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Abstract 

Trend prediction for social media has become an important 
problem that can find wide applications in economics, social 
studies, etc. In this paper, we investigate two basic issues in 
trend prediction, i.e., what are the important factors and 
what may be the appropriate models. To address the first is-
sue, we consider different content and context factors by de-
signing features from tweet messages, network topology, 
and user behavior, etc. To address the second issue, we in-
vestigate several prediction models that have different com-
bination of the two basic model properties, i.e. (non-
)linearity and (non-)state-space modeling. Our study is 
based on the hashtag trend of a large Twitter dataset with 
more than 16M tweets and 660k users. We report some in-
sightful findings from comparative experiments. In particu-
lar, it is found that the most relevant factors are derived 
from user behavior on information trend and that non-linear 
state-space models are more effective for trend prediction. 

Introduction   

Information diffusion is a network process in which infor-

mation propagates through network links. Being able to 

predict or simulate the outcomes of such a process may 

lead to many applications in social studies, e.g. economics, 

politics. (Yu & Kak, 2012). In this work, using Twitter 

network as a case study (Kwak, et al., 2010), we investi-

gate the problem of predicting Twitter trends, which meas-

ure, at macro level, information diffusion regarding some 

underlying topic or event. Twitter is an interactive social 

media platform where users share ideas and communicate 

by tweets, messages of less than 140 characters. The term 

trend in Twitter refers to the dynamics of a set of tweets 

grouped by a hashtag, which is a string of characters start-

ing with the character #, to represent a topic, event, etc. For 

example, #icwsm13 is the hashtag for the topic on the IC-

WSM 2013 conference. The popularity of a twitter trend is 

measured by the number of users and tweets involved in 

the trend or hashtag. So our prediction object is: given the 
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history of a hashtag trend, how many users and tweets will 

appear in the next time interval? 

Different twitter trends may evolve with different pat-

terns (Figure 1) due to many factors. Therefore, effective 

trend prediction should consider both the design of trend 

factors and the selection of prediction models. Although 

trend prediction has been studied in other related fields, 

e.g., time series analysis and system identification (Ljung, 

1998), many important questions still need to be answered 

in the context of social networks. For example, trend diffu-

sion is complex due to the interaction among a large set of 

network nodes, which requires more sophisticated predic-

tion model. Also, how to exploit additional information 

channels in social networks such as user activities should 

be investigated. 
 

 

Figure 1: An illustration of Twitter trends. The horizon axis is 

time, and the vertical axis is count. In each plot, the blue/green 

line is the number of tweets/users respectively. 
 

 Current tweet trend research mainly focuses on the in-

vestigation of relevant trend factors. On the one hand, ex-

isting methods typically only use simple (non-)linear re-

gression or classification models, which are in general in-

adequate for handling sophisticated trend dynamics on 

large-scale social networks. On the other hand, many rele-

vant trend factors have been identified, which can general-

ly be categorized into two categories, i.e., context and con-

tent factors. Content factor is derived lexically from tweets 

for describing the trend topic, quality, etc. Context factor is 

derived from network structure and user behavior to de-

scribe the environment for trend diffusion. Most prior 

works only predict trend with one type of factors, except 

two recent papers (Ma, et al., 2012) (Tsur & Rappoport, 
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2012), which, however, covered only limited context and 

content factors. 

In this paper, we investigate two basic issues in trend 

prediction, i.e. what are the important factors and what 

may be the appropriate models. To address the first issue, 

we consider different content and context factors by de-

signing features from the body of the tweets, the network 

topology, and user behavior, etc. To address the second is-

sue, we investigate several prediction models by consider-

ing different combination of the two basic model proper-

ties, i.e. (non-)linearity and (non-)state-space modeling. 

The analysis of the features and models is done through 

experiments with a large Twitter dataset,  

The main contributions and findings of this paper are as 

below. First, a comprehensive study on different aspects of 

trend factors on a large, real dataset was conducted. Sec-

ond, different categories of prediction models, covering 

(non-)linear and (non-)state-space models, were investigat-

ed and comparatively evaluated using the same dataset. 

The analysis of the experimental results suggests that, for 

trend prediction on the Twitter network, context factors 

based on user behavior is most useful, and nonlinear state-

space models appear to be more effective.   

Related Work 

Since this paper is about the two basic issues of trend pre-

diction, the related works also lies in two aspects. 

