
CONSTRUCTING K-CONNECTED M -DOMINATING SETS

IN WIRELESS SENSOR NETWORKS

Yiwei Wu∗, Feng Wang†, My T. Thai‡ and Yingshu Li∗

∗Department of Computer Science,
Georgia State University, {wyw, yli}@cs.gsu.edu

†Department of Mathematical Sciences and Applied Computing,
Arizona State University, Feng.Wang.4@asu.edu

‡Department of Computer and Information Sciences and Engineering,
University of Florida, mythai@cise.ufl.edu

Abstract—A k-Connected m-Dominating Set (kmCDS)
working as a virtual backbone in a wireless sensor net-
work is necessary for fault tolerance and routing flexibility.
In order to construct a kmCDS with the minimum size,
some approximation algorithms have been proposed in the
literature. However, all of those algorithms only consider
some special cases where k = 1, 2 or k = m. In this paper,
we propose one centralized heuristic algorithm CGA and
one distributed algorithms, DDA which is deterministic, to
construct a kmCDS for general k and m. Simulation results
are also presented to evaluate our algorithms and the results
show that our algorithms have better performances than the
exiting other algorithms.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) composed of a set
of static or mobile nodes are now used in many applica-
tions, including environment and habitat monitoring, traffic
control, and etc. Since sensor nodes are tightly constrained
in processing ability, storage capacity and energy, routing
and data aggregation in WSNs are very challenging due to
these inherent characteristics. Therefore, a robust virtual
backbone is highly desired for a WSN. Using a virtual
backbone infrastructure which is one kind of hierarchical
methods is an efficient way to lower energy consumption
in routing and performing data aggregation.

For a graph G(V, E), a Dominating Set S of G is defined
as a subset of V such that each node in V \ S is adjacent
to at least one node in S. A Connected Dominating Set
(CDS) C of G is a dominating set of G which induces
a connected subgraph of G. The nodes in C are called
dominators, the others are called dominatees. A CDS is
the earliest structure proposed as a candidate for virtual
backbones in WSNs. Using this virtual backbone, a sender

1-4244-1513-06/07/$25.00 c©2007 IEEE

can send messages to its neighboring dominator. Then
along the CDS, the messages are sent to the dominator
closest to the receiver. Finally, the messages are delivered
to the receiver. Furthermore, a CDS can also be organized
into a hierarchy to reduce control overhead.

A CDS only preserves 1-connectivity. However, to
achieve robustness, k-connectivity should be guaranteed,
where k-connectivity requires that between any pair of
nodes in a CDS there exist at least k different paths. With
k-connectivity, communication may not be disrupted even
when up to k−1 paths fail. k-connected virtual backbones
also provide multi-path redundancy for load balancing or
transmission error tolerance. Meanwhile, we should also
consider fault tolerance and robustness for those dominatee
nodes which are not in a CDS. Then there comes the m-
domination constraint which requires that each dominatee
node has at least m neighboring dominators in a CDS.
Therefore, one dominatee node still can be connected with
the CDS even up to its m − 1 dominator neighbors are
dead.

In this paper, we investigate how to construct a k-
Connected m-Dominating Set (kmCDS). Two algorithms
are proposed to construct a kmCDS. The first one, CGA,
is a centralized algorithm and the other one, DDA, is a
distributed one. CGA first constructs an m-dominating set
and then augments this set to be k-connected. DDA is a
deterministic algorithm whose procedure is the same as
CGA. Several approximation algorithms for constructing
kmCDSs have been proposed in the literature. However, all
these algorithms only consider some special cases where
k = 1, 2 or k = m. The main contribution of our work is
that we propose two algorithms to consider general k and
m. Given these two algorithms, users have more options
for a variety of applications with different requirements to
obtain robust and fault-tolerant virtual backbones.

1 of 7

The remainder of this paper is organized as follows. In
Section II, we review some existing kmCDS construction
algorithms. In Section III, the problem definition and the
underlying wireless network model are presented. In sec-
tion IV, we present CGA. Sections V is devoted to DDA.
Since DDA is a deterministic algorithm, the performance
ratio is also provided. The time and message complexities
of these algorithms are presented as well. In Section VI,
we evaluate the performances of our algorithms through
simulations. Finally, we conclude this paper and discuss
future research directions in Section VII.

