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Abstract Memoing is often used in logic programming to avoid
redundant evaluation of similar goals, often on programs that are inherently
recursive in nature. The interaction between memoing and recursion, how-
ever, is quite complex. There are several top-down evaluation strategies for
logic programs that utilize memoing to achieve completeness in the presence
of recursion. This paper’s focus, however, is on the use of naive memoing in
Prolog. Using memoing naively in conjunction with recursion in Prolog
may not produce expected results. For example, adding naive memoing to
Prolog’s evaluation of a right-recursive transitive closure may be incomplete,
whereas adding naive memoing to Prolog’s evaluation of a left-recursive
transitive closure may be terminating and complete. This paper examines the
completeness of naive memoing in linear-recursive, function-free logic
programs evaluated with Prolog’s top-down evaluation strategy. In addition,
we assume that the program is definite and safe, having finite base relations
and exactly one recursive predicate. The goal of the paper is a theoretical
study of the completeness of naive memoing and recursion in Prolog,
illustrating the limitations imposed even for this simplified class of pro-
grams. The naive memoing approach utilized for this study is based on
extension tables, which provide a memo mechanism with immediate update
view semantics for Prolog programs, through a source transformation
known as ET. We introduce the concept of ET-complete, which refers to the
completeness of the evaluation of a query over a Prolog program that memos
selected predicates through the ET transformation. We show that left-linear
recursions defined by a single recursive rule are ET-complete. We generalize
the class of left-linear recursions that are ET-complete by introducing
pseudo-left-linear recursions, which are also defined by a single linear
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recursive rule. To add left-linear recursions defined by multiple linear
recursive rules to the class of ET-complete recursions, we present a left-
factoring algorithm that converts left-linear recursions defined by multiple
recusive rules into pseudo-left-linear recursions defined by a single recursive
rule. Based on these results, the paper concludes by identifying research
directions for expanding the class of Prolog programs to be examined in
future work.

Keywords: Memoing, Logic Programming, Recursion.

§1 Introduction

Memoing is used to save intermediate results in a computation. Memoing
in functional programming is used to eliminate repeated computations. Recur-
sively defined functions may have redundant computations in that subsidiary
function values may be evaluated more than once. With a memoing mechanism,
the function values are computed once and then stored for later use, thus
improving the efficiency of the program execution.®'” Memoing in logic pro-
gramming achieves a similar effect of avoiding redundant evaluation of a similar
goal,® often on programs that are inherently recursive in nature. The interaction
between memoing and recursion in logic programming, however, is quite
complex. One important issue is the effect of memoing on the completeness of
the evaluation of recursive predicates.®

Complete evaluation strategies for logic programs (ET*® OLDT,*”
QSQR,*® XWAM??) use memoing as a tool to modify the top-down evaluation
of a logic program to be complete. The evaluation strategies utilize a memo
table so that subsequent calls, whose answers are in the table, use a table lookup
rather than recomputing the results. The table lookup effectively places a bound
on the search down an otherwise possibly infinite path, and thus, is a mechanism
that provides for a fair search strategy. The complete evaluation strategies
manage the memo table and cleverly direct the execution of the program to
provide a complete evaluation. Note that this completeness mechanism has the
advantageous side-effect of avoiding duplicate computation for similar subgoals.
Unfortunately, using memoing naively in conjunction with recursion may not
produce expected results. For example, given the following right-recursive
specification of transitive closure, Prolog’s evaluation of the query fc(X, Y) is
complete for any acyclic edge/2 relation.

te(X, Y) :~edge(X, Y).
te(X, Y) :-edge(Z, Y), tc(X, Z).

However, simply memoing the resulting tuples of t¢/2 (to improve efficiency)
may make the evaluation incomplete (see detailed example in Section 2.2). The
goal of this paper is to show when this naive memoing evaluation of linear
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recursive Prolog programs is complete.

Complete and efficient recursive query evaluation has also been a focused
research issue in deductive databases,” which use a function-free logic program-
ming language, known as Datalog, to access the database declaratively. In this
database context, where all answers are found as soon as possible, the evaluation
of a logic program assumes an eager set-at-a-time paradigm using a primarily
bottom-up strategy. This forward-chaining computation naturally memos the
derived relations while eliminating duplicates but typically, due to its eager
evaluation strategy, derives results that are irrelevant in answering the query. In
the logic programming context, where the first answer is found as soon as
possible, the evaluation of a logic program assumes a lazy tuple-at-a-time
evaluation strategy. This backward-chaining computation naturally focuses the
search on data relevant to finding an answer but duplicates computation in the
process, which may cause an unfair search down an infinite path. Thus, much of
the research on efficient and complete evaluation strategies combine top-down
and bottom-up characteristics.” Forward-chainig strategies, such as magic sets,”
add top-down filtering to bottom-up evaluation to filter out irrelevant computa-
tions. Backward-chaining strategies, such as the ET* algorithm,” add bottom-up
memoing to top-down evaluation to avoid duplicate computation. It is now
recognized that the evaluation of a program and query by a bottom-up strategy
with filtering and a top-down strategy with memoing are quite similar.?®

While there is a need for complete evaluation strategies that handle
general recursions, there is a trade-off of efficiency for generality. The deductive
database literature motivates the need for more efficient (and complete) evalua-
tion strategies that optimize the evaluation of simpler, specialized recursions.”®
Linear recursions, which have at most one recursive subgoal in the rule body,
are an example of a simple recursion that appears quite frequently in practice.
Specialized recursive query evaluation strategies have been proposed for linear
recursions''® in the database context. Examples of linear recursions include the
well-known left- and right-recursive versions of transitive closure.

