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Abstract: The past decade has seen the development and application of over a dozen 
new methods for quantitative age-determinations of geomorphic surfaces. Some 
surface exposure dating methods are numerical, including the accumulation of cos-
mogenic radionuclides 10Be, 14C, 26Al, 36Cl, and 41Ca, accumulation of cosmogenic stable 
nuclides 3He and 21Ne, 14C dating of organic matter encapsulated in rock coatings, and 
dendrogeomorphology. Calendar ages are obtained by dendrogeomorphological anal-
ysis. Calibrated ages can be obtained by analysis of rock-varnish chemistry, lichenome-
try, weathering, and soils. Various methods can be used in combination to overcome 
individual limitations. Whereas conventional methods provide age control on strat-
igraphic profiles, surface-exposure dating methods are especially suitable for geo-
graphic problems, such as analyzing not only temporal, but also spatial variations in the 
rates of geomorphic processes. [Key words: geomorphology, process, geochronology, 
cosmogenic nuclides, Quaternary, surface exposure dating, rock varnish, weathering, 
soils.] 

INTRODUCTION 

A substantial proportion of the earth's land surface changes at rates too slow to 
detect by studies conducted during the lifetime of a single investigator. In these 
circumstances, dating of older landforms is necessary to estimate long-term rates 
of geomorphic processes. At present the vast majority of quantitative age control 
on landforms is from datable material in a stratigraphic sequence, such as K-Ar 
dating of lava flows and 14C dating of charcoal intercalated with deposits. 

There are circumstances where deposits amenable to dating are found at or near 
the surface and constrain the ages of landforms. K-Ar dated lava flows have 
provided extremely valuable data (Naeser, 1971; Lucchitta, 1975, 1984; Dohren-
wend et al., 1984, 1986), as have organic deposits (e.g., Benson and Thompson, 1987) 
to the ~40 ka limit of the radiocarbon method. Other stratigraphic age-deter-
mination techniques are increasingly being used: fission-track, amino acid 
racemization, uranium-series, stable isotopes, electron spin resonance, ther-
moluminescence, paleomagnetism, and others (Easterbrook, 1988; Rutter et al., 
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1989). Where available, these stratigraphic dating methods have provided insights 
into the timescales of geomorphic processes. However, suitable material for 
stratigraphic dating is lacking for the vast majority of the earth's surface. Further-
more, stratigraphic age control is not possible for erosional landforms. 

The quantitative study of landscape development has been empirically and 
theoretically handicapped by relying on stratigraphic ages that are spatially dis-
junct and provide minimal insight into changes in landform patterns over time. 
Landscapes are inherently spatial entities; despite this many geomorphologists 
have been trained to think in terms of stratigraphic columns. 

During the past decade, there has been a tremendous expansion in the number 
of alternative dating methods available to those interested in quantitatively recon-
structing rates of landform change over time. These surface exposure dating (SED) 
methods assess how long the surface of a landform has been exposed to the 
subaerial environment. SED techniques can be divided into form, relative position, 
weathering, soils, rock coatings, growth of biota, accumulation of cosmogenic 
nuclides in rocks, and stratigraphic methods (Table 1). SED methods are also 
grouped into different types of dating results (cf. Colman et al., 1987): numerical; 
calibrated; relative; and correlated (Table 2). 

SED methods offer a complement to stratigraphic (vertical) dating techniques, 
by constraining the age of a surface. SED techniques allow ages to be assessed as a 
function of location, instead of just vertically. SED methods also permit sequences 
of landform development to be placed within the context of dated paleoenviron-
mental reconstructions (using data from pollen, macrofossils, stable isotopes, soils, 
paleohydrology, etc.), that in turn place constraints on the processes that could 
reasonably operate to produce an evolving landscape. 

The purpose of this paper is to review trends in surface exposure dating 
techniques, and to explore the limitations and advantages of the different 
approaches. 

REVIEW OF SURFACE EXPOSURE DATING METHODS 

Relative Position and Form 

The starting place for any geomorphic study is mapping the position of deposits 
and erosional features (Table 1). We believe that cross-cutting landforms provide 
the most unequivocal relative age sequences. Relative positions should be used as 
benchmarks to test new techniques. It is sometimes possible, however, for the 
most experienced field observers to misjudge the importance of morpho-
stratigraphic juxtapositions. Gilbert (1890), for example, felt the Stansbury 
shoreline of Lake Bonneville was cut during a regression, instead of the transgres-
sive feature recognized today (Oviatt et al., 1990). 