II. RELATED WORK

The problem of constructing a minimum CDS is NP-
hard. Some centralized and distributed algorithms were
proposed in [12], [1], [6], [7], [15], [9], [13], and [14].
However, none of these works investigate how to construct
a kmCDS for k > 1 and m > 1.

In our work, considering the robustness and fault-
tolerance requirements of WSNs, we investigate how to
construct a kmCDS for general k and m. The most related
works to us are [4], [5] and [8]. In [4], three localized
K-CDS construction protocols were proposed. The first
one is a probabilistic approach which is based on K-
Gossip. The second is a deterministic approach which is an
extension from the K-coverage condition. The last one is
Color-Based K-CDS Construction. The major difference
between our work and theirs is that their approaches only
consider to construct a kmCDS where k = m. In [5],
the algorithm Connecting Dominating Set Augmentation
(CDSA) to construct a 2-connected virtual backbone was
proposed. This algorithm first constructs a CDS, and then
it computes all the blocks and adds intermediate nodes to
make all the backbone nodes being in the same block.
Similarly, this is also only for the case where k = 2
and m = 1. In [8], a centralized algorithm was proposed
which requires the input graph to be at least max(k, m)
connected. Most of the existing works do not take energy
into consideration, while energy should be one of the
primary concerns especially for WSNs to prolong network
lifetime. Our work investigates how to construct a kmCDS
for general k and m. Furthermore, energy is taken into
account when we construct a CDS.

III. PRELIMINARIES AND NETWORK MODEL

In this paper, we are mainly interested in static sym-
metric multi-hop WSNs. The topology of a network is
represented as a Unit Disk Graph (UDG), denoted as
G(V, E), where V is the node set and E is the edge set.
The main purpose of choosing a UDG as a network model

is to illustrate the performance ratio of our algorithms.
Otherwise, our network model can be relaxed to general
undirected graphs. We also use nodes and vertices inter-
changeably in the context of graph theory and WSNs. We
adopt the following definitions to illustrate our work.

Definition 3.1: A graph G is said to be k-vertex con-
nected or k-connected if for each pair of vertices there exist
at least k mutually independent paths connecting them.
In other words, the graph G is still connected even after
removal of any k − 1 vertices from G.

Definition 3.2: In a graph G(V, E), a vertex is said to
dominate itself and all of its neighbors. An m-dominating
set D is a set D ⊂ V such that every vertex in V \D is
dominated by at least m vertices in D. †

Definition 3.3: A set C ⊂ V is a k-connected m-
dominating set (kmCDS) of graph G(V, E) if the induced
subgraph G′(C, E′) is k-vertex connected and the set C is
also an m-dominating set of G.

In this paper, we investigate how to construct a kmCDS
for a given graph G(V, E) with the assumption that such
a kmCDS exists in G.

IV. CENTRALIZED ALGORITHM (CGA)

In this section, we present a centralized algorithm, CGA,
for constructing a kmCDS. Following is a list of notations
we use:

• Ni: The number of neighbors of a node i.
• ei: The energy of a node i.
• N c

i : The number of dominator neighbors of node i in
C.

• IDi: The ID of node i.
• C: A k-connected m-dominating set.

The main idea is to construct an m-dominating set
first and then augment this set for k-connectivity. Firstly,
nodes are sorted in non-increasing order based on tuple
(Ni, ei, IDi). Ni is given the highest preference because
of the observation that the size of C is smaller if nodes
with larger degree are added first. Energy is another
consideration. Therefore, the nodes with more remaining
energy are added to the set instead of the ones with less
remaining energy so that the total network lifetime can
be extended. Node ID is used to break ties. Initially, C is
empty. Then nodes are repeatedly added into C till C is an
m-dominating set. After C becomes an m-dominating set,
we need to check whether C is k-connected or not. The
procedure FindkmCDS stops till C is k-connected. The

†Note: In some literatures, the m-dominating set D requires each
node in V to be dominated by at least m nodes in D. In this paper,
we do not adopt this definition because we also need to consider the
k-connectivity of set D.