Relevant Trend Factors 

Current research has identified many factors relevant to in-

formation trend diffusion. These factors can be generally 

divided into 2 categories, i.e. content and context. Content 

factor describes the information trend content by lexical 

analysis. For example, it is recognized in  (Lehmann, et al. 

2012) and (Romero, Meeder and Kleinberg 2011) that 

trend may follow different temporal pattern across its con-

tent topic, e.g. politics, sports, and the LDA topic distribu-

tion is used to predict trend (Ma, Sun and Cong 2012). The 

TF-IDF similarity between the information trend and us-

er’s interest is also relevant (Yang and Leskovec 2011). 

There are also simple content features, such as the fraction 

of tweets containing URL (Ma, Sun and Cong 2012), the 

fraction of retweet/mention in a trend (Yang and Counts 

2010), and hashtag itself (Tsur and Rappoport 2012). 

Context factor describes the diffusion environment of the 

information trend. On the one hand, network topology is 

shown to be related to the scale and speed of trend diffu-

sion, e.g. the network density (Lerman and Ghosh 2010) 

and the border of sub-graph formed by users already adopt 
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the trend (Romero, Meeder and Kleinberg 2011). On the 

other hand, the importance of user’s behavior is also rec-

ognized, e.g. the retweet ratio and mention ratio of infor-

mation trend contributors (Yang and Counts 2010). 

There are also works of information diffusion on micro 

level as trend adoption behavior of individual users, e.g. re-

tweet (Lerman, et al. 2012) or hashtag adoption (Yang, Sun 

and Mei 2012). The findings are very similar to that of 

macro information trend and they also provide inspirations 

on macro trend factors. For example, we generalize the at-

tention limit of user (Lerman, et al. 2012) to design user 

stimulus as a context factor for trend prediction (Table 1). 

Despite these relevant trend factors, most current works 

only predict trend with one type of factors, except the two 

recent papers (Ma, Sun and Cong 2012) (Tsur and 

Rappoport 2012). However, they only covered several lim-

ited context and content factors. In this paper, different fac-

tors are combined together for trend prediction, and their 

importance is comprehensive discussed.  

Trend Prediction Models 

The most popular type of trend prediction method is re-

gression/classification (Ma, Sun and Cong 2012) (Tsur and 

Rappoport 2012). Our work belongs to such category. 

However, most current works only use simple linear re-

gression model. As a result, it lost the temporal history 

which is proved to be important for trend prediction (Yang 

and Leskovec 2011). In this paper, we also consider dy-

namic state-space model where the influence of temporal 

history is accumulated into latent state variables. 

Another popular method is to model the information 

trend by differential stochastic equations (Szabo and 

Huberman 2010) (Matsubara, et al. 2012). The advantage 

of these methods is that the dynamic mechanism of trend is 

explicit. However, there are too many relevant trend fac-

tors, so the stochastic equation is always based on some as-

sumption or simplification of major factors. 

There are also studies on global temporal pattern of in-

formation trend by clustering (Yang and Leskovec 2011) 

(Lehmann, et al. 2012). Then a classifier is assigned to 

each cluster based on content or context features. These 

methods can predict the trend in a whole range rather than 

the next time interval. However, it is not easy to update the 

prediction with the upcoming observations. Also, it will 

not provide any dynamic mechanism on information trend. 

Notations and Problem Statement 

Twitter is a graph � = 〈�, �〉 where users � are connected 

to each other by links �. A link ��,	 from user 
� to 
	 
means  
� is a follower of 
	, and  
	 is a friend of 
�. The 

total friends of 
� is its out-degree; the total followers of 
	 
is its in-degree. Each user’s tweet will be broadcasted to all 



his followers, so links are the basic information diffusion 

pipeline. Twitter users can also communicate with each 

other via retweet and mention as the main cause of infor-

mation diffusion. Retweet is identified by the use of RT 

@username or via @username in a tweet; Mention is the 

use of @username if it is not a retweet.  

In this paper, uppercase letters �, �, � and their varia-

tions by prefix and subscripts represent a set of users, 

tweets, and links respectively. While lowercase letter 
 is 

for a user,	ℎ is for a hashtag, and � is for a time interval. 

For example, ��(�) is the set of tweets with hashtag	ℎ 

posted in time �, and ��(�) is the set of users contribute to 

��(�). Let ���(�) be trend user as set of users already 

adopted trend ℎ before �, and trend border ���(�) is the 

followers of ���(�) who still have not adopt ℎ before � 
(Figure 2).The notation of set cardinality is | ∙ |. Time in-

dex � is often omitted for brevity when no confusion arises.  