An intuitively acceptable tool used by many is the general shape of a landform 
(Coates, 1984). An implicit assumption of many glacial geomorphology studies, for 
example, is that moraine crests are sharp when young and gradually round in cross-
profile with time. This assumption, however, has not yet been tested. Similarly, 
desert geomorphologists consider rounded ballenas to be remnants of alluvial 
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Table 1. Surface Exposure Dating Methods 

Methods 

1. 

2. 

3. 

4. 

5. 

6. 

Relative position 

Form 

Weathering 
A. Minerals 

B. Whole rock 

Soils 

Rock Coatings 

Examples of use 

Glacial moraines (Gibbons et al., 1984) 
Intermontane basins (Gile et al., 1981) 
Cliff retreat (Gerson, 1982) 

Fault scarps (Bucknam and Anderson, 1979) 
Alluvial fans (Hunt and Mabey, 1966) 
Surface roughness (Gaddis et al., 1990) 
Abandoned seacliffs (Orme, 1962; 1966). 

Hornblende (Hall and Martin, 1986) 
Quartz (Pope, 1991) 

Rinds (Colman and Pierce, 1981) 
Seismic waves (Crook, 1986) 
Obsidian (Pierce et al., 1976) 
Post-depositional modifications (Kiernan, 1990) 

Individual properties (Birkeland, 1984; Mahaney, 1990) 
Indices (Switzer et al., 1988) 
Catena (Birkeland and Burke 1988) 
Meteoric 10Be (Pavich et al., 1986) 
U-series CaCO3 (Ku et al., 1979) 
14C CaCO3 (Chen and Polach, 1986) 
CaCO3 accumulation models (Marion, 1989) 
Uranium-trend (Muhs et al., 1989) 

A. Calcium carbonate coatings (Turner, 1977; Dragovich, 1986) 
B. Rock pigment (Loy et al., 1990) 
C. Oxalate-rich crusts (Watchman, 1991) 
D. Silica skins (Curtiss et al., 1985; Watchman, 1990) 
E. Rock varnish 

Growth of biota 

14C organic matter (Dorn et al., 1989) 
Cation-ratios (Dorn, 1989) 
Uranium-series (Knauss and Ku, 1980) 
Microstratigraphic, sequences (Dorn, 1988) 
Transition metal concentration (Dorn et al., 1992) 
Trace element trends (Bard, 1979) 
Paleomagnetism (Clayton et al., 1990) 
Tephrachronology (Harrington, 1990) 
Carbonate formation over varnish (Dragovich, 1986) 
Percent cover black varnish (Derbyshire et al., 1984) 
Clasts covered with orange bottom varnish (McFadden et al., 

1989) 

Lichenometry (Mahaney, 1990) 
Dendrogeomorphology (Shroder and Butler, 1987) 

(continued on next page) 
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Table 1. (continued) Surface Exposure Dating Methods 

Methods 

7. Cosmogenic isotopes 

Examples of use 

3He (Kurz et al, 1990; Cerling, 1990) 
21Ne (Graf et al., 1991) 
10Be and 26Al (Nishiizumi et al., 1989) 
14C (Jull et al., 1989; Lal et al., 1990) 
36Cl (Phillips et al., 1990; Zreda et al., in press) 
41Ca (Klein et al., 1990) 

8. Stratigraphic dating methods that can be used to date surfaces 
A. Uranium series 

B. K-Ar 

Tufa (Lao and Benson, 1988) 
Corals (Bloom et al., 1974) 
(Dohrenwend et al., 1984; Lucchitta, 1984). 

deposits where the original surface has eroded. These and other models of 
morphological evolution (Table 1) are often reasonable, but in places they can be 
misleading. We do not consider form to be as clear an age indicator as relative 
position. In both Ireland and California, for example, abandoned seacliffs of 
distinctive form are often associated with marine terrace deposits of known 
Quaternary age so that, where the latter have been removed by erosion, the form 
and relative position of bevelled and truncated seacliffs allow former shorelines to 
be placed in a sequence of coastal development (Orme, 1962, 1966). 

Weathering and Soils 

Weathering has long been viewed as a viable relative dating indicator, but it has 
taken on a new vigor in recent years. Colman and Pierce (1981), Chin (1981), 
Knuepfer (1988) and others have calibrated the development of lithology-specific 
weathering rinds. Alterations of hornblende (Hall and Martin, 1986), quartz 
(Ericson et al., 1986; Pope, 1990), and other minerals (Yatsu, 1988) may be calibrated 
by established numerical ages. Regolith dating, in the southeastern United States 
(Pavich, 1985) and Australia (Idnum and Senior, 1978; Gulson et al., 1986; Bird and 
Chivas, 1988) is also making great strides. 

