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Abstract In recent years, thousands of commodity servers have been de-
ployed in Internet data centers to run large scale Internet applications or cloud
computing services. Given the sheer volume of data communications between
servers and millions of end users, it becomes a daunting task to continuously
monitor the availability, performance and security of data centers in real-time
operational environments. In this paper, we propose and evaluate a lightweight
and informative traffic metric, streaming frequency, for network monitoring in
Internet data centers. The power-series based metric that is extracted from
the aggregated IP traffic streams, not only carries temporal characteristics of
data center servers, but also helps uncover traffic patterns of these servers. We
show the convergence and reconstructability properties of this metric through
theoretical proof and algorithm analysis. Using real data-sets collected from
multiple data centers of a large Internet content provider, we demonstrate its
applications in detecting unwanted traffic towards data center servers. To the
best of our knowledge, this paper is the first to introduce a streaming metric
with a unique reconstruction capability that could aid data center operators
in network management and security monitoring.
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1 Introduction

In recent years, thousands of servers have been deployed in Internet data
centers to support large scale online applications and cloud computing services.
To ensure high availability, security and performance, real-time monitoring of
data center servers becomes an important component of data center operations
and management. However, given the size of data centers and the vast amount
of network traffic, it is a daunting task to continuously monitor and analyze
the behaviors of thousands of servers from IP traffic streams in real-time.
The challenge of scalable data center monitoring calls for efficient metrics to
summarize IP traffic streams.

The goal of this paper is to propose and evaluate lightweight and infor-
mative metrics from IP traffic streams in data center networks. Lightweight
metrics enable fast processing and reporting of network traffic from high-
speed links [1,2], while informative metrics provide appropriate thresholds for
generating alerts, examining historical observations for forensic analysis, and
pinpointing the root causes for operators to act upon. Many of the existing
traffic metrics are either expensive or non-actionable. For example, collect-
ing the incoming and outgoing packet statistics of each data center server over
time requires a significant amount of computing as well as memory and storage
resources due to the sheer amount of traffic data and the number of servers.
In addition, real-time data center monitoring tools, e.g., MRTG [3], generate
a variety of traffic graphs and statistics in each time interval that are often
difficult for the operators to act upon without informative interpretation.

The massive data collected by traditional traffic measurement methods
presents a significant challenge in storage, processing, and analysis. There-
fore, there is a pressing need for simple yet effective metrics for data center
monitoring. This paper introduces streaming frequency (SF), a power-series
based traffic metric, to characterize temporal traffic patterns of data center
servers and to differentiate these servers with distinct patterns. Most existing
metrics collected by network monitoring tools focus on observations on the
current time window, rather than providing long-term temporal information.
Through theoretical analysis, we demonstrate the informative aspects of this
metric by showing two important properties of this metric: convergence and
reconstructability. The streaming frequency metric has the convergence prop-
erty since the value is always bounded between 0 and a certain thereshold, and
the reconstructability property comes from the metric’s capability of restoring
the original traffic statistics. In general, the convergence property could help
define and evaluate appropriate thresholds in the monitoring tools [3,4], while
reconstruction is very important for in-depth analysis as it provides histori-
cal traffic patterns for trend analysis and change detections [5–7]. The simple
streaming frequency metric not only has unique convergence and reconstruc-
tion properties that could aid data center operators in network management
and security monitoring, but also significantly reduces the amount of storage
and time for storing and processing traffic data compared with traditional
traffic measurement methods.
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The streaming frequency metric, carrying meaningful and actionable in-
formation, is very useful for real time monitoring, such as detecting unwanted
traffic and troubleshooting network events. It also aids in understanding tem-
poral traffic patterns given its ability to restore the original data traffic for
in-depth analysis. In this paper, we propose and implement the reconstruction
algorithm, and evaluate the metric using real network flow traces collected
from three data centers in a large Internet content provider [8]. In addition,
we demonstrate the effectiveness of this metric in detecting unwanted traffic
towards data center networks with these data sets. The recent attacks towards
GMail [9] and other cloud services illustrate the urgency and importance of
protecting data center servers for ensuring the security and high-availability
of cloud computing.