In this paper, our prediction object ��(�) is the popular-

ity measure of trend ℎ as the number of tweets and users: 

 ��(�) = �	log	(|��(�)|), log	(|��(�)|)�,             (1) 

where the logarithm is to compress the large dynamic 

range of trend popularity.  Let ��(�) be the vector of rele-

vant trend factors. Then ��(�) is estimated by a prediction 

model ℱ(∙ |�)as: 

���(� + 1) = ℱ(��(1: �), ��(1: �)|�)	,             (2)         

where � is model parameter vector, and ��(1: �) and 

��(1: �) are the popularity measures and trend factors from 

the beginning time 1 to current �.   

Figure 2. Illustration of trend user ��� and trend border ���. 

Relevant Trend Factors  

The relevant trend factors can be generally grouped into 2 

categories, i.e. content and context factors. In this section, 

we will and discuss the specific feature design for these 

factors which are summarized in Table 1. 

Content factors 

Content factors are extracted from the information trend it-

self to describe its topic, quality, character, etc. In this pa-

per, we only focus on simple content features, e.g. number 

of retweet and mention. Despite of its simplicity, such con-

tent factors are proved to be useful for trend prediction 

(Asur, et al. 2011). Although deep content factors, e.g. 

trend topic, are also relevant to trend diffusion (Romero, 

Meeder and Kleinberg 2011), it is hard to find appropriate 

features. Traditional semantic analysis, e.g. LDA topic dis-

tribution, only leads to less effective features than the sim-

ple content factors (Ma, Sun and Cong 2012) . So we left 

the design of deep content factors as an open problem for 

future investigation. 

Since trend popularity (1) is defined on both the tweet 

set  ��(�) and user set ��(�) of current time interval �, our 

relevant trend factors include the two aspects. In fact, the 

two set can be categorized from different view which leads 

to the different content features below. 

One simple division of ��(�) is by twitter types: 

��(�) = "���(�) + #��(�) + $��(�) (3)  

where "���(�) is the retweet set as the propagation of old 

trend messages, #��(�) is the mention set as the discus-

sion among trend uses, and $��(�) is the remaining ‘new’ 

tweets set as new information injected into trend ℎ. So the 

three subsets may play different row in trend diffusion. 

   Another division of ��(�) is based on the role of user’s 

contribution to current trend ℎ:  

��(�) = %��(�) + &��(�) + '��(�), (4) 

The meaning of (4) is explained below. Then, %��(�) is the 

set of active ‘old’ users as the intersection between ���(�) 
and ��(�); &��(�) is either the followers of ���(�) or us-

ers retweeting trend twitter from ���(�); '��(�) is ‘self-

motivated’ users who either publish trend tweet by them-

selves or retweet from users outside our network (since we 

can only crawl subset of the entire Twitter network). In 

fact,	%��(�) is the trend reproduce in ���(�); &��(�) is the 

information diffusion from ���(�); '��(�) new injection to 

the trend from outside source.  

  The ��(�) can also categorized following (4) as: 

��(�) = %��(�) + &��(�) + '��(�),       (5) 

where	%��(�),	&��(�), and '��(�) are the set of tweets 

posted by %��(�),	&��(�), and '��(�) respectively.  

  Due to the limited characters of Tweets, the existence of 

URL is also a very important content measure.  So the sub-

set of ��(�) with URL, i.e. 
"(��(�), is also relevant. 

Context factors 

Context factors describe the network environment in which 

information trends are diffusing. A network consists of 

nodes (user) and linkages (structure), which leads to the 

two aspects of context factors below. 

Structure context factors are all kind of metrics de-

scribing the topological structure of network, e.g. network 

density, centrality, transitivity, similarity (Newman 2010). 

Since trend users ��� are information trend producer, it is 

nature that the structure of sub-graph formed by ��� is 

very relevant to trend diffusion. Also, trend border ��� as 

followers of  ��� is very important since they are the users 



directly exposed to the information trend (Romero, Meeder 

and Kleinberg 2011). Therefore, the topological structure 

of sub-graph ���  and its relationship to ��� are also used 

for trend prediction. The structure context feature to be ex-

tracted can be divided into 3 categories. First, the prestige 

(centrality) of  ��� is the user’s influence for information 

diffusion based on network structure. Second, the network 

property of both the sub-graph of ��� and ���, such as 

density. The density of directed graph � = 〈�, �〉 is: 

)*$'+�,(�) = |�| -|�| ∙ (|�| − 1)/⁄ ,            (6) 

which is the number of links divided by all possible links. 