Soils have long been used to assign relative ages to landforms (e.g., Birkeland, 
1984). More recently, soil indices have been used to assign calibrated ages (e.g., 
Switzer et al., 1988; Harden and Matti, 1989). The accumulation of CaCO3 in soil 
profiles have also been calibrated (Machette, 1985). However, these efforts are 
based on the isolation of chronosequences. Not only is it extremely difficult to 
control all of Jenny's (1941) soil-forming factors (McFadden, 1988), but current 
models of soil genesis are under fire (Johnson and Watson-Stegner, 1987; Johnson 
et al.,1990; Johnson, 1990). Clearly, many of the assumptions involved in soil dating 
require rethinking. 

Uranium-series dating of soil carbonate rinds (Ku et al., 1979), by accumulation 
of organic matter in carbonate rinds (Chen and Polach, 1986), by uranium-trend 
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Table 2. Surface Exposure Dating (SED) Methods, Organized by the Quaternary 
Dating Terminology of Colman et al. (1987). 

Numerical ages 

Accumulation 
cosmogenic radio-
nuclides (36Cl, 26Al, 
10Be, 14C, 129l, 41Ca) 

Accumulation of 
cosmogenic stable 
nuclides (3He, 21Ne) 

14C dating of organic 
matter in rock 
coatings 

14C dating of organic 
matter in carbonate 
rinds 

Uranium-series dat-
ing of rock varnish, 
soils carbonate 

Dendrogeo-
morphology 

Calibrated ages 

Ratio of mobile to 
immobile cations in 
rock varnish 

Harden soils index 

Accumulation of 
CaCO3 in soils 

Weathering rinds 

Weathering of 
minerals (e.g., 
hornblende, quartz) 

Lichenometry 

Relative ages 

Morphology 

Relative position 

Seismic waves in 
granite rock 

Individual soil prop-
erties (e.g., Fe-oxide, 
clay accumulation) 

"PDM" methods: pit 
depth, pitting ratios, 
hammer blow, sur-
face boulder 
frequency, 
grussification 

Cosmogenic iso-
topes in soils 

Percent cover of 
varnish on rocks 

Correlated ages 

Fluctuations in stable 
isotopes and Mn:Fe 
ratios in rock varnish 

Oxygen isotopes in 
regolith 

Identification of 
tephra encapsulated 
in rock varnish 

Paleomagnetic 
variations in rock 
varnish layers 

dating (Muhs et al., 1989), and by meteoric 10Be (Pavich et al., 1986; Monaghan et 
al., 1990) are promising methods for providing numerical ages for soils. 

Growth of Biota 

The pioneering work of Beschel (1950) established that the maximum diameter 
of the largest lichen thallus on a surface is proportional to time since colonization 
(approximating post-depositional time). If numerical age control can be obtained 
in an area, it may be possible to calibrate the growth rate of lichens. Objections to 
the method include complications arising from climatic change, ecological factors, 
erratic behavior of lichen growth, and difficulty in lichen identification and 
measurement. Lichenometry has been used to assign relative and calibrated-ages 
for Holocene deposits in arctic and alpine environments (Benedict, 1967; Porter, 
1981; Gellatly, 1982; Winchester, 1984; Mahaney, 1990). 

Dendrogeomorphology was developed into a workable and systematic meth-
odology by Shroder (1980) and students (Giardino et al., 1984; Shroder and Butler, 
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1987). Tree-ring dating is now used in a wide variety of geomorphic problems, 
including fluvial, periglacial, glacial, hillslope, volcanic, and paleoseismic concerns. 
Dendrogeomorphology provides the most reliable and precise minimum-age 
estimates for landforms, short of historic photographic evidence. However, in most 
regions it is useful over a time span of at most a few thousand years. 

Rock Coatings 

As in lichens and trees, the time-clock for rock coatings starts when initial 
colonization takes place. This can be quite rapid in certain microenvironments and 
yet take thousands of years in other places (cf. Dorn, 1989). Most of the current 
effort in dating rock coatings has concentrated on accelerator mass spectrometry 
(AMS) radiocarbon dating of organic matter encapsulated by rock varnish (Dorn et 
al., 1992), silica skins (Watchman, 1985; Dorn et al., 1991), and rock pigment (Loy et 
al., 1990). AMS 14C dating has also been tried on calcium carbonate rock coatings 
(Turner, 1977; Dragovich, 1986) and oxalate-rich crusts (Watchman, 1991). 