The main contribution of this paper is a careful study on the complete-
ness of naive memoing added to Prolog’s fixed top-down evaluation strategy. We
begin this ongoing investigation by focusing initially on linear recursions
specified by pure, function-free logic programs. Since these specialized recur-
sions occur frequently in the database context, we will make simplifying assump-
tions for these initial results consistent with deductive databases.?"*?
Specifically, we assume:

The program is a definite, function-free logic program.

The program is linear recursive and contains only one recursive predicate.
All rules in the program are safe. A rule is safe if all of the variables
appearing in the rule, either in the head or the body, appear in a positive
literal in the body of the rule.
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All base relations are finite and consist of ground terms.
The program is rectified, i.e., all literals, including the head of each rule,
have distinct variables for each argument. This (merely syntactic) restric-
tion disallows repeated variables and constants appearing in the literal
and thus, does not permit implicit aliasing of variables.

The paper assumes that the reader is familiar with Prolog and its top-
down, tuple-at-a-time evaluation strategy. For the non-specialist in the field of
memoing, Section 2 discusses memoing, extension tables and recursion.
Specifically, Section 2.1 reviews the ET strategy for managing memo tables,
known as extension tables, through a source transformation in Prolog. An
important feature of the memo table management is the support of immediate
update view semantics so that the effects of any changes to the extension tables
are immediately visible. The original implementation of the ET source transfor-
mation® uses assert and retract to maintain the extension tables as part of
Prolog’s database. A more efficient implementation,” which is described in
Section 2.1, maintains extension tables as a global data structure and provides
built-in predicates for table manipulation. Section 3 defines left-linear recur-
sions and the concept of ET-complete, which refers to the completeness of the
evaluation of a query over a Prolog program that memos selected predicates
through the ET transformation where immediate update view semantics are
supported for the memoed results. We show that left-linear recursions defined by
a single recursive rule are ET-complete. In Section 4, we extend the completeness
results to a more general class of recursions that we call pseudo-left-linear
recursions, which are also defined by a single linear recursive rule. To add
left-linear recursions defined by multiple (linear) recursive rules to the class of
ET-complete recursions, we present, in Section 5, a left-factoring algorithm that
converts left-linear recursions defined by multiple recursive rules into pseudo-
left-linear recursions defined by a single recursive rule. In Section 6, we conclude
the paper with a discussion of future research directions.

§2 Memoing

We clarify our use of the term memoing by describing a memoing
meta-interpreter for pure function-free Prolog. We then review the ET strategy
for managing the memo tables, known as extension tables, through a source
transformation in Prolog. We also provide a motivational example that illus-
trates how memoing affects the completeness of the top-down evaluation of a
recursive goal.

Figure | presents a memoing meta-interpreter that saves all calls and
solutions. The interpreter maintains two relations, called/| and solution/I, to save
calls and solutions, respectively. When evaluating a call, the meta-interpreter
checks to see if the call is subsumed by any previous calls. Call; is said to be

subsumed by call; if there is a substitution for variables of call; such that the
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/%11 %/ solve(true) :- !,

/#r2% / solve((A, B)):-!, solve(A), solve(B).
/ *r3% / solve(A) :- subsumed(called(A)), !,
solution(A).

/%14 % / solve(A) :- save(called(A)),
(solution(A)

rule(A, B),

solve(B),
not(subsumed(solution(A))),
save(solution(A))).

Fig.1 A memoing meta-interpreter

resulting literal is the same as call,. If the current call is subsumed by a previous
call, then answers that satisfy the call are retrieved from the memo relation
solution/ | instead of recomputing them. Otherwise, the new call is saved in called/
I. Note that a new call may be a generalization of a previous one. In this case,
solutions to the previous call are also solutions to the new call. For example, if
p(X, Y) is the current call and p(a, X) is a previous call, then all solutions to
p(a, X) are also solutions to p(X, Y). The subgoal solution/| in rule r4 is used to
retrieve those answers before calculating new answers using the given rules. An
answer is saved in solution/1 if it is not subsumed by any existing solutions.

The meta-interpreter introduces an extra level of interpretation. For a
given program, this extra level of interpretation can be removed through partial
evaluation that unfolds'® the meta-interpreter using the given program. Another
disadvantage of using the meta-interpreter is that it saves all calls and answers,
of which only some of them are used in a later computation. Due to the cost
associated with maintaining the memo relations, it is often desirable to use
memoing selectively.

2.1 Extension Tables

Extension tables® are a memo mechanism that can be attached to predi-
cates selectively. An extension table consists of two subtables: a call table and
an answer table. The call table stores calls to the predicate; the answer table
stores answers to the predicate. Through a source-to-source program transforma-
tion, extension tables can be selectively attached to predicates so that they can
be evaluated with memoing. The original implementation of extension tables
uses assert and retract to maintain extension tables as part of Prolog’s database.”’
A more efficient implementation maintains extension tables as a global data
structure and provides built-in predicates for table manipulation.” For a given
program P and a list £ of predicates to be evaluated with memoing, Algorithm
2.1, denoted by ET( P, L), translates the program P into one with memoing on
the predicates given in L. We use the notation P () to denote the resultant
program.