2 of 7

set C then is a kmCDS. However, this greedy algorithm
cannot guarantee an optimal solution. It is possible that
some redundant nodes present in C. In order to get a set
C with a small size, those redundant nodes should be
removed from C using the procedure Optimization. In the
procedure Optimization, we firstly consider those nodes
with small (Ni, ei, IDi), and check if one node i has m
dominators in set C or not. Then we check if this node
i is removed, all i’s dominatee neighbors still have m
dominators in C. The most important part is to check after
the removal of i, C is still k-connected. After all those
requirements are satisfied, i can be removed. These steps
are repeated till all the nodes in C have been checked.
The whole process of CGA is illustrated in Algorithm 1.

Algorithm 1 CGA(k, m, G(V, E))
1: procedure FINDKMCDS(k, m, G(V, E))
2: Sort nodes in non-increasing order in G based on

their (Ni, ei, IDi)
3: C ← φ
4: for i = 1 to |V | do
5: if N c

i < m then
6: C ← C ∪ {vi}
7: end if
8: end for
9: while C is not k connected do

10: add a dominatee with highest (Ni, ei, IDi) into
C

11: end while
12: return C
13: end procedure

14: procedure OPTIMIZATION(k, m, C)
15: Sort nodes in non-decreasing order in C based on

their (Ni, ei, IDi)
16: for i = 1 to |C| do
17: if N c

i ≥ m then
18: if ∀vj |N c

j ≥ m after remove vi then
19: if C is k-connected after remove vi

then
20: C ← C − {vi}
21: end if
22: end if
23: end if
24: end for
25: return C
26: end procedure

Theorem 4.1: The set C derived from algorithm CGA

is a k-connected m-dominating set.
Proof: In the outer for loop of FindkmCDS, only the

nodes whose N c
i is less than m are added to C. This

procedure can guarantee that all the dominatees have at
least m dominator neighbors in C. In the while loop, we
can guarantee that C is k connected. We also assume
that this graph G has at least one kmCDS. So, this
procedure can obtain a correct kmCDS. The procedure of
Optimization also preserves this property. Then the set C
obtained from CGA is a k-connected m-dominating set.

Theorem 4.2: The time complexity of CGA is O(|V |3.5 ·
|E|).

Proof: In procedure FindkmCDS, sorting nodes takes
O(|V |log|V |) time. It also needs O(|V |∆) time in the for
loop, where ∆ is the maximum node degree of the graph.
By using network flow techniques [11], a test on whether
two vertices are k-connected can be found in O(|V |0.5·|E|)
time. The time to test whether one vertex is k-connected to
others is O(|V |1.5 · |E|). Therefore, to check whether the
whole graph is k-connected or not, O(|V |2.5 · |E|) time is
needed. The total running time of procedure FindkmCDS is
O(|V |3.5·|E|). The running time of procedure Optimization
is O(|V |(∆ + ∆2 + |V |2.5 · |E|)). Therefore, the time
complexity of CGA is O(|V |3.5 · |E|).
V. DISTRIBUTED DETERMINISTIC ALGORITHM (DDA)

In WSNs, especially for WSNs with a large number of
nodes, it is more practical to employ distributed algorithms.
Therefore, we design a distributed deterministic algorithm
DDA for constructing a kmCDS. The main idea of DDA is
that an m-dominating set can be obtained by constructing
a 1-dominating set m times followed by making this m-
dominating set k-connected according to Lemma 5.1.

Lemma 5.1: If G is a k-connected graph, and G
′

is
obtained from G by adding a new node v with at least
k neighbors in G, then G

′
is also a k-connected graph.

This Lemma was proved in [3].
We now present our deterministic algorithm which con-

sists of three phases:
1. Using one of the distributed CDS algorithms such as

[7], [9], [13] or [15] to construct a CDS C of G.
2. Using one of the distributed Maximal Independent Set

(MIS) algorithms such as [7], [9], [13] or [15] to make
C a 1-connected m-dominating set by adding m− 1
MISs from G\C.

3. Connecting set C for k-connectivity.
In phase 1 and phase 2 we use r-CDS [15] to construct

a CDS and MISs, since it is totally localized. Therefore,
we only illustrate phase 3 here.

After phase 2, all the nodes in the CDS and MISs found
in phase 1 and phase 2 are black. Other nodes are white.