Third, the tie-strength between ��� and ���, and our 

choice is reciprocity defined as the portion of co-links: 

"*1+2"%1+�,(�) = |1%3+$4(�)| |�|⁄ ,       (7) 

where 1%3+$4(�) ⊂ � is the subset of co-links. Following 

the above ideas, the density and reciprocity of bipartite 

graph can be defined similarly. 

 
Table 1. Summary of Content and Context trend factors. 

Ind. Symbol Description 

Content Factor 

1 2"%2. rt��  1 Retweet proportion: |"���| |��|⁄ ; see (3)  

2 2"%2.m��   Mention proportion: |#��| |��|⁄ ; see (3)  

3 2"%2. n��    New tweet proportion: |$��| |��|⁄ ;  (3)  

4 2"%2. url�� URL tweet proportion: |
"(��| |��|⁄   

5 2"%2. o��  Tweet proportion by %��: |%��| |��|⁄ ; (5) 

6 2"%2. &��  Tweet proportion by &��: |&��| |��|⁄ ; (5) 

7 2"%2. s��  Tweet proportion by '��: |'��| |��|⁄ ; (5) 

8 2"%2. %��  Trend user proportion: |%��| |��|⁄ ;  (4) 

9 2"%2. &��  Follower user proportion: |&��| |��|⁄ ;(4) 

10 2"%2. '��  Self-motivated proportion:|'��| |��|⁄ ;(4) 

Structure Context 

11 "=�. ������ Ratio of border to trend |���| |���|⁄  

12~13 2"*'�. ��� 2 Max/Average prestige of trend user ��� 

14 )*$'. ��� Sub-graph density of ���; see (6) 

15 )*$'. ������ Bipartite graph density of ���and  ��� 

16 "*12. ��� Sub-graph reciprocity of ���; See(7) 

17 "*12. ������ Bipartite graph reciprocity of ��� and ��� 

Node Context 

18~19 =1�. &�� 7 Average general activeness of &��; (8) 

20 =1��. ��� Average trend activeness of ���;  see (8) 

21 "=�. =1��. ��� Activeness ratio: =1��. ��� =1�. ���⁄  

22~23 '�+#�. &�� Average trend stimulus of &��; see (9) 

24~25 "=�. '�+#�. &��Stimulus ratio: '�+#�. &�� '�+#. &��⁄  

26~27 &"*?. +$�. &�� Interaction frequency of &�� 

28~29 "=�+%. +$�. &�� Interaction ratio of &��; 

1. In this table, time index � is usually ignored for brevity. 

5. The prestige here is the average out-degree.  

3. ’&��’ means trend users ��� or border users ��� (Figure 2). 

 

Node context factors describe the social network users 

based on their action and other profile. Both trend users 

��� and trend border ��� is important for information dif-

fusion, so the node context features will derived from the 

two user sets. Our node context consists of the following 

aspects as the input, output, and style of a user set. 

   Activeness is the user’s action frequency in Twitter, i.e. 

posting tweets. It can be taken as the ‘temperature’ of a us-

er to generate information. The general activeness of user 


 on time � is =1�(
; �) defined as: 

=1�(
; �) = 	A ∙ =1�(
; � − 1) + |�(
; �)|,        (8) 

where A is the decay coefficient and �(
; �) is the tweets 

posted by 
 on time �. Trend activeness (=1��(
; �)) is de-

fined similar to (8) by replacing �(
; �) with ��(
; �) 
which the tweets of trend ℎ posted by 
 on �. In fact, high 

trend activeness implies a high probability of a user’s par-

ticipation in ℎ. Furthermore, the ratio between =1�(
; �) 
and =1��(
; �)  reflects user’s interest on a specific trend.   

   Stimulus is the volume of information, i.e. tweets, re-

ceived by a user. The general stimulus of user 
 on time � 
is derived from all tweets posted by friends: 

'�+#(
; �)=	B ∙ '�+#(
; � − 1)+ ∑ |�(
�; �)|DE∈GH�IJK(D) , (9) 

where B is the decay coefficient,	&"+*$)(
) is the friend set 

of 
, and �(
; �) is the same as (8). Similarly, trend stimu-

lus '�+#�(
; �)	is derived from tweets of trend ℎ posted by 

friends, which is to replace the �(
�; �) with ��(
�; �).The 

ratio between trend and general stimulus will reflect user’s 

‘attention’ on a specific trend. In fact, attention-limited 

similarity measure will improve the prediction of infor-

mation adoption behavior (Lerman, et al. 2012).  

