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Abstract. Consider the problem of computing the minimum-weight multicast route in an optical network with
both nonsplitting and splitting nodes. This problem can be reduced to the minimum Hamiltonian path problem
when all nodes are nonsplitting, and the Steiner minimum tree problem when all nodes are splitting. Therefore,
the problem is NP-hard. Previously, the best known polynomial-time approximation has the performance ratio 3.
In this paper, we present a new polynomial-time approximation with performance ratio of 1 + ρ, where ρ is the
best known approximation performance ratio for the Steiner minimum tree in graph and it has been known that
ρ < 1.55.
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1. Introduction19

A potential infrastructure for a next generation network is to put mobile wireless access20
networks on top of an all-optical core network. The optical network in core provides the21
efficient high-speed communication with high bandwidth and low end-to-end delay. It is also22
desirable that the optical network layer provides multicast capability due to the requirement23
of many applications. By multicast, we mean that given a network topology, source of the24
multicast session, multicast members, finds a multicast route that spans all the members. In25
this paper, we consider the minimum-weight multicast problem, that is, we want to find a26
multicast route with the minimum total weight.27

An optical network is usually formulated as a weighted graph with switches as nodes.28
We consider two types of switches, nonsplitting and splitting. Corresponding nodes are29
also said to be nonsplitting and splitting, respectively. A nonsplitting switch cannot split30
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Figure 1. A nonsplitting node.

an input signal into several outputs. Therefore, in a multicast route, a signal may pass a 31
nonsplitting node several times (figure 1), but cannot be split. If all nodes are nonsplitting, 32
the minimum-weight problem can be reduced to the the minimum weight Hamiltonian path 33
problem. The latter is well-known to be NP-hard (Garey and Johnson, 1979) and to have a 34
polynomial-time approximation with performance ratio 1.5 (Christofides, 1976). 35

If all nodes are splitting, then the minimum-weight multicast route is the minimum Steiner 36
tree, which is also well-known to be NP-hard (Garey and Johnson, 1979) and to have a 37
polynomial-time approximation with performance ratio < 1.55 (Robins and Zelikovsky, 38
2000). 39

Clearly, when both nonsplitting and splitting nodes exist, the minimum-weight multicast 40
problem is NP-hard and its polynomial-time approximation should be constructed with 41
techniques from the study of both the Hamiltonian path and the Steiner minimum tree. 42

Yan et al. (2003) gave the first approximation consisting of two steps. In the first step, 43
a Steiner tree T is constructed to interconnect the source node and all multicast members 44
under the assumption that all nodes are splitting. In the second step, a tour starting from 45
the source node along the Steiner tree to reach all multicast members is constructed in the 46
depth-first-search rule. Suppose ρ is the performance ratio of the best known polynomial- 47
time approximation for the Steiner minimum tree. Then the approximation of Yan, Deogun 48
and Ali has the performance ratio 2ρ (≈3.1). Du et al. (2005) gave an improvement by 49
pointing out that when all nodes are considered to be nonsplitting, the 1.5-approximation 50
for the Hamiltonian path actually gives a 3-approximation for the minimum-weight multicast 51
problem. 52

In this paper, we will present a new polynomial-time approximation with performance 53
ratio ρ + 1 (<2.55). 54

2. Preliminary 55

Motivated from Christofides’ 1.5-approximation for the Hamiltonian cycle, it is naive to 56
design an approximation for the minimum-weight multicast problem as follows: Step 1. 57
Construct an edge-weighted complete graph G for the source node, all multicast nodes and 58
all splitting nodes where the weight of each edge is the length of the shortest path between 59
the two endpoints in the input optical network.
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Step 2. Construct a Steiner tree T for the source node and all multicast members in G.60
Step 3. Construct a perfect matching M for all multicast members with odd degree, if the61

number of those members is even; or for the source node and all multicast members with62
odd degree, otherwise.63