The contributions of this paper include

– proposing a new streaming frequency metric for real-time data center mon-
itoring;

– performing a theoretical analysis of the metric and proposing an algorithm
to reconstruct the traffic patterns from the streaming frequency;

– proposing a lightweight approximation for streaming frequency to reduce
the memory cost of the metric and giving a theoretical analysis of its ac-
curacy;

– demonstrating the applications of the streaming frequency metric using
real data-sets collected from three data centers of a large Internet content
provider.

The remainder of this paper is organized as follows: Section 2 describes
the background and formulates the research problem. Section 3 introduces the
streaming frequency metric, and Section 4 presents theoretical analysis. Sec-
tion 5 implements the algorithm and discusses its computational complexity
and memory consumptions. Section 6 demonstrates the applications of the
metric in data center monitoring. Section 7 concludes this paper and outlines
the future work.

2 Background and Problem Formulations

Data center networks have recently drawn much attention from research and
industry communities. Most of the prior work has focused on reducing the cost
of data centers and building scalable and robust data center architectures [10–
15]. There has been little attempt to understand traffic characteristics and
detect anomalous behaviors in data center networks.

To support large scale Internet applications, such as information search and
online social networks, today’s data centers host hundreds, even thousands, of
servers that continuously communicate with a large number of distributed end
users. At the same time, the servers also receive unwanted traffic from attackers
in the forms of scanning, worms, viruses and the denial of service attacks.
In [16], Benson et al. examined SNMP logs from data centers to study temporal
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and spatial variations of the traffic load and packet loss at the aggregated link
level. However, studying network traffic at the individual server level is often
desired for a deep understanding of anomaly behaviors towards each data
center server. In addition, monitoring the servers over a long period of time
is very important for forensic and trending analysis. For example, sudden
traffic increase or decrease of one server could indicate interesting network
or system events, e.g., congestions or attacks. Cloud service providers (such
as Amazon Web Services) monitor the inbound and outbound Internet data
transfer of cloud customers’ servers for billing purposes [17]. This accounting-
related monitoring application mostly collects aggregated measurements on
the total data received by and sent from the server; however, such coarse-
grained monitoring does not reveal the underlying traffic patterns and network
behaviors of these servers.

Monitoring data center traffic and detecting anomaly behavior from net-
work data streams is not a trivial task given the large number of servers, their
traffic, and the infinite duration of the monitoring period. A lot of existing
techniques have been developed to collect various network metrics; such as
packets, bytes, IP addresses, and ports from network flows or packet payloads.
One shortcoming of these metrics is that such statistics is non-actionable or
non-informative. In addition, efficiently storing and analyzing such informa-
tion is also challenging. The database provides efficient processing and query
for these metrics, however, the growth of data collections over time makes
the database impractical. An alternative method is typically to store metrics
into files saved on disks; however, reading data files through disk operations
in real-time is time consuming.

In this paper we would like to answer the following research problem: given
the traffic streams from data center networks, how do we summarize the traf-
fic with meaningful and actionable metrics that will aid operators in network
management and security monitoring? Specifically, we are interested in de-
veloping simple and lightweight metrics that could distinguish traffic patterns
and reveal insight on the behavior of data center servers. We evaluate the met-
rics with real network flow traces collected from three major data centers a
large Internet content provider [8]. Each network flow includes the well-known
5-tuple information (i.e., the source IP address, destination IP address, source
port number, destination port number, and protocol), statistics of packets and
bytes in the flow, and the start and end timestamps.

The solutions towards this goal are very useful for a variety of applications,
such as performance monitoring and traffic engineering, since these metrics
provide actionable information for the operators to find the root cause and
perform correlation and forensic analysis. It is important to note that our
proposed traffic metrics in this paper not only could be applied in data center
traffic, but also could be extended to other types of network traffic such as
Internet backbone traffic and enterprise network traffic. One of our future
works is to study the feasibility of applying the proposed metrics on the traffic
streams in backbone networks and enterprise networks.
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3 Method

In this section, we first describe the traditional cumulative frequency and dis-
cuss its limitations. Subsequently, we propose an informative metric called
streaming frequency to capture the underlying temporal traffic patterns.