In all cases, these methods assume that radiocarbon dates provide minimum 
ages for the surface exposure of the underlying landform. While it is hypothetically 
possible that older organic matter was either trapped or encapsulated in the 
coatings, the most reasonable model is that the source of the organic matter was 
the adjacent vegetation matter. This has been tested for rock varnish (Dorn and 
DeNiro, 1985), where radiocarbon dates on organic matter in rock varnish are 
consistently younger than control ages (Dorn et al., 1992) 

Rock varnish may also be evaluated by calibrating the decrease in the 'cation 
ratio' (Ca+K)/Ti using independent established numerical ages (Dorn, 1983, 1989; 
Glazovskiy, 1985; Harrington and Whitney, 1987; Jacobson, 1989; Pineda et al., 1988, 
1990; Zhang et al., 1990). It is beyond the scope of this review to comment on new 
criticisms of the cation-ratio method, but most of these critiques are due to 
different investigators sampling different types of rock varnishes. Uranium-series 
dating of varnish holds great promise (Knauss and Ku, 1980). Sequences of stable 
isotopes (Dorn and DeNiro, 1985), micromorphologies (Dorn, 1986), and micro-
chemical laminations (Dorn, 1990; Jones, 1991) may allow cross-correlation 
between landforms in an area that has experienced relatively uniform paleoen-
vironmental fluctuations. Relative ages can also be obtained by the concentration 
of transition metals (Dorn et al., 1992), percent of black varnish cover on rocks 
(Derbyshire et al., 1984), percent of orange varnish on the underside of rocks 
(McFadden et al., 1989). Additional experimental rock-varnish dating methods 
include paleomagnetism (Clayton et al., 1990), tephrachronology (Harrington, 
1988), and K-Ar dating of varnish Mn-Oxides (Becker et al., 1991). 

Cosmogenic Isotopes 

The newest and most powerful SED techniques are based on the in situ build-up 
of cosmogenic nuclides in rocks exposed at the earth's surface. Several earth-
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science applications for the accumulation of cosmogenic isotopes were predicted 
by Lal and Peters (1962, 1967), but it was not until the advent of accelerator mass 
spectrometry (AMS) that routine measurement of terrestrial cosmogenic nuclides 
became feasible (Elmore and Phillips, 1987). Cosmogenic radionuclides such as 36Cl 
(Phillips et al., 1986, 1990; Zreda et al., 1990), 10Be and 26Al (Nishiizumi et al., 1986, 
1989), 14C (Jull et al., 1989; Lal et al., 1990), 41Ca (Klein et al., 1990), and others (Lal, 
1988) are measured by AMS. Stable cosmogenic isotopes like 3He (Kurz, 1986a,b; 
Lal, 1987; Kurz et al., 1990; Cerling, 1990) and 21Ne (Graf et al., 1991) can be 
measured by conventional (but difficult) mass spectrometry. 

These nuclides build up in rocks due to the interactions of cosmic rays with 
atoms in minerals by high-energy spallation, neutron-capture reactions and 
muon-induced nuclear disintegrations (Lal, 1988). The rate of accumulation is 
dependent on factors that can be measured (altitude, geomagnetic latitude, rock 
chemistry, geometry of exposure to cosmic rays), on time, and on the cosmic ray 
flux. The cosmic ray flux does vary with time (e.g., radiocarbon production; Stuiver 
et al., 1986), but in situ isotopes reflect the long-term average, integrating short-
term fluctuations. 

For stable isotopes such as 3He, exposure time to cosmic rays is assessed 
assuming a linear accumulation with time. For radionuclides, it must include the 
effects of both build-up and decay. Zreda et al. (1991) outline the build-up 
equation for cosmogenic 36Cl accumulated in a given sample after t years of 
exposure to cosmic rays and with negligible erosion. This is expressed as: 

(1) 

where: 
R— atomic ratio of 36Cl to stable Cl; 

Ro— background of 36Cl/Cl ratio supported by U and Th derived 
neutrons; 

— production rates due to spallation of 39K and 40Ca, respectively in 

atoms per kg of rock per year per unit concentration of K or Ca. 
CK, CCa— concentration of K or Ca; 

Ψn— production due to thermal neutron activation of 35Cl, in atoms per kg 
of rock per year; 

Ψµ- production due to negative muon capture by 40Ca, in atoms per kg of 
rock per year; 

E,L,D— correction factors for elevation above sea level (E), geographical 
longitude and latitude (L), and depth below surface (D), for distribu-
tion of neutrons (n) and muons (µ), respectively; 

t— time of exposure, in years; 
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N— stable Cl concentration, in atoms per kg of rock; 
λ— decay constant for 36Cl (2.30 * 10-6 per year). 