Algorithm 2.1 uses the following built-in predicates for table manipula-
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tion:
et_subsume(CallAnswer, p/n, p(X,, ..., X»))
check extension table p/n to see if the term p(X,, ..., X») is subsumed by
any terms in the call or answer subtable specified by argument CallAnswer,
denoted by either call or answer.
et_insert(CallAnswer, p/n, p(Xi, ..., Xx))
et_insert_unique(CallAnswer, p/n, p(Xi, ..., X»))
insert term p(Xi, ..., X») into the call or answer subtable of p/n specified
by CallAnswer. The difference between et_insert/3 and et_insert_unique/3 is
that the latter checks for subsumption before insertion. With et_insert_
unique/3, a tuple is inserted only if it is not subsumed by any existing
tuples in the extension table. Note that an inserted tuple is added to the
end of the list of calls or answers in the appropriate subtable.
et_retrieve(CallAnswer, p/n, p(Xy, ..., X»))
retrieve calls or answers from extension table p/n specified by CallAnswer,
The bindings in term p(Xi, ..., X.) specify the selection condition for
retrieval. This built-in predicate is nondeterministic, so all calls or
answers satisfying the selection condition can be retrieved through
backtracking.

Example 1

Let P denote the (left-recursive) transitive closure program given in Fig. 2.
Figure 3 gives the result of Algorithm 2.1, ET(P, [tc/2]), with memoing added
to the recursive predicate tc/2.

/&l x/ te(X, Y) - edge(X, Y).
/xr2x [/ to(X, Y) - te(X, Z), edge(Z, ).

Fig.2 A left-recursive transitive closure specification

/*®r1" %/ code_tc(X, Y) :- edge(X, Y).
/%12 % / code_tc(X, Y) :- tc(X, Z), edge(Z, V).

/#®r3% / tc(X, Y) :- et_subsume(call, tc/2, te(X, Y)), !,
et_retrieve(answer, tc/2, tc(X, Y)).

/®rd% / to(X, Y) - et_insert(call, tc/2, tc(X, Y)),
(et_retrieve(answer, tc/2, te(X, Y))

code_tc(X, Y),
et_insert_unique(answer, tc/2, tc(X, Y))).

Fig. 3 Peuecian

2.2 Recursion
Memoing is often used in logic programming to avoid redundant evalua-
tion of similar goals, often on programs that are inherently recursive in nature.
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Algorithm 2.1 ET translation algorithm ET(P, £).
Input: A program P and a list £ of predicates to be evaluated with memoing.
Output: A program with memoing for selected predicates given by £.

(1) For each predicate p/n in £, do the following:

(a) Rewrite each rule defining p/n by changing the rule head from:
p(Xi, ..., X)) = .
to
code_p(Xy, -, Xn)im oo
(b) Reorder all rules of code_p/n such that the
nonrecursive rules appear before the recursive rules.
(¢} Define two new rules for p/n:
p(X1, ..., X») - et_subsume(call, p/n, p(Xi, ..., X»)), I,

et_retrieve(answer, p/n, p(Xi, ..., X»)).
p(Xi, ..., X») - et_insert(call, p/n, p(X,, ..., Xx)),

(et_retrieve(answer, p/n, p(Xi, ..., X))

code_p(Xy, ..., Xx),
et_insert_unique(answer, p/n, p(Xy, ..., Xx))).

(2) All other rules are unchanged.

Although memoing is straightforward for nonrecursive programs, the interac-
tion of memoing in a recursive program is quite complex. One important issue
is the effect of memoing on the completeness of the evaluation of recursive
predicates. We use the transitive closure of a simple directed acyclic graph, as
shown in Fig. 4, to illustrate the effects of memoing and recursion.

edge(c, d).
edge(b, ¢).
edge(a, b). a—— b—c——d

Fig.4 Edge relation

Consider a right-recursive specification of transitive closure expressed in
Prolog as shown in Fig. 5. Prolog’s evaluation of the query tc(S, D) on this
program finds all answers, which are {(c, d), (b, ¢), (a, b), (b, d), (a, d), (a, c)}. A
memoing evaluation in Prolog, however, will fail to find all the answers. The
invocation of the query remembers that the most general call has been made to
the predicate tc. The nonrecursive rule computes the answers that are edges:
(c, d), (b, ¢) and (a, b). The recursive rule first uses edge(c, d) to generate the

te(X, Y) :- edge(X, Y).
tc(X, Y) ;- edge(Z, Y), te(X, 2).

Fig. 5 A right-recursive transitive closure specification
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subgoal tc(X, ¢). The subgoal tc(X, ) is a selection of the answers computed for
the more general query call tc(S, D). Therefore, the subgoal tc(X, c¢) uses the
extension table to retrieve (b, ¢), which generates the answer (b, d) to the query.
Backtracking into edge, the evaluation then uses edge(b, c) to generate the
subgoal tc(X, b), which retrieves (a, b) from the extension table to compute the
query answer (a, c). Note that this new answer (a, ¢) is an answer for the subgoal
te(X, ¢), which the evaluation already failed. Continuing to backtrack into edge,
the evaluation uses edge(a, b) to generate the subgoal tc(X, a), which does not
result in the computation of any answers. Thus, the memoing evaluation of this
right-recursive specification of transitive closure is incomplete, as indicated by
the missing solution (a, d).

Consider a left-recursive specification of transitive closure expressed in
Prolog as shown in Fig. 2. Prolog’s evaluation of the query tc(S, D) on this
program also finds all answers but does not terminate. The left-recursive
specification enters an infinite loop caused by an infinite unfolding of the
recursive rule. So a Prolog programmer, who has to be cognizant of both the
program logic and control, will not choose a left-recursive specification of
transitive closure. But how does memoing affect Prolog’s evaluation of left-
recursion?

The first question that must be addressed is: how is memoing implement-
ed? We have already reviewed the extension table implementation of memoing
using extension table built-ins. Other implementations of memoing in Prolog
suggest the use of asserts to save the computed answer. One problem with assert
is the semantics for dynamic predicates.’® Most Prolog implementations choose
the logical view semantics for dynamic predicates where answers asserted or
retracted during the call to a dynamic predicate are not visible to that call. The
extension table built-in implementation, however, provides immediate update
view semantics where the effects of any insertions or deletions to the extension
table are immediately visible.