3.1 Cumulative Frequency
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Fig. 1 The cumulative frequency of data center servers over a 24-hour time window

The basic on-off temporal metric cumulative frequency (CF) of data center
servers captures the number of occurrences of a server in the aggregated IP
traffic streams from all the source IP addresses towards the same server as
the destination over a certain time period. Suppose each data center server is
associated with χ, which is an indication function to represent whether there
is traffic towards the server at a certain time interval. χi = 1 if there is traf-
fic towards the server at time interval i. Otherwise χi = 0. The cumulative
frequency, c, of a server is c =

∑k
i=0 χi, where k is the index of the current

interval. This cumulative frequency metric basically counts the number of oc-
currences for each data center server, which is an important statistic. However,
it does not reveal any occurrence pattern of the server. For example, all of the
following three temporal patterns have a cumulative frequency of 5:

Temporal Pattern 1: 0 0 0 0 0 1 1 1 1 1

Temporal Pattern 2: 0 1 0 1 0 1 0 1 0 1

Temporal Pattern 3: 1 1 1 1 1 0 0 0 0 0

Clearly, they exhibit different occurrence patterns. Thus, given a cumu-
lative frequency of a server, it is difficult to restore or reconstruct when the
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server is observed during the previous time periods. In other words, the cu-
mulative frequency metric lacks the information on when and in what pattern
the server is observed. Such information could be very useful, especially in
network security monitoring and forensic analysis.

Figure 1 illustrates the cumulative frequency of over 82,000 data center
servers during a 24-hour time window, which is divided into 288 time intervals
with each interval being 5 minutes. The maximum cumulative frequency of a
server is 288 if the server is observed with traffic during each time interval.
From this plot, we find that a number of servers are not constantly observed,
since their cumulative frequencies are less than 288. However, cumulative fre-
quency only keeps track of the aggregated occurrence numbers of a server from
the aggregated IP traffic streams and discards the information on when the
server is observed; it is difficult to infer the original traffic pattern for the
server. We introduce a new temporal frequency metric, namely, streaming fre-
quency (SF), which is able to not only restore the previous temporal patterns
of the servers, but also summarize the temporal observations of data center
servers with a bounded number.

3.2 Streaming Frequency

Unlike the cumulative frequency metric which simply counts the number of
time intervals during which a server is observed, the stream frequency (SF)
assigns more weight to the recent time intervals, and assigns less weight to-
wards “old” units. This new weight assignment is intuitive, since the current
observation is more influenced by recent observations than historical ones. For
a server, its streaming frequency s at the kth time interval is calculated with
a power-series function as follows:

sk = χk +
1
α

sk−1, (1)

where χ is the indication function which represents the on-off temporal
occurrence of traffic towards the server. α is the decay parameter to reflect
how fast the old observations decay, so α ≥ 1. In addition, we require α to be
an integer for reconstruction purposes.

Equation 1 can be further expanded into
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(a) Temporal observations of IP1
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(b) Temporal observations of IP2
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(c) Cumulative frequency of IP1
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(d) Cumulative frequency of IP2
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(e) Streaming frequency of IP1
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(f) Streaming frequency of IP2

Fig. 2 Case studies of two IP addresses with middle temporal frequency

sk=χk +
1
α

sk−1

=χk +
1
α

χk−1 +
1
α2

sk−2

=χk +
1
α

χk−1 +
1
α2

χk−2 +
1
α3

sk−3

=χk +
1
α

χk−1 +
1
α2

χk−2 + · · ·+ 1
αk

χ0

=
k∑

j=0

1
αk−j

χj
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As we can see from the above equations, streaming frequency is represented
by a power series. In a special case where χi = 1 for i = 0, 1, . . . , k, the stream-
ing frequency represents a geometric series. Streaming frequency has several
interesting properties that are desirable for network monitoring, including con-
vergence and reconstructability. We will demonstrate these properties through
theoretical proof and experiments in the next two sections. In the rest of this
section, we discuss the benefits of the convergence property.