The build-up curve is steep (Fig. 1), so radionuclides can be detected after only a 
few thousand years. 'Saturation' is reached for radionuclides after about 4 times 
the half life. So saturation for 36Cl (with a 1/2-life of 300,000 years) is reached after 
about 1 Myr, 26Al (1/2-life 710,000 years) after about 2-1/2 Myr, 10Be (1/2-life 1.6 myr) 
after about 5-6 Myr, and 14C after about 20,000 years. The effective dating limits of 
the in situ radionuclides are from a few thousand years to several millions of years. 
For samples less than 10 ka, 3He and 14C are best (Jull et al., 1989; Kurz et al., 1990). 
For samples greater than 10 ka, the time range is a function of when saturation 
occurs. 

EVALUATION OF SURFACE EXPOSURE DATING METHODS 

Levels in Sampling 

The first step in developing a strategy for surface exposure dating is to assess the 
scope of the problem in different levels in sampling. 

Level 1. Before-sampling assessments. Before sampling, the focus of the study 
needs to be defined. If the project revolves around the nature and rate of 
weathering, methods sensitive to weathering of surfaces (e.g., rock coatings and 
weathering rinds) would be sampled along with less sensitive indicators (cosmo-
genic isotopes) in a different fashion than if the project was to assess landform 
evolution. Styles of rock weathering, weathering processes, and rates of surface 
degradation are critical issues in SED techniques. Quantitative data on these issues 
are desperately needed. However, the rest of this discussion will revolve around 
the assumption that the project is to assess the chronology of landform develop-
ment, rather than rates of weathering. 

If numerical age information is needed, if dendrogeomorphological techniques 
are inappropriate due to time-scale or biotic environment, and after the mor-
phostratigraphic relationships are well understood, the new SED methods of 
dating rock coatings and cosmogenic isotopes should be considered. The rest of 
this discussion will focus on these circumstances. 

Level 2. Iterative sampling. In using all SED methods, an iterative sampling 
procedure is the best approach. The current approach used by those applying new 
cosmogenic isotope and new rock coating SED methods is to sample the 'best 
preserved' surfaces from the largest boulders. This is a subjective process that 
involves avoiding such situations as fire spalling and places where the geometry of 
boulders may change. Experiments are ongoing on sampling the best and worst 
places for sampling in order to determine the end members (cf. Phillips et al., in 
preparation; Dorn, 1989; Krinsley et al., 1990; P. Kubik, personal communication). 
After an initial set of samples are taken and analyzed, second and third rounds of 
collection will help resolve issues of rock weathering and geometry changes. It 



SURFACE EXPOSURE DATING 311 

Fig. 1. Calculated 36Cl buildup with time in a hawaiite lava exposed at 3,500 m elevation on Mauna 
Kea. The dashed line is 36Cl/Cl ratio in secular equilibrium with the cosmic ray flux. 

may also be advantageous to use low-cost methods like varnish cation-ratios to 
screen which samples would be best for the more expensive cosmogenic dating 
methods. 

Level 3. Weighing advantages and disadvantages of different methods. Within 
the cosmogenic isotopes, there are methods that have different advantages. 10Be 
and 26Al extraction from quartz (Nishiizumi et al., 1989) requires time-consuming 
preparation, but paired isotopes with different half-lives from the same material 
yield additional information on exposure histories of rocks. By using more isotopes 
with widely varying half-lives, the most information on rates of rock-surface 
erosion and landform history can be gained (Lal, 1991). 

A single radionuclide such as 36Cl, extracted from whole rocks (Phillips et al., 
1990; Zreda et al., 1991) is much easier to prepare than 10Be and 26Al, and would be 
most appropriate where many measurements are needed, where a prior exposure 
history is unlikely, and where rock-surface erosion is minimal. 

Stable nuclides such as 3He (Kurz et al., 1990; Cerling, 1990) or 21Ne (Marti and 
Craig, 1987; Graf et al., 1991) have the advantage of not requiring accelerators for 
measurement, but they record a cumulative history of exposure. 

Rock varnish and other rock coating dating methods are less suitable than 
cosmogenic methods of dating landformsfor most geomorphic purposes, because 
they can dissolve with environmental changes (Dorn, 1989; Watchman, 1991). They 
are also problematic where the surfaces of rocks are not stable, because rock 
coatings are lost if even a millimeter of rock is eroded. On the other hand, rock 
coatings can be superior in circumstances where a prior exposure history is likely 
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for the rock under the coating, for example, in dating the cessation of aeolian 
abrasion on a boulder or in dating petroglyphs, or most other human artifacts. 