Action style is how a user acts in Twitter. In fact, user in-

teraction, i.e. retweet and mention, is the main course of in-

formation diffusion in Twitter. The interaction frequency 

of a user 
 is percentage of tweets posted by 
 that are in-

teractions up to current time. Interaction rate is the number 

of interaction tweets received by a user divided by the 

number of all tweets he posted (Suh, et al. 2010). In fact, 

interaction frequency reflects the will of a user to spread 

information, while interaction rate reflects his influence. 

Trend Prediction Models 

A model is a mapping function form input variables to out-

put prediction objects. Since a model can be characterized 

by two properties, i.e. linearity and state-space, the full 

combination leads to 4 model types to be introduced here. 

Preliminaries 

Following the convention of system identification (Ljung 

1998), we use L(t) for the %M dimensional output vector 

under prediction, and N(t) for the %O dimensional input 

vector. For state-space model, the state vector is P(t) with 

a dimension of %Q. 

  Non-state-space model predicts the next output L(t + 1) 
from several past input and output vectors: 



L(� + 1) = R(SJT,JU,JV),                   (10) 

Where R(∙) is prediction function,  SJT,JU,JV = �L(�)… 	L(� +
1 − $T), N(� − $V)… 	N(� + 1 − $V − $U)� is predictor vector, 

$V is input delay, and the model order is $T and $U . Non-

state-space model is widely used due to its simplicity and 

effectiveness. However, the prediction is limited to previ-

ous $T output and $U input vectors cascaded in SJT,JU,JV. 

The history beyond the model order will be discarded.  

State-space model solves the limited-memory problem of 

non-state-space model by introducing state vector (t) : 
P(� + 1) = X(SJT,JU,JV 	, P(�), … , P(� − $K))

L(� + 1) = Y(SJT,JU,JV , P(t + 1),… , P(� + 1 − $K))
 ,    (11) 

where SJT,JU,JV holds the same meaning as (10),  X(∙)is 

the state-transition function, Y(∙) is the output emission 

function, and  $K is the state order. State-space model can 

predict future with full history, because the effect of previ-

ous observations is accumulated in its state variables. In 

fact, (11) is just a general form of state-space model, and 

the X(∙) and Y(∙) can be either linear or non-linear with 

many different implementations as introduced below. 

Prediction Models 

ARX model (Auto Regressive model with eXternal input) 

(Ljung 1998) is a linear non-state-space model defined as: 

 L(�) = ∑ Z[ ∙ N(� − $V − \)J]
	^_ − ∑ `a ∙ L(� − +)Jb

�^_  ,   (12) 

where the model parameter `a and Z[ is a matrix of size 

%M × %M and %M × %O respectively. The input vector can be 

ignored by setting $U = 0, which is also called AR model. 

ARX model can be estimated with simple least square 

method which makes it the most popular baseline model. 

Nonlinear ARX (NARX) model (Figure 3) is a feed-

forward neural network implementation of non-linear non-

state-space model (1). The nonlinearity come from the neu-

ron sigmoid transfer function operating on linear combina-

tion of layer’s output.  NARX can be trained by back-

propagation. With enough layers and hidden nodes, NARX 

can approximate any function well (Haykin 2008).  

Random forest (RF) (Hastie, Tibshirani and Friedman 

2009) is a popular ensemble non-linear non-state-space 

method (10) as a set of regression trees. The robustness of 

RF lies in the independence among different trees which is 

achieved in two steps. First, each tree is constructed inde-

pendently by bootstrap samples. Second, each tree node 

split is decided on a random subset of predictor variables, 

i.e. SJT,JU,JV in (10). The final prediction result of RF is  

the average of each regression tree. 

Linear dynamic system model (LDS) is a state-space model 

under linear assumption of state transition (X) and output 

emission (Y) (See (11)). With $T = 0, $U = 1,	$V = 1 and 

$K = 1, LDS can be formulated as: 

P(� + 1) = ` ∙ P(�) + Z ∙ N(�) + e(�)
L(� + 1) = f ∙ P(�) + g ∙ N(�) + h(�)  ,           (13) 

where h(�)~j(k,l) and e(�)~j(k, m) are zero mean 

Gaussian noise. The LDS model order is the dimension of 

state vector N(�). Another popular state-space model is 

HMM (Bishop 2006), however it is not appropriate for re-

gression due to its discrete sate space in nature. 