Step 4. Find a multicast route in the union of T and M .64
However, this algorithm may stuck at Step 4 because the union sometimes does not65

contain a multicast route. A counterexample can be found in Du et al. (2005). This is66
why Yan et al. (2003) did not use the perfect matching and Du et al. (2005) use a minimum67
spanning tree instead of a Steiner minimum tree. In this paper, we will introduce a technique68
to solve this problem.69

3. Main result70

Let us describe our new approximation algorithm.71
First, construct a weighted complete graph G on the source node, all multicast members,72

and all splitting nodes where the weight of each edge (u, v) equals the total weight of the73
shortest path between u and v in the original optical network. Note that this weight function74
satisfies the triangular inequality in G. Then construct a Steiner tree T for the source node75
and all multicast nodes in G using a polynomial-time approximation algorithm (Robins and76
Zelikovsky, 2000; Karpinski and Zelikovsky, 1997). Suppose ρ is the performance ratio of77
this approximation of the Steiner minimum tree. All nodes other than the source node and78
multicast members are called Steiner nodes. They must be splitting.79

Consider T as a tree rooted at the source node s. Then we can assign every edge in T a80
top-down direction coincided with a path from the root s to a leaf. All edges each of which81
is incident to at least one Steiner node form a forest F . Each connected component E of F82
is a rooted subtree. Let p(E) be a path from the root to a leaf in E . Let T \F be the subforest83
of T , with edges in T but not in F . We union T \F together with all p(E) for E over all84
connected components of F . The resultant subforest of T is denoted by K . Note that in K85
every Steiner node has even degree. Therefore, the number of multicast members with odd86
degree in K must be even.87

Let O be the set of nodes with odd degree in K . Construct a minimum weight perfect88
matching M for O . Now, we show that T ∪ M contains a multicast route.89

Theorem 1. T ∪ M contains a multicast route using each edge at most once.90

Proof: Note that K ∪ M is a disjoint union of cycles; each cycle is a connected component91
of K ∪ M . One of these cycle, say C , contains the source node s. From s, send a message92
along an edge of C , in the top-down direction, to an adjacent node. Later, every node will93
follow from the following rules to transmit the message.94

(a) When a Steiner node receives a message, it will pass the message to all its children95
nodes. This may require to split the message.96

(b) When a multicast member a receives a message at the first time and the message comes97
from an adjacent node in a cycle C of K ∪ M , a will pass the message to the other98
adjacent node in C .99
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(c) When a multicast member a receives a message at the first time and the message does 100
not come from an edge in K ∪ M , a will pass the message to an adjacent node in K ∪ M 101
along an edge in the top-down direction. 102

(d) When a multicast member receives a message not at the first time, it will do nothing. 103

This multicast route would use each edge at most once and all multicast nodes would 104
receive the message because T is connected. 105

We next estimate the total weight of T ∪ M . To this end, it suffices to study the weight of 106
M since the total weight of T is within a factor of ρ from the weight of a Steiner minimum 107
tree, hence is upper-bounded by ρ · opt where opt is the minimum-weight of a multicast 108
route. 109

Lemma 1. The total weight of M is at most opt. 110

Proof: Consider a minimum multicast tree T ∗ in the given optical network. Starting from 111
the source node, travel along tree T ∗ in the depth-first search way. Then we would obtain 112
a tour passing through the source node and all multicast members in the given optical 113
network. Turn this tour into a cycle Q in graph G. The total weight of the cycle Q is at 114
most 2opt. Note that the source node and all multicast members are on the cycle Q. We 115
consider those nodes with odd degree in K . Recall that those nodes form a set O . Along the 116
cycle Q, connect nodes in O directly. We would obtain a cycle Q′ on O with total wight at 117
most 2opt since the edge-weight in G satisfies the triangular inequality. The cycle Q′ can 118
be decomposed into two disjoint perfect matchings for O . One of them must have the total 119
weight at most opt . Therefore, M has the total weight at most opt . 120

Theorem 2. The total weight of T ∪ M is at most (1 + ρ)opt. 121

Proof: It follow immediately from Lemma 1. 122
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