3 of 7

Every node could have one of the following three status
which are Initialization, Pending and Done. Before phase
3, every node’s status is Initialization. At each node, the
following lists are maintained. One is Requestor List used
to store the IDs of those nodes who request this node to join
the k-connected component. The other is Black Adjacent
List which is used to store the black neighbors.

Firstly, the leader who is randomly selected starts neigh-
bor information collection. We have already collected two-
hop-away neighborhood information in phase 1 and 2.
Then the leader begins to build a k-connected subgraph.
† If unsuccessful, then the leader collects three-hop-away
neighborhood information and so on till a k-connected
subgraph can be built. This strategy is reasonable, although
we need multi-hop-away neighborhood information. If at
least one kmCDS exists in the graph, we can always find
this k-connected subgraph. The worst case is that we need
all nodes’ information.

After build a k-connected subgraph, the leader notifies
all the nodes in its k-connected subgraph. Then all these
nodes turn black and broadcast a K-ConnectedComponent
(KC) message.

A node who receives at least one KC message is called a
candidate node. That means this node is adjacent to the k-
connected component. Only those candidate nodes process
the messages they receive. Others discard the messages
directly. Following are the actions each node carries out
upon receiving different types of messages.

A. K-ConnectedComponent (KC) 〈ID〉 message

Upon receiving a KC〈u〉 message from u, a black node
x decreases k by one. If k = 0, this means this black node
already has k neighbors in the k-connected component and
can join the k-connected component. It then broadcasts a
KC message and turns its status to Done. If k > 0 and
the status is Initialization, then node x needs connectors
to connect to the k-connected component. It adds its ID to
the Requestor List in the RequireConnector (RC) message
and sends this message. Then x goes into Pending status.

Upon receiving a KC〈u〉 message, a white node x
decreases k by one. If k = 0 and the status is Pending or
Done, x removes u from the Requestor List and broadcasts
a ACKConnected (AC) message to all the nodes in its
Requestor List and sends ConfirmUnuse (CU) messages
to ask those nodes to abort the join actions initialized by
x.

†Note: In this paper, k-connected subgraph and k-connected compo-
nent are interchangeable.

B. RequireConnector (RC) 〈ID, RequestorList〉 message

In this message, ID is the sender’s ID, and Requestor
List is used to store the IDs of nodes who request a path
to join k-Connected Component so far.

Upon receiving an RC〈x, L〉 message, both of white and
black nodes check whether their IDs are in L or not. If so,
these RC messages should be dropped.

Upon receiving an RC〈x, L〉 message, a black node y of
Initialization or Pending status stores x into its Requestor
List. A black node y of Done status sends AC to u because
y has already joined the k-Connected Component.

Upon receiving an RC〈x, L〉 message, a white node v
of Initialization status first checks whether k = 0. If so, v
sends an AC message to x and goes to status Done. This
means that v can join the k-Connected Component because
it already has k black neighbors in the k-Connected
Component. Otherwise, v adds its ID to the list L and
forwards RC〈v, L〉 and also adds x to its Requestor List.
If the status of v is Pending, v adds x to its Requestor List.
If the status of v is Done, v sends AC to x.

C. ACKConnected (AC) 〈ID, PathList〉 message

In this message, Path List contains all the IDs of nodes
who request a path to join the k-Connected Component.
Upon receiving an AC 〈v, L〉 message, both of the white
and black nodes first check whether they appear in the
list L. If not, then this AC message is dropped and k is
decreased by one. If the status of the black node x is
Pending, x sends a ConfirmSuccess (CS) message to v.
If k = 0, x goes to status Done and broadcasts a KC
message to notify its neighbors that it has already joined
the k-Connected Component. If the status of the black node
x is Done, x sends a ConfirmUnuse (CU) message to v.

If the status of a white node u is Pending and k = 0,
u sends AC messages to all the nodes in its Requestor
List. Then u empties this list. Upon receiving an AC〈v, L〉
message, a white node of status Done sends a CU message
to v.

D. NACKConnected (NC) 〈ID, PathList〉 message

If the nodes who receive a NC 〈v, L〉 message find their
IDs are not in the list L, this NC is dropped. If a white
node u receives all NC messages from its white neighbors,
then u sends NC messages to all the nodes in its Requestor
List and goes back to status Initialization.