 

Figure 3. An illustration of NARX and RNARX network with on-

ly 1 hidden layer of 2 nodes. RNARX is the extension of NARX 

with the dashed feedback loop. 

 

Recurrent Nonlinear ARX (RNARX) network is state-

space (11) extension of NARX with the introduction of de-

layed feedback loops around each layer except for the last 

output layer (Figure 3). The layer feedback can improve 

the network capability of modeling complicated dynamics, 

since the influence of history will accumulate on hidden 

nodes (or state) througth the feedback loops.  

 
Table 2. Statistics of Arab Spring Twitter Dataset 

Name Value Name Value 

Tweets 16,043,422 Retweet 5,336,868 

URL ratio 40.33% Hashtag Ratio 97.48% 

Users 666,168 Links 86,710,704 

Mean friend 130.20 Reciprocity  19.9% 

Experiments and Discussion  

Dataset and Preprocessing 

Our Twitter dataset is collected for the purpose of Arab 

Sprint. The collection involved the manually defined 

hashtags and geographic regions related to the following 

countries: Egypt, Libya, Syria, Bahrain and Yemen. 

Meanwhile, the Twitter network among the related users is 

crawled by the Twitter API as well. We collected 16.8 mil-

lion Tweets form 0.67 million users from February 1, 2011 

to August 31, 2011 using the streaming API. The crawled 

Tweets during this course account for approximately 10% 

of the all Tweets hosted by Twitter. The statistics of our 

dataset is summarized in Table 2. The collection process 

leads to a high hash-tag ratio, which means most tweets 

contain at least one hash-tag. Therefore, the dataset is ap-

propriate for our hash-tag trend prediction purpose. 

 



    

(%n_o(∑ |��(�)|p )  Duration of days 

Figure 4. Left: the histogram of total tweet number over hashtag 

trends. Right: the histogram of trend duration. 

 

	 

 
 (%n_o(	∑ |��(�)|p |���(�)|⁄ )  

Figure 5. The scatter plot of total users (|���(�)| ) involved and 

their average tweets (∑ |��(�)|p |���(�)|⁄ ) in the trend. 

 

We select the 336 most popular hash-tags with at least 

5000 related tweets for trend prediction task. With the high 

hashtag ratio in Table 2, the 336 hashtag sum up to 

28,333,656 tweets which is above the total tweets number 

16,043,422 (Table 2) due to replicate count. Basic statistics 

of these trends are illustrated in Figure 4, while Figure 5 

gives more insight on the trend characters. For example, in 

some hashtag trends, e.g. #tel4rent and #akharmasr, only 

few users posted a lot of tweets as advertisement for some 

products. The most popular trends are the Arab Spring 

hashtags, e.g. #egypt and #libya, have a large population of 

trend users and a high average tweets.  

We evaluate prediction by Mean Square Error (MSE).     

All prediction results in this section are estimated by 10-

fold cross-validation, where 90% trends are used for train-

ing and the rest 10% are left for testing.  The features in 

Table 1 are normalized by Z-score transform before feed 

into prediction model.  

Comparison of Trend Factors 

With the so many content and context factors listed in Ta-

ble 1, several questions may arise: will these factors really 

help? Which type of factor is most relevant for trend pre-

diction? The above questions are answered by both feature 

importance and prediction accuracy analysis. 

Factor Importance Analysis 

  We use random forest (RF) (Hastie, Tibshirani and 

Friedman 2009) for feature importance analysis, where the 

variable importance measure is the decay in test accuracy 

by permuting out-of-bag samples. The importance is nor-

malized to [0,1] by dividing the highest value. We set the 

prediction vector SJT,JU,JV (10) to be $T = $U = 5 and 

$V = 1 which is the input and output value in the previous 

5 days. The reason is that the RF prediction result will not 

change significantly after 5 days. In this paper, the decay 

coefficient A and B for activeness (8) and stimulus (9) are 

set to 0.1. In fact, the result may not change too much for 

small decay coefficients, while large value may lead to per-

formance decrease. Following the factor index of Table 1, 

we illustrate the mean variable importance of each factor 

over 5 days. We only present the importance for the popu-

larity measure of ��(t) because the result of ��(t) is simi-

lar. The detailed mean and std of 15 most important trend 

factors are listed in Table 3. 