Let’s now consider Prolog’s evaluation of the query tc(S, D) on P er(ecr2)),
the left-recursive transitive closure specification of Fig. 2 in conjunction with the
extension tables memoing strategy. The invocation of the query remembers that
the most general call has been made to the predicate tc. The nonrecursive rule
computes the answers that are edges, {{(c, d), (b, ¢}, (g, b)}, and saves the answers
in the memo table for tc. The recursive rule then generates the subgoal tc(X, Z)
and uses a table look-up for this repeated call. Logical view semantics limits the
answers for the recursive subgoal to the answers that have been computed thus
far, which are the edges. Thus, the recursive rule in conjunction with logical
view semantics will only compute paths in the graph of length 2, consisting of
edges joined with edges, and fail to be complete. Immediate update view
semantics, however, will add the paths of length 2 to the end of the memoed
answers and continued backtracking into the recursive subgoal allows for all

answers to be used. Thus, Prolog’s evaluation of a left-recursive transitive
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closure with a memoing strategy having immediate update view semantics is
complete.

Up to this point, we were considering the transitive closure of a directed
acyclic graph because having cycles in the underlying graph would cause
Prolog’s evaluation of the right-recursive transitive closure to be incomplete.
The transitive closure of a directed graph having cycles is handled naturally by
Prolog’s memoing evaluation, with immediate update view semantics, of the
left-recursive transitive closure program of Fig. 2.

The varying results on these simple (yet important) transitive closure
examples demonstrates that naive memoing, although an apparantly straight-
forward approach for memoing in Prolog, does not produce expected results in
the presence of recursion. These results, however, are not surprising for those
familiar with the top-down complete evaluation strategies, such as ET*, QSQR
and OLDT, which use sophisticated memoing approaches to provide a complete
evaluation of a recursive logic program. This work examines the complex
interaction of recursion and naive memoing, where the ET strategy represents a
practical approach to providing database memoing in Prolog. In the following
sections, we identify classes of linear recursions that can be completely evaluated
with naive memoing using Prolog’s top-down evaluation strategy in conjunction
with immediate update view semantics for memoed results.

§3 Left-Linear Recursions

This section focuses on specialized recursions, known as left-linear
recursions. We formally define left-linear recursions and introduce an optimized
memoing strategy for these specialized recursions. This section also introduces
the concept of ET-complete, which refers to the completeness of the evaluation
of a query over a Prolog program that memos slected predicates through the ET
source transformation. We show that left-linear recursions defined by a single
recursive rule are ET-complete.

The complete evaluation of a query is dependent both on the program
and the query. Given a query, the arguments of the query may be bound or free.
Typically, a binding pattern or adornment for the query is used to indicate how

“the program will be invoked by that query. If we use b to denote a bound

argument and use f to denote a free argument, then the adornment of a query is
a string of b’s and f’s. For example, the adornment for tc(a, X) is bf. A query on
predicate p with adornment @ is denoted by the adorned query p°“.

Definition 3.1
If @ and A are two adornments for the same predicate, then 8 < @ if @ has b in
every position where 3 has b.

The bound-is-easier assumption®® states that if we can evaluate a query

with fewer arguments bound, then a query with more arguments bound is easier
to evaluate since the solutions to the latter is a selection of the solutions to the
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former. In other words, the bound is easier assumption indicates that if 5 < @,
then p* would not be harder to evaluate than p®.

We now define the left-linear'® property of a linear recursive program
with respect to the binding pattern of a_given query on the recursive predicate.

Definition 3.2

Given a linear recursive program with a single recursive predicate p, p is
left-linear with respect to an adornment ¢ if for each recursive rule, when we
list the p-subgoal first, the adornment on that subgoal is also @ and the corre-
sponding bound arguments in the head and the recursive subgoal share the same
variable.

Intuitively, a left-linear recursion guarantees that the recursive call has
the same binding pattern as the original call and that the bound arguments have
the same bindings. This property guarantees that the recursive call is subsumed
by the initial call. For example, the left-recursive program tc in Fig. 2 is
left-linear with respect to the adorned queries t¢® and tc”.

When a rule is evaluated with a top-down evaluation strategy, the
subgoals in the rule are evaluated from left to right and the bindings are
propagated through the unification of variables. We assume this left-to-right
sideways information passing for binding pattern propagation. So after evaluat-
ing a subgoal, the unbound variables in that subgoal become bound. We use the
rule/goal graph®® to describe the propagation of bindings and interactions
between goals and rules. The rule/goal graphs for the program tc with respect to
the adorned queries #® and ¢ are given in Fig. 6 (a) and (b), respectively. A
rule/goal graph consists of goal nodes and rule nodes with the given adorned
query as the starting goal node. A goal node p® has one rule node successor for
each rule defining the predicate p. A rule node has one goal node successor for
the next subgoal to be evaluated and a rule node successor with binding
indications for the variables in the rule at that point in the computation. In Fig
6 (a), tc® and edge®™ are goal nodes; while rl§!1 ¢l¥172 and rl¥4"1 are rule
nodes. Rule node ri~*!"%! represents that, for a given adornment on the rule

[X.Y.Z]
20
[XZi)
2.1
edgebr

(@ ()

Fig. 6 Rule/goal graphs for adorned queries tc® and tc”
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head, after evaluating the first j subgoals of rule i, variables X;, ..., X» are bound,
while variables Y1, ..., Y, are still free. The rule node ri{*'*” represents that both
X and Z are bound and Y is still free after solving the first subgoal in rule r2.
Figure 6 shows that for both adorned queries, the recursive subgoals have the
same adornments as the adorned queries. Due to the definition of left-linear this
is always the case, and furthermore, the recursive call is always subsumed by the
initial query.

