate crust (Fig. 7.11C).
Dating the carbonate formed over the varnish provides
a minimum age for the rotation, and the most reliable
minimum ages for this flipping process derives from
the silica-rich laminated carbonate crust (Fig. 7.11C2)
(Cerveny et al., 2006).

Oxalate

Oxalate crusts (Fig. 7.11B) offer tremendous potential
for geomorphic research, because oxalate is a carbon-
bearing mineral. Both radiocarbon dating (Russ
et al., 1990; Watchman et al., 2005) and stable carbon
isotope palaeoclimatic analyses (Russ et al., 2000;
Beazley et al., 2002) have yet to reveal the problems of
an open system associated with carbonate. Although
oxalate dating has yet to be used as a geomorphic tool,
having been tried mostly on oxalate crusts formed
over rock paintings, 14C dating provides opportunity
to study such topics as mass wasting when an oxalate-
streaked face topples and is buried by cliff retreat (cf.
Fig. 7.1).

Lithobionts

Measuring the progressive growth of lichens or
lichenometry has been used extensively in Arctic
and alpine settings (Lock et al., 1979; Matthews and
Shakesby, 1983; Worsley, 1990). Most investigators
focus on the largest lichen, assuming that its size
indicates the age of colonization — and ideally sub-
strate exposure. Comparing size against a dating curve
yields a calibrated age. Although many lichenometry
researchers interpret these dating curves in terms of an
initial rapid juvenile growth, biologists believe that the
‘great growth’ is explained by a high mortality rate of
early colonists (Loso and Doak, 2006). This difference
in the interpretation of empirical curves does not deny
the proven utility of this method in cool-wet regions
where epilithic lichens thrive (Fig. 7.7).

Deserts lack moisture, placing a severe limitation
on the activity of lichens (Fig. 7.7). Thus, lichenometry
in drier regions has only seen speculative use, most
often focused in archaeology (Joubert et al., 1983).
Some work has been completed in semi-arid areas,
such as basalt terraces in Lesotho, where methods
were modified to study lichen cover on scarp faces
(Grab et al., 2005). Lichen growth on rock falls
in semi-arid eastern California has been used to
infer past tectonic events (Bull, 1995). However,
lichenometry has not seen substantive use in desert
geomorphology.

Since moisture and rock hardness influence the
weathering efficiency of lithobionts (Viles, 1995), it
is a logical next step to infer that climatically distinct
patterns of weathering might relate to particular
climates — assuming that rock type can be controlled.
Extensive research in Israel, controlling carbonate
lithology, reveals distinctive weathering patterns gen-
erated by the different lithobionts of endolithic lichens,
epilithic lichens, and cyanobacteria (Fig. 7.12) (Danin
et al., 1982; Danin, 1983; Danin and Garty, 1983;
Danin et al., 1983). Contemporary lithobiontic weath-
ering in the driest parts of the Negev, for example, only
creates small-scale pitting from microcolonial fungi
and cyanobacteria, but there are also ‘puzzle pattern’
weathering features on these hyperarid carbonate
rocks (Fig. 7.12). These puzzle patterns match forms
produced by lichens that only grow in wetter parts of
Israel. The conclusion reached was that a former wetter
climates fostered the growth of and weathering effi-
ciency of these more mesic lithobionts in the heart of
the Negev (Danin, 1985; Danin, 1986). Thus, there ex-
ists substantive potential of weathering patterns to map
out palaeoclimatic boundaries of desert weathering
efficiencies.

Future Research Directions

Academic roots have greatly influenced methods, con-
clusions and the overall agenda of previous desert rock
coating research. For example, the geological focus of
researchers in the late 19th and early 20th century on
rocks led them to favour the incorrect hypothesis that
coatings were ‘sweated’ out of the underlying rock
and ‘baked’ on rock surfaces. It was not until elec-
tron microscopes showed incredibly distinct contacts
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Fig. 7.12 Generalized map of the distribution of dominant lith-
biontic weathering in Israel (modified from Danin 1986: 245).
Rock varnish forming bacteria dominate in the driest parts of Is-
rael, but as moisture increases so does the pattern of carbonate
weathering — all the way to far northern Israel where epilithic
lichens dominate. The photograph a southern Negev Desert car-

bonate boulder shows centimetre-scale pitting and ‘puzzle pat-
tern’ weathering forms generated by long-dead and absent litho-
bionts made under a wetter climate. Sub-millimetre pitting by
microcolonial fungi and cyanobacteria is the contemporary litho-
biont weathering process slowly erasing the palaeoforms

between coating and rock (Potter and Rossman, 1977)
that the almost universal accretionary nature of rock
coatings came to be fully recognized (Dorn, 1998).
Microbial ecologists, in contrast, have concentrated
on culturing organisms and studying organic remains
in association with rock coatings, with a concomitant

natural tendency to downplay mineralogically driven
processes.

Funding has also influenced rock coating research.
In an example of the tail of cash wagging the dog
of research, NASA’s agenda to search for life Mars
has driven an explosion of interest in rock varnish
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(DiGregorio, 2002; Gorbushina et al., 2002; Johnson
et al., 2002; Mancinelli et al., 2002; Allen et al., 2004;
Kuhlman et al., 2005; Spilde et al., 2005; Perry
et al., 2006; Perry and Lynne, 2006). This is nothing
new, since funding and sociological concerns have
often driven ‘normal science’ (Fuller, 2000) between
paradigm shifts.