Based on the statistics in Table 3 and Figure 6, we can 

see that the importance of node context factors, i.e. stimu-

lus and activeness, are significantly better than other trend 

factors. Stimulus is a measure of trend information input to 

users. Large trend stimulus (4) means a high exposure to 

trend tweets, so users are likely to participate the trend. On 

the other hand, activeness is a measure of trend infor-

mation output by users. Large trend activeness (8) means a 

high frequency to trend participation, so users are likely to 

post a trend tweet again.  

The second important type of trend factors is the struc-

ture context factors about the relation between trend users 

and trend border (Figure 2). This is also intuitive. For ex-

ample, a high "=�. ������ (size ratio) means the trend are 

broadcasted to a lot of users (���), and a "*12. ������  

(reciprocity) means these listeners has a good relationship 

with the trend propagators (���). 

Form the above discussions, we have two observations. 

First, trend factors based on user behaviors are more likely 

to be important, e.g. trend stimulus/activeness. This is co-

herent to the founding of (Cha, et al. 2010) that user inter-

action graph is more appropriate for influence measure. 

Second, the factors should be designed with specific to the 

information trend. For example, the trend stimu-

lus/activeness is derived from user’s trend related action, 

and factors on the topological structures between trend user 

and border (Figure 2) are also important. On the contrary, 

the action style node context factors, i.e. interaction fre-

quency/ratio, are less important for trend prediction, be-

cause they are just some general information about user’s 

behavior.  
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Figure 6. The variable importance of different trend factors for 

user (��(t)) prediction. The factor index is in Table 1. 

 
  Table 3. Trend factors sorted by RF variable importance.  

Ind. Symbol ��(t): Mean (Std) ��(t): Mean (Std) 

22 '�+#�. ��� 1.000 (0.376) 0.917 (0.197) 

23 '�+#�. ��� 0.788 (0.261) 0.964 (0.350) 

24 "=�. '�+#�. ��� 0.744 (0.195) 1.000 (0.381) 

25 "=�. '�+#�. ��� 0.883 (0.384) 0.722 (0.151) 

21 "=�. =1��. ��� 0.560 (0.179) 0.559 (0.157) 

11 "=�. ������ 0.383 (0.029) 0.716 (0.076) 

20 =1��. ��� 0.412 (0.139) 0.529 (0.098) 

17 "*12. ������ 0.336 (0.023) 0.560 (0.039) 

1 2"%2. rt�� 0.327 (0.184) 0.441 (0.166) 

7 2"%2. s�� 0.332 (0.077) 0.346 (0.056) 

16 "*12. ��� 0.232 (0.029) 0.435 (0.068) 

19 =1�. ��� 0.236 (0.043) 0.415 (0.061) 

15 )*$'. ������ 0.236 (0.014) 0.412 (0.023) 

6 2"%2. &�� 0.288 (0.075) 0.341 (0.097) 

3 2"%2. n�� 0.271 (0.135) 0.354 (0.114) 

Note: the index and symbol of trend factor is the same as Table 1. 

The factors are sorted by the mean importance of ��(t) and	��(t). 

 
Table 4. MSE of prediction result from different trend factors. 

Factors ��(t): Mean (Std) ��(t):  Mean (Std) 

None  0.140 (0.009) 0.155 (0.008) 

Content 0.136 (0.012) 0.151 (0.010) 

Structure Context 0.134 (0.010) 0.147 (0.009) 

Node Context 0.131 (0.008) 0.146 (0.009) 

All  0.130 (0.010) 0.142 (0.008) 

Note: ‘All’ means prediction with all trend factors; ‘None’ means 

prediction without trend factors, i.e. rs = k for Srt,rs,ruin (10). 

 

Prediction Performance Analysis 

We further investigate the importance of different type of 

factors by comparing their prediction performance. For the 

sake of consistency, we use the same RF prediction model 

as the above factor importance analysis.  

From the statistics of prediction MSE in Table 4, we can 

see the following points. First, the trend factors (Table 1) 

really helps to improve trend prediction, because the MSE 

with all trend factors is significantly better than that with-

out any factors. Second, the MSE order of node context, 

structure context, and content factors follows the variable 

importance in Figure 6. However, the difference is not sig-

nificant. This might be explained by Table 3 that these fac-

tors are complementary and have importance on their own 

aspects.  