First we revisit three earlier cases that have the same cumulative frequency
of 5 but very different temporal patterns and we calculate their streaming fre-
quencies. Based on equation 1, the streaming frequency metrics of these three
patterns with α = 2 are 1.9375, 1.3281, and 0.0605, respectively. This indicates
that the streaming frequency metric can distinguish these temporal patterns
with very different values, even though all of them have the same cumulative
frequency. More importantly, these streaming frequencies also carry interest-
ing information that the cumulative frequency does not carry. For example,
the first value 1.9375, which is close to 2 (as we prove in Section IV where the
streaming frequency of a server when α = 2 is bounded by 2) tells us that the
server is observed in most of the recent time intervals, while the value 0.0605
indicates the server is observed at the very beginning of the time period and
does not appear in the latest time intervals.

Figures 2[a-f] further illustrate the advantages of the streaming frequency
metric over the cumulative frequency metric through case studies. Figures 2[a][b]
show the traffic patterns of two data center servers, IP1 and IP2 during nearly
300 time units, respectively. It is obvious that these two servers have sim-
ilar numbers of occurrences but different traffic patterns. As shown in Fig-
ures 2[c][d], the two servers have the same cumulative frequency values at the
288 time unit, since they occur during the same number of time units. How-
ever, these two servers have very different temporal patterns, as IP1 has a
continuous traffic pattern, while IP2 has a very random on-off pattern. Unlike
the cumulative frequency metric, the streaming frequency metric with α = 2 il-
lustrated in Figure 2[e][f] clearly separates these two scenarios. This advantage
is largely contributed by the convergence property of the streaming frequency
metric whose value is always bounded between 0 and a certain thereshold.

Several prior works have exploited frequency measures and streaming anal-
ysis to study network traffic for anomaly detection. For example, in [18] Zhou
et al. applied Discrete Fourier transform (DFT) to collect the frequency in-
formation for intrusion detection in a simulated network. In addition, [19–21]
have applied signal processing, wavelet analysis, graph theory, and other tech-
niques for network anomaly detections. In parallel, data streaming techniques
have recently been used in a number of studies in the areas of real-time net-
work monitoring [22–26]. In contrast to these work, the objective of our work
is to develop lightweight and effective metrics based on a power-series that
measures general traffic patterns.

In summary, we have introduced a power-series based traffic metric, namely
streaming frequency, to summarize the traffic patterns of data center servers.
Compared with the traditional cumulative frequency, which counts the number
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of occurrences of a server, the streaming frequency metric carries the infor-
mation on the on-off temporal patterns of the servers. In the next section, we
will demonstrate some important properties of the streaming frequency metric
through theoretical analysis.

4 Theoretical Analysis

In this section, we present the proof of the convergence and reconstructability
properties of the streaming frequency metric.

Theorem 1 (Property of Convergence). For any server with indication
function χ, its streaming frequency that is defined recursively as sk = χk +
1
αsk−1, converges to α

α−1 , when α > 1 and α is an integer.

Proof: Since we are interested in the on-off traffic pattern of a server, χi

can only be 0 or 1 for i = 0, 1, ..., k, we have

sk=
k∑

i=0

1
αk−i

χi

≤1 +
1
α

+
1
α2

+ · · ·+ 1
αk

=
1− 1

αk

1− 1
α

<
1

1− 1
α

=
α

α− 1

If α = 2, the streaming frequency is bounded by [0, 2). ¤

Before we prove the reconstructability property, we need to prove the fol-
lowing lemma. To simplify the proof, we introduce a function χ′. Suppose the
current time interval is k, χ′i = χk−i, that is χ′0 = χk, χ′1 = χk−1, ..., χ

′
k = χ0.

Now s =
∑

i=0 kχ′i
1
αi . Now reconstructing the series χk, . . . , χ0 for a given s

becomes solving the series χ′0, . . . , χ′k and X =
∑p−1

q=0 χ′q
1

αq .

Lemma 1: If at a certain time interval p, χ′p = j, then s ∈ [X + j
αp , X +

j
αp + µp) for every p = 0, 1, ..., k, and j ∈ {0, 1}, where X =

∑p−1
i=0 χ′i

1
αi and

µp = 1
αp+1

1
1− 1

α

.

Proof: At any time interval p where p = 0, 1, ..., k, we have
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s=
k∑

i=0

χ′i
1
αi

=
p−1∑

i=0

χ′i
1
αi

+
k∑

i=p

χ′i
1
αi

=X +
k∑

i=p

χ′i
1
αi

.