3.1 Left-Linear Optimization

Due to the left-linear property, the ET algorithm for left-linear recursions
can be further optimized.” Namely, we can remove the subsumption checking
for recursive calls since the calls are guaranteed to subsume each other for
left-linear recursions. Figure 7 gives the optimized version of the ET algorithm
for program tc. The original version of the ET algorithm for program tc appears
in Fig. 3. Since the recursive call tc/2 in rule r2’ is subsumed by the first call, it
is always a table lookup and hence rule r3 is deleted and tc/2 in rule r2’ is
substituted with the et_retrieve/3 built-in predicate. In this optimized ET algor-
ithm, rule r1” returns the edge relation and the returned answers are stored in the
extension table by rule r4”. Rule r2” retrieves the answers from the extension
table and joins them with the edge relation to generate new answers. The et_
insert_unique/3 in r4” inserts the new answer into the extension table if the answer
is not subsumed by any existing answers. Since the extension table built-in
predicates provide immediate update view semantics, when the answers in the
extension table are used up, all possible solutions are calculated. The evaluation
of the optimized ET algorithm is more efficient since unnecessary subsumption
checking is removed.

/*r1” %/ code_tc(X, Y) :- edge(X, Y).
/*r2” % / code_tc(X, Y) :- et_retrieve(answer, tc/2, tc(X, Z)),
edge(Z, Y).
/*rd” % / tc(X, Y) - code_tc(X, Y),
et_insert_unique(answer, tc/2, tc(X, Y)).

Fig.7 Optimized ET algorithm for left-linear tc queries

3.2 Completeness

We have just seen how left-linear recursions allow for optimizations to
the ET source transformation. We now introduce the concept of ET-complete,
which refers to the completeness of the evaluation of a query over a Prolog
program that memos selected predicates through the ET source transformation,
and show that left-linear recursions defined by a single recursive rule are
ET-complete. It is important to note that immediate update view semantics is
required to guarantee ET-completeness.
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We assume the terminology of**’ to define answers computed by Prolog.
We assume Prolog computes only correct answers, i.e., those that are a logical
consequence of the program. Furthermore, since we assume that all facts are
ground and all rules in the program are safe, all computed answers are ground
substitutions.

Definition 3.3

Let P be a (definite, function-free) logic program, £ be a list of predicates
defined in P and P be the result of ET(P, £) that translates P into a
program with extension tables for the predicates given in £. Given a query Q,
if @ is a ground substitution for variables in @ as computed by Prolog with
immediate update view semantics during the evaluation of Py U {Q}, then
¢ is an ET-computed answer.

Definition 3.4

Let P be a (definite, function-free) logic program, £ be a list of predicates
defined in P and P ) be the result of ET(P, L) that translates P into a
program with extension tables for the predicates given in £. Given a query Q,
Q is ET-complete with respect to the program P, if for any @ that is a
correct answer for P U {Q}, 8 is an ET-computed answer for Pey U {Q}.

We now extend the definition of ET-completeness with respect to an
adorned query, which represents a set of queries with the same adornment.

Definition 3.5

Let P be a (definite, function-free) logic program, £ be a list of predicates
defined in P and P be the result of ET(P, £) that translates P into a
program with extension tables for the predicates given in £. Given a predicate
p and an adorned query p?, p® is ET-complete with respect to the program P . ()
if for any 8 that is a correct answer for P U {Q} for any query Q on p with
adornment @, 6 is an ET-computed answer for P ..y U {Q}.

Theorem 3.1

Let P be a linear recursive (definite, function-free) logic program with a single
recursive predicate p of arity n. Assume p has only one linear recursive rule and
is left-linear with respect to the query adornment @. Then p® is ET-complete
with respect to P e (1p/n)).

Proof

Let Q be a query on p with adormnent @. Based on the definition of ET-
completeness, we must prove that every correct answer for P U {Q} is an
ET-computed answer for P oo U {Q}F.

Since the answers for P U {Q} are the answers calculated using the
nonrecursive rules, unioned with the answers calculated using the recursive rule
unfolded once, unioned with the answers calculated using the recursive rule
unfolded twice, ..., and so on, we prove the theorem by induction on the number
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of unfoldings of the recursive rule.
Basis: /=0, we need to show that all correct answers for P U {Q} calculated
with the nonrecursive rules are ET-computed answers. This is obviously true
since the ET transformation uses the bodies of the nonrecursive rules as given in
the original program and guarantees that the nonrecursive rules are evaluated
before the recursive rule.
Hypothesis: Let i =k and assume that all correct answers for P U {Q} calcu-
lated with at most k& steps of unfolding the recursion are ET-computed answers
and therefore are saved in the extension table.
Induction: Let i=k-+1 and assume that & is a correct answer for P U {Q}
calculated with &+ 1 steps of unfolding the recursion. We need to show that 4
is an ET-computed answer.