Geomorphic Scenarios 

Our philosophy is not to claim that one SED method is inherently superior to 
another. We believe that each approach has advantages appropriate to different 
projects. In order to illustrate this, we will review different SED methods in different 
geomorphic scenarios. 

Scenarios #1 and #2 in Figure 2 are where all SED methods would ideally yield the 
same age signal: time since erosion or deposition. The landforms that would meet 
this situation include most glacial moraines, erosional marine terraces remnants 
such as uplifted sea stacks, talus cones, and landslides. 

In scenario #3, there is a possibility of dating buried landforms without having 
stratigraphically datable material like tephra. If clasts were once exposed at the 
surface, and if a former surface can be identified (e.g., surface of buried glacial till, 
old sand dune, surface of buried alluvial fan), the radionuclides that had built up 
would have decayed but the stable isotopes would not decay. Multiple isotopes 
could be used to assess how long the rocks have been buried, and also how long 
they were exposed at the surface. Alternatively, if the original surface is still 
exposed elsewhere, cosmogenic nuclide measurements on buried and exposed 
rocks could be interpreted together to yield the time of burial. 

Rocks with a complex history of exposure-burial-reexposure in scenario #4 can 
be dated. This would require, however, the analysis of multiple isotopes with 
different half-lives. Scenario #4 would be the most expensive to assess accurately, 
since many different isotopes would be required to determine the exposure 
history. 

Scenario #5 would be of little value in evaluating the timing of a particular 
geomorphic event, since the accumulation of cosmogenic nuclides would reveal 
the cumulative exposure. This information, however, would be of unique value in 
tracing the long-term history of particle movement. 

Scenarios #6 and #7 illustrate a complication and an advantage to cosmogenic 
isotopes. Minor abrasion events that may remove a few cm of rock would not 
influence a cosmogenic age for the deposition/erosion of the clast, because the 
1/2-depth of cosmic ray penetration is on the order of one-third of a meter (Zreda 
et al., 1991). On the other hand, cosmogenic isotopes would be of little use in 
determining the timing of these abrasion events. 

One of the long-term uses of dating rock coatings in geomorphic research will 
be to resolve the circumstances of scenarios #5 and #6 in Figure 2. Unlike 
cosmogenic isotopes that can tolerate tens of centimeters of spalling, even the 
slightest spalling of a rock surface resets the varnish clock. Geomorphic events like 
aeolian abrasion, fluvial transport, wave action, cryoturbation, and mass wasting 
are often severe enough to remove the upper few centimeters off a rock and reset 
the varnish signal, but they are often not great enough to erode enough rock to 
reset the cosmogenic clock. This is also true for archaeological disturbances. 
Cosmogenic nuclides in petroglyph panels or surface quarry sites would reflect the 
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Fig. 2. Possible exposure histories for rocks sampled for age determination by cosmogenic isotopes. 
The number assigned to each scenario corresponds to discussion in the text. 

Scenario 1. Deposit with no prior exposure history. 
(a) Deep burial before landslide. 
(b) Exposure during landslide. 
(c) Cosmogenic isotopes build up after landslide. 

Scenario 2. Erosion with no prior exposure history. 
(a) Glacier erodes stoss and lee landform. 
(b) Cosmogenic isotopes build up after deglaciation. 

Scenario 3. Burial after exposure. 
(a) Cosmogenic isotopes build up. 
(b) Clast is shielded by sediment. 
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Scenario 4. Multiple cycles of exposure and burial. 
(a) Alluvial-fan system where clast moves from 

exposure in the drainage basin to 
(b) exposure on the upper fan or 
(c) burial on the upper fan and then transport-erosion, then 
(d) exposure lower down on the fan. 

Scenario 5. Continuous exposure in different positions. 
(a) Bedrock exposure on hillslope crest, then movement to 
(b) slope where clast is still exposed, then transport to 
(c) fluvial system where clast is 
(d) deposited and is still exposed. 
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Scenario 6. Centimeter-scale erosion of exposed landform. 
(a) Scaling caused by lightning, fire, salt weathering. 
(b) Wave erosion of large boulder. 
(c) Ventifact produced by aeolian abrasion. 

Scenario 7. Humans abrade surfaces of exposed rocks 
to produce surface artifacts (a-b) and petroglyphs (c). 
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geomorphic exposure history. Yet what is of interest to the archaeologist is the 
timing of engraving or flaking. In contrast, rock coatings provide the timing of last 
abrasion, not the entire exposure history of the rock. 