It is clear that if χ′p = j, then s ≥ X + j
αp and

s=X +
j

αp
+

k∑

i=p+1

χ′i
1
αi

<X +
j

αp
+

1
αp+1

∞∑

i=0

1
1
αi

=X +
j

αp
+

1
αp+1

1
1− 1

α

=X +
j

αp
+ µp.

Combining the two inequalities together, we have, if χ′p = j, then
s ∈ [X + j

αp , X + j
αp + µp) for every p = 0, ..., k, and j ∈ {0, 1}. ¤

Theorem 2 (Property of Reconstructability). Given the streaming
frequency s, we can uniquely decide the indication function χ with no ambi-
guity.

Proof: Note that χ′p can only be 0 or 1. From Lemma 1, we have that
if χ′p = 0, then s ∈ [X, X + µp) for every p = 0, ..., k. If χp = 1, then
s ∈ [X + 1

αp , X + 1
αp + µp), where X =

∑p−1
i=0 χ′i

1
αi , and µp = 1

αp+1
1

1− 1
α

.

Because α ≥ 2, it follows that 1
αp ≥ µp. Thus X + µp ≤ X + 1

αp , which means
that the two ranges [X,X + µp) and [X + 1

αp , X + 1
αp + µp) do not overlap.

This implies that at each time interval p, where p = 0, 1, ...k, we can uniquely
decide the χ′p based on the range in which s − X falls. Therefore, χ can be
decided uniquely. ¤

Theorem 2 shows that we can use the streaming frequency, s, to restore
the indication function χ unambiguously. In the next section, we present the
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reconstruction algorithm that takes streaming frequency as input and outputs
the sequence of χ.

5 Implementation and Analysis of A Reconstruction Algorithm

In this section, we describe an algorithm to reconstruct the original on-off
traffic pattern of a server from the streaming frequency, and analyze its com-
putational complexity and memory requirement.

Algorithm 1 illustrates the reconstruction algorithm. It takes the incre-
mentally updated streaming frequency s of a data center server at the current
time interval k as input, and reconstructs the sequence of χ as output that
represents the original on-off occurrence pattern of the data center server dur-
ing the past k time intervals. As we proved in the previous section, there exists
one and only one χi, i = 0, 1, ...k, given the streaming frequency s.

Algorithm 1 Server traffic pattern reconstruction algorithm
1: INPUT: s =

∑k
i=0 χi

1
αk−i , which is calculated for the current time interval k and

χi = j, where j ∈ {0, 1};
2: OUTPUT: a sequence of χi, i = 0, 1, ..., k;
3: s′ = s;
4: for i = 0 to k
5: µi = 1

αi+1
1

1− 1
α

;

6: if s′ ∈ [0, µi)
7: χk−i = 0;
8: else if s′ ∈ [ 1

αi , 1
αi + µi)

9: χk−i = 1;
10: end if
11: s′ = s′ − χk−i

1
αi ;

12: end for

The time complexity of this algorithm is O(k) because the for loop (LINES
4 - 12) runs k times and each run takes O(1) time.

During our experiments of running the algorithm against the real data-sets,
one challenge lies in the limitation of significant digits in the popular pro-
gramming languages. For example, the number of significant digits for double
floating point numbers in C, and Java programming languages are 15. How-
ever, several existing libraries, e.g., the java.math package, support arbitrary
precision floating point values for financial applications and cryptography.

Utilizing these packages, we are able to calculate s for any arbitrary k. In
other words, our algorithm could restore the traffic patterns over an arbitrary
length of time. On the other hand, the reconstruction comes with the cost
of memory consumptions of storing s with an arbitrary precision. Figure 3
illustrates the relationship between the length of reconstruction history and
memory assumptions for the streaming frequency metric. Similar to captur-
ing the original temporal patterns in binary representations (cf. Section 3),



12 Kuai Xu et al.

 0

 50

 100

 150

 200

 250

 300

 0  50  100  150  200  250  300

B
its

 o
f m

em
or

y 
co

ns
um

pt
io

ns
 (

α 
=

 2
)