Comparison of Prediction Models 

In this subsection, we try to investigate different types of 

models for trend prediction. A model is usually character-

ized by two aspects, i.e. linear/non-linear, state-space/non-

state-space, which leads to a combination of 4 model cate-

gories. For each category, at least 1 typical model is chosen 

so that they have some similarity to models of other cate-

gory. To be specific, LDS (13) is the direct state-space ex-

tension of ARX (12), and NARX (Figure 3) is the direct 

non-linear extension of ARX. Moreover, RNARX is the 

state-space extension of NARX. So comparison among 

these models can reflect the effect of different model cate-

gories. 

The comparative prediction result is summarized in Ta-

ble 5 under evaluation of MSE. The prediction models are 

trained with all factors in Table 1. For each model, we tried 

a series of model setups, and present the best result. For 

ARX, RF, and NARX model, we go through order 1 to 5 

for the predictor vector SJT,JU,JV in (10).  For LDS (13) we 

check the model order up to 4. Both the NARX and 

RNARX models are 1 layer network, and the hidden node 

number varies from 2 to 10. The predictor order of 

RNARX  (Figure 3), i.e. $T	and $U, is fixed to 1, and the 

delay order $K is 1.  

To show the effectiveness of above models, we also de-

signed two baseline prediction methods. The first is called 

Last Predictor which simply predicts future as last value, 

i.e. Lv(� + 1) = L(�). The second is called Mean Predictor 

which simple predicts future as mean value up to latest 

time, i.e. Lv(� + 1) = �w_ ∙ ∑ L(�)p
_ . Their prediction results 

are also included in Table 5. 

 
     Table 5. Best prediction MSE of different models. 

Type Model ��(t): Mean (Std) ��(t):  Mean (Std) 

L-NS ARX 0.151 (0.009) 0.169 (0.006) 

L-S LDS 0.149 (0.009) 0.166 (0.007) 

NL-NS NARX 0.133 (0.007) 0.146 (0.008) 

RF 0.130 (0.010) 0.142 (0.008) 

NL-S RNARX 0.128 (0.008) 0.139 (0.009) 

Baseline 

 

Last 0.175 (0.015) 0.198 (0.018) 

Mean 0.219 (0.017) 0.235 (0.016) 

Note: L/NL is the short for Linear/Non-Linear; S/NS is the short 

for State-space/Non-State-space. 

 

We have the following observations from Table 5. First, 

the twitter hashtag tend can be predictable on some degree, 

because the MSE of all prediction models are significantly 

better than the two baseline methods, i.e. Last predictor 

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

factor index

v
a

ri
a

b
le

 i
m

p
o

rt
a

n
c
e

 

 

content

structure context

Node context



and Mean predictor. Second, nonlinearity is very important 

for trend prediction, which is clear from the performance 

gap between linear models, i.e. ARX and LDS, and their 

non-linear peers, i.e. NARX and RNARX. The non-

linearity may mainly due to the complex mechanism of 

network information trend diffusion. Third, state-space is 

helpful, but the benefit is smaller than nonlinearity. In fact, 

the performance gap between ARX and LDS is not signifi-

cant. The situation is similar for RF and RNARX. The 

slight improvement may due to the fact that history infor-

mation might not be as important for Twitter trend as it is 

for other trend, e.g. economics. In fact, for Non-state-space 

models, i.e. ARX and RF, the performance will not change 

significantly with more than 5-day history. Another possi-

ble explanation is that state-space models usually use local 

gradient training methods, which might not be competent 

at the complicated cost function surface due to high feature 

dimension. Further feature selection or regularization 

might help the situation.  

Conclusion  

In this paper, we study two basic problems in information 

trend prediction, i.e. important factors and appropriate 

models. We designed features of different trend factors 

from both tweet content and network context. We also in-

vestigate model categories as the combination of two basic 

properties, i.e. (non)-linearity and (non)-state-space. Ex-

periments on large Twitter dataset lead to the following 

observations. Both content and context factors will help 

trend prediction. However, node context factors of user’s 

behavior on trend, e.g. trend stimulus and activeness, are 

most relevant. As for the prediction model, non-linear 

models are significantly better than their linear peers, 

which may mainly due to the complex information diffu-

sion process in large social network. State-space can help 

to improve prediction but only on a slight degree. 

Future work can lies in two aspects. First, semantic con-

tent of information trend is very relevant to their diffusion 

process (Romero, Meeder and Kleinberg 2011) (Lehmann, 

et al. 2012). However, how to model the effect appropriate-

ly is still an open and interesting problem. Second, network 

environment may change over time. Also, there will be 

some unique factors for each individual trend. Therefore, 

adaptive model may lead to further improvement.  
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