A major concern for surface exposure dating is how rapidly the constructional 
surfaces of landforms erode. This topic has been little explored in geomorphology, 
but recent research on surface exposure dating seems to indicate that some parts 
of a geomorphic surface erode while other parts remain intact. For example, 
radiocarbon dates on charcoal buried by lava flows on Hawaii (Rubin et al., 1987) 
are quite similar to varnish radiocarbon (Dorn et al., 1989) and 3He (Kurz et al., 1990) 
ages. K-Ar dates on lava flows are similar to 36Cl (Phillips et al., 1986; Leavy et al., 
1987) and varnish cation-ratios (Dorn, 1989). Recent research in Antarctica indi-
cates that some surfaces have not eroded in millions of years (Brown et al., 1991; 
Nishiizumi et al., 1990). Certainly, brush fires, lightning, salt, frost and other 
weathering agents spall many rocks (e.g., Blackwelder, 1927; Yatsu, 1988), but 
remnants of erosional and depositional geomorphic surfaces can remain intact for 
hundreds of thousands to millions of years. The circumstances and rates of 
preservation of land surfaces require further systematic study. 

In constrast to soils, rock varnish and cosmogenic isotopes, the weathering of 
rocks and minerals does not require that a constructional surface remain intact. 
The surface itself may erode, but the rocks and minerals at depth remain buried 
and continue to weather. If these weathering trends can be calibrated, weathering 
trends may provide calibrated age-determinations. 

Cost-Benefit of New SED Methods 

There are some basic questions that the geomorphic consumer may be asking 
about cosmogenic isotopes produced by muon-induced spallation, before going 
blind scraping thin films off rocks. 

(1) How much does it cost? It is difficult to calculate cosmogenic 'dates' on a 
price-per-sample basis at this time, but AMS analysis, chemicals, and associated 
analyses cost on the order of $600-$1200 per sample. At present, the 'real' cost of a 
single varnish 14C date is about $800 in sample preparation time, electron micro-
scope time, laboratory supplies, and buying a commercial AMS radiocarbon date. 
A varnish cation-ratio age-determination (if a calibration exists) runs ~ $125 
(depending on the number of replicate chemical analyses). 

The costs involved in generating quantitative measurements of weathering rinds 
and minerals are probably the least of any calibrated SED method. The costs 
involved in developing a soils index based solely on field data (Switzer et al., 1988) 
are probably on the same order. However, if a calibrated-soils age requires the 
opening of a deep trench and detailed laboratory analyses (e.g., Harden, 1987), the 
labor costs alone are substantially more than a cosmogenic-nuclide or rock-varnish 
age-estimate. 

(2) Can I send my sample off? Not yet. Sample collection has not yet been refined 
to a cook-book procedure. Commercial laboratories have yet to become estab-
lished to process samples for accelerator analysis, but it is just a matter of time. 
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(3) Can I do it myself? "Yes." Replication, a key component of any scientific 
endeavor, has been achieved for cation-ratio dating (Dorn, 1983; Glazovskiy, 1985; 
Harrington and Whitney, 1987; Pineda et al., 1988; Zhang et al., 1990). 3He dating 
has been accomplished by several groups (Kurz, 1986a,b, 1990; Lal, 1987; McCon-
ville and Reynolds, 1989; Ceding, 1990), as has in situ 14C dating (Jull et al., 1989; Lal 
et al., 1990). Varnish radiocarbon dating, 36Cl, and 26Al and 10Be, still await replica-
tion by different groups. 

Most geomorphologists are aware of the hazards of improper sample collection 
procedures, the necessary laboratory pre-treatment, and the need for careful 
laboratory analysis. Given time, SED methods will probably be treated like radio-
carbon dating is today. 

(4) Is it really better than the existing product? (In this case, the existing products 
are form, relative position, weathering, growth of biota, and soils.) If relative ages 
are required, "no." Landform morphology, relative position, and soil properties 
have long been used as indicators of relative landform age. These approaches are 
"low-tech," relying on inexpensive aerial photography and relatively simple 
laboratory procedures. 

If numerical ages are required, "no" if dendrogeomorphology is suitable, "yes" 
if it is not available. However, the aforementioned relative dating methods can be 
used as "litmus tests" of reasonability to help identify potentially anomalous 
cosmogenic, varnish, and weathering "ages." 