It is most unlikely that the most significant rock
coating research in the future will rest with targeted
agency agendas or within a single disciplinary perspec-
tive. Thus, I list the top four interdisciplinary research
agendas that I think would have the greatest potential
impact on rock coatings research in desert.

(1) Use varnish microlaminations (VML) to answer
the difficult desert geomorphology questions.
Tanzhuo Liu has just finished a decade of
technique development that allows desert geomor-
phology researchers to date Holocene (Liu, 2008;
Liu and Broecker, 2007) and late Quaternary
(Liu and Broecker, 2008a, 2008b) landforms.
In contrast to cosmogenic nuclides that suffer
from high inherent costs and concerns over the
‘inheritance’ of nuclide build-up in any trans-
ported sediment (Robinson, 2002; Cockburn and
Summerfield, 2004), VML can be used to tackle
virtually any landform that hosts subaerial varnish.
There are a host of classic and unsolved desert
research questions ripe for answering through
VML.

(2) The study of rock coatings in the context of
priceless rock art. There can be little doubt
that anthropogenic factors and natural erosion
continue to result in the destruction of countless
numbers of rock art engraved or painted on desert
rock surfaces (ICOMOS, 2000; Bertilsson, 2002;
J.PaulGettyTrust, 2003; Varner, 2003; Keyser
et al., 2005). Many laboratory scientists favour
an interventionist strategy to preserve art by
treatments such as organosilicone-polyurethanes
(Puterman et al., 1998), acrylic copolymers
(Brugnara et al., 2004), polymeric membranes
(Drioli et al., 1995), in situ polymerization (Vicini
et al., 2004), and intrapore precipitation of calcite
(Tiano, 2004). Field scientists, in contrast, do
not generally advocate active intervention by
subtracting lithobionts or adding stabilizing agents
(Dolanski, 1978; Pope, 2000; Zhang et al., 2001;
Pope et al., 2002; DeAngelis et al., 2003; Tratebas

et al., 2004). There is also a major perceptual
difference between those studying building stones,
who start with the premise that the host rock is
unweathered stone from a quarry, and those study-
ing natural rock art, who start with the premise
that the host rock is already in a state of decay.
Unfortunately, there is very little basic research
on the role of rock coatings in the stabilization
of or weathering of this priceless art. Much more
research is needed, for example, on processes by
which coatings stabilize stone surfaces by oxalate
(Del Monte et al., 1987; Zhang et al., 2001), rock
varnish (Gordon and Dorn, 2005a), heavy metals
(Tratebas et al., 2004), silica glaze (Gordon and
Dorn, 2005b), or simply understanding the spatial
context of weathering and rock coatings (Barnett
et al., 2005; Wasklewicz et al., 2005).

(3) Map the geography of rock coatings. The normal
strategy in rock coating research has been to
utilize a microanalytical technique at a few sites,
or even to bring to bear a suite of expensive
tools at just a single site. Oberlander (1994: 118)
emphasized that ‘researchers should be warned
against generalizing too confidently from studies
of single localities.’ Even though a spatial perspec-
tive on geochemistry helped prevent dead-ends
in geochemical research (Perel’man, 1961, 1966,
1967; Fortescue, 1980; Perel’man, 1980), very
few mapping studies of rock coatings have yet
to be conducted (Danin, 1986; White, 1990;
Christensen and Harrison, 1993; White, 1993a;
Dorn, 1998; Palmer, 2002). Successful models
for rock coating research must be able to explain
simple geographical questions such as why, for
example, rock varnish grows with iron films, silica
glaze, phosphate skins, and oxalate crusts in the
Khumbu of Nepal (Dorn, 1998: 360–361) and with
dust films, carbonate crust, phosphate film, silica
glaze, and oxalate crusts in Tibet (Dorn, 1998:
367–369). The recent paper entitled ‘baking black
opal in the desert sun: the importance of silica
in desert varnish’ postulated an untenable model
for varnish formation simply by not considering
the geography of varnish in locales with little or
no light and heat (Anderson and Sollid, 1971;
Douglas, 1987; Dorn and Dragovich, 1990;
Whalley et al., 1990; Dorn et al., 1992; Dou-
glas et al., 1994; Villa et al., 1995; Dorn,
1998).
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(4) Falsify abiotic hypotheses, if possible. A general
uncertainty envelopes research on the genesis
of almost all rock coatings. There are often
both abiotic and biotic processes capable of
creating a geochemical barrier to fix manganese,
iron, phosphate, carbonate and other coating
constituents on rock surfaces. Even though the
preponderance of evidence might favour a biotic
mechanism, as is the case in rock varnish, the role
of abiotic fixation simply cannot be ruled out at
the present time. This uncertainty comes home
as a giant problem if a rock coating is to be used
as an indicator of ancient life on Earth (Crerar
et al., 1980; Dorn and Dickinson, 1989), or on
Mars (DiGregorio, 2002; Gorbushina et al., 2002;
Mancinelli et al., 2002; Allen et al., 2004;
Kuhlman et al., 2005; Spilde et al., 2005; Perry
et al., 2006; Perry and Lynne, 2006). Just as the
use of varnish as a bioindicator of ancient life
on Mars is untenable until abiotic origins are
falsified for Martian conditions, a clever strategy
to falsify (or confirm) abiotic origins on Earth
would similarly aid terrestrial research.
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