Let p have m rules ry, ..., r», of which only one is recursive:

r p(X) - qu(Y)).

rm: p(X) = p(Z), qm(Y ).

where q,(j = 1, ..., m) represent the conjunction of nonrecursive subgoals in
rules ry, ..., rm, respectively and X, Y;(j = 1, .., m), and Z are tuples of
arguments. Since p is left-linear with respect to the adornment e, the recursive
subgoal is guaranteed to be subsumed by the original call and therefore, is a
table lookup. By assumption, correct answers for P U {Q} calculated with at
most k steps of unfolding the recursion are ET-computed answers and are saved
in the extension table. Since the extension table memo mechanism guarantees
immediate update view semantics while inserting a new answer at the end of the
list of answers, backtracking into the table lookup will retrieve all the answers
calculated with at most k steps of unfolding the recursion. These answers are
joined with the nonrecursive subgoals q» to generate correct answers corre-
sponding to at most k+ 1 steps of unfolding the recursion. Thus, any correct
answer for P U {Q} calculated with at most k+1 steps of unfolding the
recursion is guaranteed to be an ET-computed answer. O

This section defined left-linear recursions and illustrated an optimization
of the ET source transformation for left-linear recursions. Theorem 3.1 proved
that left-linear recursions are ET-complete. Thus, for the motivational left-linear
transitive closure example, Prolog’s evaluation of the adorned queries tc® and
tc” with memoing is complete. The next section examines the rule/goal graphs
of the non-left-linear t¢ adornments, bb and fb, to motivate the generalization of
the class of left-linear recursions that are ET-complete.

§4 Pseudo-Left-Linear Recursions
In this section, we extend the result of the last section to a more general
class of linear recursions that we call pseudo-left-linear recursions. Intuitively,
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tcbb tcn)
7 '\ / '\
X.Yl] r[X.YIZ] [YIX] r[Y!X,Z]
Mo 2.0 To 2.0
bb [X.,Y.Zl} /fb .Y.ZI
edge lbe r2.1' ’ edge tc” rz.D‘l‘ 2]
edgcbb edgebb
(@) (b)

Fig. 8 Rule/goal graphs for adorned queries tc®” and tc’®

the generalization includes recursions that are left-linear after one unfolding of
the recursive rule.

We will motivate this generalization using the left-recursive tc program in
Fig. 2. Recall that the predicate tc is left-linear with respect to the adornments
bf and ff and thus, according to Theorem 3.1, tc ¥ and tc” are ET-complete.
However, tc is not left-linear for the adorned queries tc®® and tc¢’®. Consider the
rule/goal graphs for program tc with respect to the adorned queries tc®” and tc’”
in Fig. 8 (a) and (b), respectively. For the adornment bb, after unfolding the
recursive rule once, the recursive subgoal has the adornment bf. We observe that
bf < bb and that tc is left-linear with respect to the adornment bf. Similarly, for
the adornment fb, after unfolding the recursive rule once, the recursive subgoal
has the adornment ff. We observe that ff < fb and that tc is left-linear with
respect to the adornment ff. Thus, the adorned queries tc®® and tc’® are a
selection of the answers for the unfolded adorned queries t¢* and t¢”, respec-
tively, which are known to be ET-complete (by Theorem 3.1). We formalize this
concept by the following definition of pseudo-left-linear recursions and prove
that pseudo-left-linear recursions are ET-complete.

Definition 4.1

Let P be a linear recursive (definite, function-free) logic program with a single
recursive predicate p and a single recursive rule for p with the recursive subgoal
appearing left-most in the rule body. Given an adorned query p? let the
adornment on the recursive subgoal be 8. p is pseudo-left-linear with respect to
the adornment « if (a) 8 < a, (b) p is left-linear with respect to the adornment
B, and (c) for every bound position i in 3, the corresponding arguments in
position i of both the head and the recursive subgoal share the same variable.

Theorem 4.1

Let P be a linear recursive (definite, function-free) logic program with a single
recursive predicate p of arity n and a single recursive rule for p. Let p be
pseudo-left-linear with respect to the query adornment . Then p® is ET-
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complete with respect t0 P ot¢iprn)).

Proof
Let p have m rules ry, ..., r», of which only one is recusive:

ri: p(X) := qi(Y1).

rn: p(X) - p(Z), Qu{Y n).

Let B be the adornment for the recursive p-subgoal with respect to the query
adornment ¢ after unfolding the recursive rule r, once. By definition of pseudo-
left-linear, p is left-linear with respect to the adornment A. According to
Theorem 3.1, p? is ET-complete with respect to P es(ip2)- Since 8 < @, i.e., @ has
more bindings than £, and the bound arguments in the recursive subgoal have
the same bindings as that in the original goal, the answers to p” are a selection
of the answers to p”. So if the answers to the adorned query p® were computed
as a selection of the answers to p’, the proof would be trivial. However, this is
not the case. We must justify that the interaction of the two subgoals using the
same extension table for p does not invalidate the ET-completeness of p*.

The initial adorned query p“ represents a new call for p, which is stored
in the call subtable. The et_retrieve built-in retrieves known answers for p; there
are none. The code_p rules are then executed; the first m-1 rules are nonrecursive
and unique answers are saved in the extension table. The recursive call to p*
represents a new call, since @ can not subsume [ because £ is more general than
a, and is saved in the call subtable. The et_retrieve built-in retrieves known
answers for p; the extension table contains the answers computed thus far for p?,
which are also answers for p®. After all the known answers are returned, the code_
p rules are executed, computing all the answers for p?. Since 3 is more general
than a, the call to p® will recompute the answers already computed for p®. These
answers will not be returned due to the failure of et_insert_unique. However, these
(duplicate) answers were already returned through the et_retrieve built-in.

The correct answers for P U {Q} consist of two sets: those generated
with the nonrecursive rules and those generated with the recursive rule. All
correct answers of P U {Q} calculated with the nonrecursive rules are ET-
computed answers. This is obviously true since the ET transformation uses the
bodies of the nonrecursive rules as given in the original program and guarantees
that the nonrecursive rules are evaluated before the recursive rule. Any correct
answer of P U {Q} calculated by the recursive rule must also be an ET-
computed answer since the recursive call to p? is ET-complete with respect to
P etcipiny by Theorem 3.1, and these answers for p’ contain all possible answers
for p®. All the answers for p? are joined with the nonrecursive subgoals g». Thus,
any correct answer for P U {Q} is guaranteed to be an ET-computed answer.

o0
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Example 2

By adding an extension table to predicate tc, given in Fig. 2, the left-recursive
transitive closure can be completely evaluated for any query adornment with
Prolog’s top-down evaluation strategy. This result follows from Theorem 3.1
and Theorem 4.1. Consider the four possible adornments for tc: bb, bf, fb and
ff. According to Theorem 3.1, the adorned queries t¢* and tc”” are ET-
complete. According to Theorem 4.1, tc®® and tc¢’® are ET-complete. Therefore,
Prolog with memoing through the use of extension tables can completely
evaluate any query over the left-recursive transitive closure specification given in
Fig. 2.