E. ConfirmSuccess (CS) 〈ID, PathList〉 message

If one node receives a CS〈x, L〉 message and its ID is
not in the list L, then the CS message is dropped. Upon

4 of 7

receiving a CS〈x, L〉 message, a white node v removes its
ID from the list L. If L is not empty, v broadcasts this
CS message. Then v turns to status Done and empty its
Requestor List.

F. ConfirmUnuse (CU) 〈ID, PathList〉 message

If one node receives a CU〈x, L〉 message and its ID is
not in the list L, then the CS message is dropped. Upon
receiving a CU〈u, L〉 message, a white node v removes its
ID from the list L and also removes u from its Requestor
List. If this Requestor List is empty, then it broadcasts
this CU message and then turns to Initialization status.

Lemma 5.2: Every subset of an MIS is at most three
hops away from its complement.

Proof: We prove by contradiction. Let M be a subset
of the MIS and M be the complement of M . Suppose
for the purpose of contradiction that there exists a path
M → v1 → v2 → v3 → M in the graph G between
M and M , and the distance between M and M is larger
than 3. Since M is the complement of M , nodes v1, v2

and v3 should not be the nodes in the MIS and must be
dominatees. In this situation, node v2 is not dominated
by any node in MIS. This violates the definition of MIS.
Therefore, the distance between M and M is at most three
hops away from each other.

Lemma 5.3: Let G = (V, E) be any UDG and m
be any constant such that δG ≥ m − 1 where δG is
the minimum node degree of graph G. Let D∗

m be any
optimal m-domination of G and S be any MIS of G. Then
|S| ≤ 5

m |D∗
m|.

This Lemma has been proved in [10] which will be used
to prove the performance ratio of DDA.

Theorem 5.1: The set C derived from phase 2 is a 1-
connected m-dominating set.

Proof: DDA constructs one CDS C0 in the first phase.
If any dominatee is added into C0, the new set C0 is
still connected. Let Ci be the connected dominating set
after constructing i MISs, Ci = Ci−1 ∪Mi, where Mi is
the 1-dominating set derived from V \Ci−1. Node v is an
arbitrary node in V , and we now prove the theorem by
induction.

1. Base case: When i = 0, one CDS C0 is constructed.
2. Induction: If Ci−1 is a 1-connected i-dominating set.

Then every v has at least i neighbors in Ci−1. Now
we need to prove that Ci is a 1-connected (i + 1)-
dominating set after adding Mi. After constructing
Mi, the nodes not in Ci−1 and Mi has i neighbors
in set Ci−1 and one neighbor in Mi. Therefore, after
adding all the nodes in Mi to Ci−1, the set Ci is a
(i + 1)-dominating set.

Therefore, after construct m − 1 dominating sets, Cm−1

derived from phase 1 and phase 2 is a 1-connected m-
dominating set.

Theorem 5.2: The set C derived from DDA is a k-
connected m-dominating set.

Proof: From Theorem 5.1, C is an m-dominating set.
In the phase 3, we add nodes into it to obtain k-connected
according to Lemma 5.1. Then the set C is a k-connected
m-dominating set.

Theorem 5.3: The message complexity of DDA is
O(|V |∆2) and time complexity is O(m∆+Diam), where
∆ is the maximum node degree and Diam is the diameter
of the network.

Proof: According to [15], the message complexities
of phase 1 and phase 2 are O(|V |∆2) and O((m − 1)∆)
respectively. In phase 3, for every node to decide its
status, at most O(∆) messages may be sent. Therefore,
the message complexity of phase 3 is O(|V |∆). The total
message complexity of DDA is O(|V |∆2). In phase 1 and
phase 2, the time complexity is O(m∆). In the phase 3,
the time for a candidate black node to decide its status
is the time to wait enough nodes to join the k-connected
component. According to Lemma 5.1, we can conclude
that this time is constant. Therefore, the time complexity
of phase 3 is O(Diam). The total time complexity of DDA
is O(m∆ + Diam).

Theorem 5.4: If C is a kmCDS obtained by DDA, then
|C| ≤ 5

m(k2 +1)(m+42)opt, where opt is the size of any
optimal kmCDS of the network.