Length of reconstruction history

Fig. 3 Relationship between the length of the history and the memory consumptions

a longer history of traffic observations leads to more memory or storage, and
the required space grows linearly as the length of the time series. For ex-
ample, we need nearly 16 bytes (128 bits) for the streaming frequency when
k = 120, while 32 bytes (256 bits) are required for k = 240. However, the
binary representation of temporal patterns lacks the properties of convergence
and reconstruction. In addition, we could use a fixed amount of memory space
to represent the approximate value of streaming frequency for data center
servers with a bounded error, as proved in Theorem 3.
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Fig. 4 The difference of streaming frequency between original values and approximation
values with three digits

As we can see, although streaming frequency is an informative metric that
can distinguish traffic patterns and recover traffic history, the memory cost is
undesirable. In order to reduce the memory consumption and calculation, we
limit the number of digits representing the streaming frequency and show that
this lightweight approximation can still achieve high accuracy. Specifically,
the following theorem proves that we could use several digits to approximate
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the streaming frequency metric over an arbitrarily long time period with a
bounded error.

Theorem 3 (Approximation with a Bounded Error). If the number
of digits that represent the streaming frequency is limited by x digits, the
calculated s value is no more than 2

10x−1 apart from the precise value.

Proof. Since only x digits are used to represent the streaming frequency,
all the digits starting from the (x + 1)-th digit will be dropped at each step
when the streaming frequency is updated. Thus at each step, the introduced
error is at most 1

10x−1 . For the subsequent step, the error introduced by the
previous drop of digits is decreased by half, which is 1

2
1

10x−1 and the newly
introduced error is 1

10x−1 . Thus, if we add all the errors up, the total error, ε,
is

ε=
1

10x−1
+

1
2

1
10x−1

+
1
22

1
10x−1

+
1
23

1
10x−1

+ ...

=
1

10x−1
(1 +

1
2

+
1
22

+
1
23

+ ...)

≤ 1
10x−1

∗ 1− (1/2)∞

1− 1/2

=
2

10x−1
.

That is, if we use only three digits to represent streaming frequency, the
calculated s is less than 0.02 apart from the precise streaming frequency no
matter how large k is. If four digits are used, the error is bounded by only
0.002. Figure 4 illustrates the streaming frequencies for two sample data cen-
ter servers over time. In both figures, the red solid lines represent the precise
values with an arbitrary size of memory, while the blue dotted lines denote
the approximation values with only 3 digits. Figure 4 confirms that the ap-
proximations are very close to the original values, thus we could indeed use a
small amount of memory in our experiments and real-time systems to repre-
sent the streaming frequency of data center servers over a long time interval.
Such observations hold for other servers as well.

In summary, the time complexity of the reconstruction algorithm is O(k)
for reconstruction of traffic pattern over a period of k time intervals. Fur-
thermore, our theoretical analysis and experiment results show that the ap-
proximation method with a small number of digits could achieve a very high
accurate estimation on the original value. Therefore, we could use approxima-
tion methods in real-time systems if the memory constraint exists.
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6 Applications

Lightweight and informative streaming frequency metrics have a variety of
applications in real-time data center network monitoring given their conver-
gence and reconstructability properties. In this section, we demonstrate the
applications in detecting unwanted traffic towards data center servers.

As the number of data center servers grows due to the rapid growth of
cloud computing, unwanted traffic towards these servers continues to increase
in size and diversity [27,28]. The sheer volume of network traffic makes it chal-
lenging to examine unwanted traffic directly from continuous traffic streams,
thus streaming frequency provides an efficient mechanism for identifying un-
wanted traffic given its lightweight computation and unique convergence and
reconstruction abilities.

As discussed in the previous sections, the streaming frequency of a given
host h is 1 ≤ s ≤ 2 if the host h is observed at the time unit t. Clearly, if
s = 1, it indicates that the host h is the first to be observed at the unit time,
while if s ≈ 2, it indicates that the host h is consistently observed during all
the previous time units. On the other hand, any other value (i.e., 1 < s < 2),
suggests that the host is not always observed over time and thus, it is very
interesting to examine its detailed temporal patterns over the time.