Example 3

With an extension table on the recursive predicate tc/2, the right-recursive
transitive closure given in Fig. 9 can be completely evaluated with Prolog’s
top-down evaluation strategy. First, reorder the subgoals in the recursive rule so
that the recursive subgoal appears left-most. The resulting program is left-linear
with respect to the query adornments fb and ff. Thus, by Theorem 3.1, the
adorned queries t¢’® and t¢’” are ET-complete. The resulting program is pseudo-
left-linear with respect to both query adornments bf and bb. Thus, by Theorem
4.1, t¢* and tc®® are ET-complete. Therefore, Prolog with memoing through the
use of extension tables can completely evaluate any query over the right-
recursive transitive closure specification given in Fig. 9.

te(X, Y) :- edge(X, Y).
te(X, Y) - edge(X, Z), te(Z, V).

Fig.9 Program tc with right-recursion

Although we have just proved that pseudo-left-linear recursions are
completely evaluated with memoing through the ET source transformation in
Prolog, the efficiency of the evaluation may be a concern. The results found for
the query p” before the recursive call are recomputed in the more general call to
p’. An obvious optimization is to first evaluate p”, and then select the answers
for p* from the answers to p’.

§5 Multiple Linear Recursions

We now consider linear recursive programs that are defined by multiple
recursive rules having a single recursive predicate. We prove that any linear
recursive program can be translated into a pseudo-left-linear recursive program
with a single recursive rule. The resulting program is pseudo-left-linear with
respect to any adorned query on the recursive predicate.

Consider the example of Fig. 10, which represents a transitive closure
defined on two relations p and q.¥ The definition of the predicate pgs/2 includes
two recursive rules. Given the query pas(X, Y), the set of answers is {(a, b), (a, c),
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p(a, b).  afb, c).
p(c, d).  q(d, e).
pas(X, Y) :- p(X, Y).
pas(X, Y) - a(X, Y).
pas(X, Y) - pas(X, Z), p(z, V).
pgs(X, Y) :- pas(X, Z) aZ, Y).

Fig. 10 Transitive closure on two relations

(a, d), (a, ), (b, ¢), (b, d), (b, €), (¢, d), (c, e), (d, e)}. However, Prolog does not return
the complete set of answers even if we memo the answers to the predicate
pgs/2, due to the multiple recursive rules. The answers to the second recursive
rule may be used by the first recursive rule to generate more answers and vice
versa. Therefore, the evaluation is incomplete.

This program can be translated into a program with a single recursive
rule by left-factoring the recursive subgoal pgs/2. The translated program is
given in Fig. 11, where s/2 is a new predicate. It is left-linear with respect to the
query pgs(X, Y). By Theorem 4.1, with memoing on the recursive predicate
pgs/2, query pgs(X, Y) can be completely evaluated with Prolog’s top-down
evaluation strategy.

pas(X, Y):- p(X, Y).

pas(X, Y):- g(X, Y).

pas{X, Y} :- pas{X, 2), s(2, Y).
s(Z, Y) - p(Z, Y).

s(Z, Y) - q(Z, Y).

Fig. 11 Result of left-factoring pgs/2 in Fig. 10

Generally, it may not be possible to apply a left-factoring operation to a
program directly. For example, Figure 12 defines the transitive and symmetric
closure of a given base relation. In this program, the recursive subgoals in the
recursive rules are not exactly the same, so we can not left-factor the subgoals for
p/2 directly. However, Algorithm 5.1 provides a left-factoring approach that
handles such a case, converting any program with multiple linear recursive rules
into one that has a single linear recursive rule. The resulting program is logically

equivalent to the original program and is pseudo-left-linear with respect to any

query adornment.
The translated program is logically equivalent to the original program.
The translation is derived by introducing Z, a tuple of new variables, as the

base(l, 2).

base(2, 3).

p(X, Y) :- base(X, Y).

(X, Y) -pX Z), base(Z,
p(X, Y) - p(Z, Y), base(X,
(X, Y) - ( X).

Fig. 12 Transitive and symmetric closure

v).
2).
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Algorithm 5.1 Left-factor recursive subgoals.

Input: A linear recursive program with a single recursive predicate but multiple
linear recursive rules.

Output: A linear recursive program with a single recursive rule. The recursive
predicate is pseudo-left-linear with respect to any query adornment on the
resulting program.

(1) Reorder the subgoals of each recursive rule so that the recursive subgoal
appears left-most in each rule.