If calibrated ages are required, "maybe," if a trusted calibration exists for 
weathering rinds, weathering of minerals, rock-varnish cation ratios, or soil prop-
erties. These approaches are certainly less expensive than numerical SED tech-
niques. However, the development of each calibration is limited to a particular 
area (Switzer et al., 1988; Dorn, 1989). The development of a calibration, therefore, 
is economical only when a large number of landform ages are to be derived in a 
project. 

In order to evaluate this issue further, one of the weakest of the new surface 
exposure dating methods (cation-ratio dating of rock varnish) is compared with a 
more traditional approach of using soils in geomorphic research. Soils are much 
better understood than varnish, having been studied intensively by thousands of 
soil scientists over the past century. Still, fundamental problems persist in the use of 
soils as a dating technique, where the theoretical basis is Jenny's (1941) chrono-
function; these are less severe for cation-ratio dating of rock varnish. 

(1) There are few ways to test the constancy of climate, biota, topography, parent 
material, and factors other than time influencing soil development (Jenny, 1941). 
McFadden (1988, p. 175) notes it "is difficult to identify a soil chronofunction that is 
not likely to reflect the influences of at least two soil-forming factors." A soil 
scientist has no way of knowing that a particular soil trench experienced the same 
vegetation cover, even during the same climatic period, let alone the great 
vegetation changes that occurred from the latest Pleistocene to the Holocene. For 
example, an isolated pinyon pine tree could have been present over a soil pit for 
thousands of years, increasing the local acidity, and only recently died, leaving no 
pinyon pine in the local area. Because varnish is a cumulic deposit and not a 
diagenetic medium that is constantly mixing like soils, it is possible to assess the 
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environmental history of the varnish, including whether the varnish has experi-
enced past episodes of erosion (Krinsley et al., 1990; Dorn and Krinsley, 1991). 

(2) The number of soil profiles that can be examined for a particular geo-
morphological unit is necessarily low, usually no more than 3 soil pits per site due to 
the large effort in opening and analyzing soil pits. With much less effort and less 
dollar cost in labor, 15 or more boulders can be analyzed for cation-ratio dating of 
rock varnish from a site. This higher "n" provides an opportunity to assess 
anomalies that are an inherent part of any biogeochemical system such as soils and 
rock varnish. 

CONCLUSION 

Where numerical ages are needed beyond the time range of dendro-
geomorphology, we believe that the accumulation of cosmogenic nuclides in 
rocks will become the SED method of choice for geomorphologists, just as 
radiocarbon dating is commonly used today. Unlike varnish, soils, lichenometry, 
and weathering, cosmogenic isotope dating is based on physics and is not 
dependent on changing biological or geochemical variables. Field sampling is 
relatively straightforward, relying on the investigator to select rock surfaces that 
reflect the depositional or erosional geomorphic event. Laboratory processing is 
tedious and requires care (e.g., Kurz, 1986b; Nishiizumi et al., 1989; Zreda et al., 
1991), but so is sample preparation for virtually any laboratory analysis. The time 
range is ideal for geomorphological purposes, from 102 to 107 years BR 

Some might argue that the use of cosmogenic nuclides will be limited by time on 
tandem accelerators. It is imperative that geomorphologists with uses for surface-
exposure dating have access to these new methods, and accelerator time is a key 
issue for national funding agencies. However, who would have predicted that 
radiocarbon would play such a vital role in geomorphology? As demand increases 
and more accelerators are used for mass spectrometry, an ongoing trend, the 
number of samples that can be run will gradually increase. Also, 3He and 21Ne can 
be analyzed by conventional, albeit difficult, mass spectrometry. 

We believe the greatest inherent limitations of cosmogenic nuclides are geo-
morphological. The exposure history of rocks that are sampled will ultimately 
control the use of cosmogenic isotopes in geomorphology. This is best illustrated 
by reviewing different scenarios for the exposure histories of sampled rocks (Fig. 2). 

Ever since the inception of geomorphology, we have typically been constrained 
to use indirect, correlative methods for determining the age and rates of changes 
of landforms. The most exciting aspect of the new surface exposure dating 
techniques is that, by measuring rock properties that are unique to the very surface 
of the earth, they permit the direct determination of landform chronology. In a 
sense this has, for the first time, put geomorphology on an equal footing with many 
other fields of earth science where direct chronology has long been taken for 
granted. The new methods are not a panacea; the measurements will reveal only 
what the actual surface history of the sample has been, and not necessarily the facts 
we might most like to know. Nevertheless, the first applied studies and cross-
checks between methods are very encouraging (Brown et al., 1991; Dorn et al., 
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1991; Phillips et al., 1991). The challenge now is to discover where the new methods 
can most effectively be applied to advance the science of geomorphology. 
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