To further understand the correlation of the streaming frequency and the
temporal traffic patterns, we compute the mean and standard deviation of the
streaming frequency for all data center servers. The mean of the streaming
frequency for the host h is computed as

µ(h) =
1
t

t∑

i=1

si,

while the standard deviations of the streaming frequency is calculated as

σ(h) =

√√√√1
t

t∑

i=1

(si − µ(h))2.

Figure 5 illustrates a scatter plot of the mean and standard deviation for
the hosts in three data centers with 1 < s < 2 and the same cumulative
frequency of 144. This graph shows two well isolated groups among these
hosts, which motivates us to apply simple clustering algorithms for dividing
them into separate clusters for further analysis. Through k-means clustering
algorithms [29] with k = 2, we further find the centroids of these two clusters:
c1 (1.529, 0.090) and c2 (1.960, 0.027). The in-depth analysis shows that the
top-left cluster are inactive servers or unused IP addresses that are the targets
of random scanning and exploit behaviors from outside attackers, since most of
the traffic is towards ports that are associated with well known vulnerabilities.
The bottom-right cluster are normal active data center servers, and most of
the traffic is towards legitimate services. Note that some of the traffic towards
active servers could also be unwanted traffic from malicious sources exploiting
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active servers. Although the capability of differentiating active and inactive
servers in data centers is not new, the unique benefits of streaming frequency
lie in its low cost in metric computation and storage over continuous traffic
streams.

To uncover this anomalous traffic, network operators could analyze all the
traffic towards active servers and find unusual ports or access patterns. Based
on these empirical observations, we calculate its distances1 to the centroid
d1 = |s − µc1|, and d2 = |s − µc2| for each new host h, and use the following
rule to classify the hosts observed from the aggregated data center traffic
streams:

type of server =

{
inactive, if d1 ≤ d2,

active, if d1 > d2,
(2)

Prior works [30–32] suggested that hosts that talk to inactive servers are
suspicious, as the majority of such data communications is due to prevalent
random scanning and malicious activities [33,34]. Using additional traffic fea-
tures such as the number of packets and bytes, we find that hosts talking with
inactive servers only send a single packet to these servers on destination ports
associated with well-known vulnerabilities, which confirms the conjectures in
previous studies. More importantly, [31,32] have also found that the attackers
that communicate with inactive servers are also interested in scanning active
servers as they randomly select potential targets or victims during the initial
exploit phases. If these active servers are compromised, the normal Internet
applications or cloud computing services could be disrupted. Therefore, it is
very intuitive and important to further study all the data traffic sent from
the anomalous sources that talk with those inactive servers. Such a recursive
detection technique is simple yet effective to detect unwanted traffic towards
data center servers.

After identifying inactive servers, we then locate suspicious sources that
talk with them and study all network traffic from such sources towards active
and inactive servers respectively. The analysis of anomalous behavior could
augment intrusion detection solutions deployed in Internet data centers by de-
tecting stealthy or low-volume behavior, such as port 22 activity after scanning
traffic. In other words, the deployment of this proposed method could protect
servers with popular services and ensure the normal operations of Internet
data centers. Figures 6[a][b] illustrate the difference of traffic volumes towards
active and inactive servers from the same anomalous sources, respectively. In
both plots, the x axis represents the number of servers exploited by each source,
while the y axis represents the total number of network flows towards these
servers from each source. As shown in Figures 6[a][b], each anomalous source
tends to communicate with active servers with more than one network flow,
while each source tends to communicate with the majority of inactive servers
with just one network flow. The additional flows toward the active servers

1 We do not include the variance in calculating the distance, since calculating the variance
requires reconstructions at each time unit.
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Fig. 5 The clustering of the mean and standard deviation of streaming frequencies for the
hosts with 1 < s < 2 and the same cumulative frequency

are mostly follow-up activities of these anomalous sources, after the active
servers become the potential targets for further activities. Although streaming
frequency does not identify specific exploit patterns, its capability of differ-
entiating active and inactive servers provides valuable and critical input in
detecting suspicious activities from anomalous sources. In other words, iden-
tifying inactive servers is a first and important step in detecting and reducing
unwanted traffic in Internet data centers.