(2) Assume the program has m recursive rules for predicate p with the
following forms after step (1):

ri p(X) = p(Yu), qua(Yiz), ooy Ques(Yisy).

tm: P(X) == p(Y 1), Qua(Ym2), oy Qukem(Y mtom)-

where, X and Y; (1 <i<m, j=1, 2, ..) are tuples of arguments.
Introduce a new rule ro’ that is linear recursive having as its left-most
literal p(Z), where Z has the same number of variables as X but are
distinct, and having as its right-most literal s(XZ), where XZ represents
the concatenation of the variables given by X and Z. Replace rules ry, ...,

’

rn with rules ro’, 1)/, ..., I'n”:

ro”: p(X) :- p(Z), s(XZ).
1" s(XYn) - Q1z(Y12), e Q1k1(Y1k1)-

rm/-' S(XYmI) - q:nz(Ym2)7 ey qum(Ymkm)'

XY, ..., and YY ,; are the concatenations of X with Y, ..., and X with
Y =1, respectively. Note that exit rules, if any, are unchanged.

argument to the recursive subgoals and left-factoring. The new predicate s is
introduced to represent the nonrecursive component of the bodies of the m
recursive rules. This intermediate step in the transformation is shown below,
where, in each rule for s, Z is explicitly unified with Y, (1 < i < m):

I'1”Z S(XZ) - Z:Yu, QIZ(YIZ), veey qlkl(YIkl).

I‘m”.' S(XZ) - Z:le, QmZ(YmZ)7 vy qum(Ymkm)-

By substituting Y, (1 < i < m)into Z, Z and Y, are implicitly unified and we
get the resulting set of rules for ry, ..., and r»" as in the algorithm.

Since Z is a tuple of variables distinct from X, any query on p results in
a recursive subgoal representing the most general call on p. Thus, p is left-linear
with respect to the most general adornment on the recursive subgoal. Therefore,
p is pseudo-left-linear with respect to any query adornment. According to
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Theorem 4.1, with memoing on the recursive predicate, the resulting program
with any query adornment can be completely evaluated with Prolog’s top-down
evaluation strategy. One disadvantage with this algorithm is that the resulting
program computes the whole relation for the recursive predicate. Although this
generalization may be costly with respect to the original query, reuse of memoed
results in subsequent computation may justify the additional cost. Note that the
generalization may actually be an optimization if the most general call would
have been made at some point during the computation anyway. By analyzing the
binding pattern propagation, this situation can be detected at compile time.

Theorem 5.1

Let P be a linear recursive (definite, function-free) logic program with a single
recursive predicate p of arity n and multiple linear recursive rules for p. Let F
be the output of the source-to-source program transformation given by Algor-
ithm 5.1 using P as its input program. Let y represent a valid query adornment
for p. Then p” is ET-complete with respect to the program F e (p/np)-

Proof

Due to the generality of the input for Algorithm 5.1, any linear recursive
program with a single recursive predicate can be translated into a pseudo-left-
linear recursive program with a single recursive rule. The source-to-source
program transformation of Algorithm 2.1 adds memoing to the recursive predi-
cate p. By Theorem 4.1, any query on the resulting program can be completely
evaluated with Prolog’s top-down evaluation strategy. O

Example 4

Consider the transitive and symmetric closure program given in Fig. 12, and the
result of applying Algorithm 5.1 to that program is given in Fig 13. This is a
pseudo-left-linear recursive program with respect to any query adornment and
therefore, by adding memoing on p/2, it can be completely evaluated with
Prolog’s top-down evaluation strategy.

base(l, 2).

base(2, 3).

p(X, Y) :- base(X, Y).

p(X, Y) - p(U, V), s(X, Y, U, V).
s(X, Y, X, Z) :- base(Z, Y).

s(X, Y, Z, Y) :- base(X, 2).

s(X, Y, Y, X).

Fig. 13 Result of Algorithm 5.1 on program of Fig. 12

§6 Summary and Future Work

This paper identified a simplified class of Prolog programs for which
naive memoing in the presence of recursion was complete, illustrating the
limitations imposed even for this restricted class of programs. This paper did not
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include an empirical study of the efficiency of such a naive memoing approach
over using one of the general, complete strategies. We expect the “rule of thumb”
of trading generality for efficiency to hold in this respect as well. At the very
least, this theoretical study identifies a class of programs for which the manage-
ment of the memo tables may be simplified and represents the foundation of an
optimization strategy for top-down memoing techniques, such as the ET*
evaluation strategy.” For example, ET* utilizes the ET source transformation in
combination with an iterative construct to guarantee completeness by comput-
ing the least fixed point. Thus, for the simplified recursions identified in this
paper, only the memoing provided by the ET source transformation is required
for completeness, resulting in an obvious performance improvement over ET*.

We plan to continue this theoretical investigation by extending the study
of completeness of naive memoing to include: linear recursions with multiple
recursive predicates, such as nested linear recursions; non-linear recursions, such
as multi-linear recursions; and function symbols. Extending this theoretical
study to include recursions with more than one recursive predicate is important
since typical memoing examples in logic programming consist of non-linear
recursions, such as the naive Fibonacci program and the double-recursive
version of transitive closure. Although some non-linear recursions can be
translated into linear ones,?® there is no guaranteed method to convert arbitrary
non-linear programs to equivalent linear ones.”” Identifying the class of logic
programs with functions for which naive memoing is complete is another
important extension of this work. Functions often imply infinite relations. By
transforming function symbols into uninterpreted relations, researchers'®'%!”
found that if the infinite relations defined by the functions have certain prop-
erties, such as finiteness constraints and monotonicity constraints holding over
the attributes of the relation, the evaluation may be complete and terminating.

After completing the above theoretical extensions, our focus will shift to
implementation level details. Recall that we are interested in the interaction of
naive memoing and recursion in Prolog, rather than logic programming in
general. Thus, an obvious next step is to look at naive memoing within the
recognized WAM (Warren’s Abstract Machine) implementation of Prolog.
Although the XWAM?" integrated memoing evaluation into the WAM, the
XSB system'® supercedes the XWAM and extends the standard functionality of
Prolog by providing an implementation of SLG resolution.” A careful look at
the SLG-WAM will be warranted, although XSB is clearly more powerful than
naive memoing in Prolog.
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