Due to the difficulty of establishing the ground truth on the attacks in the
real traffic datasets, we rely on the simulated scanning, worm propagation and
DDoS behaviors to study the false positive rate and false negative rate. We use
known unwanted traffic from 3728 anomalous events identified in our previous
studies [35,36] and combine them with real data center traffic. To generate
the synthetic traffic with consistent data center IP addresses, we replace the
destination addresses of unwanted traffic with random IP addresses in data
center networks. Subsequently, we apply streaming frequency to identify in-
active servers and find suspicious sources that send the unwanted traffic. Our
simulation results show that our proposed method is able to discover over 95%
of anomalous behaviors, i.e., a false negative rate of less than 5%. The major
reason for false negatives is that the sources of unwanted traffic target mostly
active data centers server without communicating with inactive servers.

We also study the distributions of legitimate Internet services and un-
wanted traffic by examining the destination ports in network traffic flows.
Table 1 lists the top 10 destination ports and transport protocols towards the
active and inactive servers during one 5-minute observation time window. For
active servers, the destination ports towards them are widely used Internet
services, e.g., HTTP, SMTP, POP3, DNS. On the other hand, the destination
ports towards inactive servers are mostly those associated with well-known
vulnerabilities, e.g., 1434 and 1026-1027, ports for direct accesses, e.g., SSH
as well as unknown ports. The traffic towards unknown ports is likely from
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Fig. 6 The difference of traffic volumes towards active and inactive servers originating from
the same anomalous sources

the aggressive attackers who attempt to exploit all service ports. These find-
ings suggest that the proposed method can identify emerging unwanted traffic.
Although packet payload is not available for in-depth investigation, the obser-
vations on application ports provide significant evidences of traffic variations
towards active and inactive servers.

Table 1 Top 10 destination ports towards active and inactive servers.

Towards active servers Towards inactive servers
Rank Port/Protocol Services Rank Port/Protocol Services
1 80/TCP HTTP 1 22/TCP SSH
2 25/TCP SMTP 2 21/TCP FTP
3 5510/TCP VoIP 3 7212/TCP Unknown
4 5505/TCP Messenger 4 8000/TCP Unknown
5 443/TCP HTTP over SSL 5 25/TCP SMTP
6 995/TCP POP3 over SSL 6 1026/UDP Windows Messenger
7 110/TCP POP3 7 1027/UDP Windows Messenger
8 143/TCP IMAP 8 1434/UDP Microsoft SQL Server
9 53/UDP DNS 9 80/TCP HTTP
10 465/TCP SMTP over SSL 10 4899/TCP Remote Adminstration

In addition, we also correlate unwanted traffic across data centers. Such
correlation is very important, since it could reveal more insight on unwanted
traffic patterns, and help detect the behaviors that are difficult to discover
from single vantage points. The focuses of the correlations are on the anoma-
lous sources and the destination ports. For the anomalous sources, we study
whether there exists aggressive attackers that are exploiting targets across
data centers. For the destination ports, we are interested in the similarity and
dissimilarity of the port distribution of unwanted traffic across data centers.
By correlating the source IP addresses of the anomalous traffic, we find that
there are indeed many aggressive attackers that exploit various servers across
data centers. The traffic from these sources could be blocked through an ac-
cess control list deployed on the firewalls. For the destination port distribution
across data centers, we find that the observations on the port distribution to-
wards inactive servers in Table 1 hold for all three data centers. During the
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early phases of a worm outbreak, the correlation analysis of unwanted traffic
across data centers could provide early warning to network operators.

7 Conclusions and Future Work

This paper proposes an informative and actionable traffic metric for monitor-
ing the temporal frequency and traffic patterns of data center servers. Through
theoretical analysis and algorithm implementations, we demonstrate the char-
acteristics of convergence and reconstructability of these metrics. More im-
portantly, this simple yet effective metric provides insights of the temporal
patterns of data centers due to these characteristics. Using real data-sets col-
lected from data centers of a large Internet content provider, we demonstrate
the applications of this metric on detecting unwanted traffic towards data cen-
ters servers. As part of our on-going research, we are currently exploring the
applications of streaming metrics on additional traffic features such as traffic
volume or application ports for multi-dimensional traffic analysis.
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