Proof: After phase 1, we have |C0| ≤ 43|S| which
has been proved in [15] where S is any MIS. In phase 2,
m − 1 MISs are constructed. The number of MIS nodes
constructed in this phase 2 is (m− 1)|S|. Therefore, The
total number of black nodes in phase 1 and phase 2 is
|C| = |C0| + (m − 1)|S| ≤ (m + 42)|S|. In the phase
3, according to Lemma 5.2 the number of nodes could be
added to C is k2 for each black node in C. After phase
3, the total number of black nodes in C is |C| ≤ (k2 +
1)(m + 42)|S|. According to Lemma 5.3, we have |C| ≤
5
m(k2 + 1)(m + 42)opt. Therefore, The performance ratio
of DDA is 5

m(k2 + 1)(m + 42).

VI. SIMULATIONS AND PERFORMANCE EVALUATION

We conducted simulations to evaluate our algorithms. In
our simulations, we randomly generated various network
topologies. In order to compare with other algorithms
which do not consider energy, we also assume that every
node has the same energy. In each of the simulations,
the nodes were placed uniformly at random within a
1000m × 1000m square which also have the same trans-

5 of 7

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

10

20

30

40

50

60

70

80

Number of Nodes

si
ze

 o
f k

m
C

D
S

CGA

DDA

(a) k = 4, m = 3

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

10

20

30

40

50

60

70

80

Number of Nodes

si
ze

 o
f k

m
C

D
S

CGA

DDA

(b) k = 3, m = 4

Fig. 1: Comparison of CGA and DDA.

mission range. All of the data points were averaged over
100 simulation runs.

A. Comparison of CGA and DDA

Fig. 1 plots the size of the obtained kmCDS as a function
of the number of nodes in a network for different k, m.
When the transmission range reaches 250m, from Fig. 1(a),
we observe that the size of the kmCDS obtained by CGA
is the smallest, since it is a centralized algorithm. With
the number of nodes increasing, the sizes of the obtained
kmCDSs using those two algorithms also increase. How-
ever, the one for DDA increases much more quickly than
CGA does. When the transmission range reaches 350m,
from Fig. 1(b), the size of the kmCDS constructed by
CGA is also the smallest. However, the sizes of kmCDSs
using those two algorithms decrease when the transmis-
sion range increases. Because when transmission range
increases, the network becomes dense, which means one
node may have more neighbors. Therefore, a dominator can
dominate more neighbors than the case when using short
transmission range and the whole network would use less
nodes to dominate all the nodes.

B. Comparison with other works

1) Compare CGA with CDSA [5]: Both of CGA and
CDSA are centralized algorithms. We compare the size of
the kmCDS generated from them. We set our simulation
setting to be the same as that of CDSA. From Fig. 2, it is
shown that CGA has a 60% improvement on the size of
the obtained kmCDS on average over CDSA.

2) Compare DDA with k-Coverage [4]: We compare
k-Coverage and DDA which are both distributed deter-
ministic algorithms. The simulation setting is the same

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

Number of Nodes

S
iz

e
of

 C
D

S

CGA

CDSA

Fig. 2: Compare CGA with CDSA when k = 2, m = 1.

as in Section VI-B1. It is shown in Fig. 3(a) that when
k = 2, m = 2, DDA generates a smaller kmCDS in the
networks where the number of nodes is no more than 200.
From Fig. 3(b), we can see when k = 3, m = 3, DDA has
a better result than k-Coverage in the networks where the
number of nodes is no more than 260.

VII. CONCLUSION

In this paper, we investigate the problem of construct-
ing a k-connected m-dominating set in wireless sensor
networks for general k and m. We propose one central-
ized algorithm CGA and one distributed algorithms DDA.
CGA can achieve a smaller kmCDS compared with DDA.
However, DDA can be easily implemented in a real sensor
network.

Our future work is to study the problem of maintaining
a kmCDS in a mobility environment. Furthermore, we are
interested in improving DDA since it has the overhead

6 of 7

100 120 140 160 180 200 220 240 260 280 300
0

10

20

30

40

50

60

70

80

90

100

Number of Nodes

si
ze

 o
f k

m
C

D
S

DDA

K−Coverage

(a) k = 2, m = 2

100 120 140 160 180 200 220 240 260 280 300
0

10

20

30

40

50

60

70

80

90

100

Number of Nodes

si
ze

 o
f k

m
C

D
S

DDA

K−Coverage

(b) k = 3, m = 3

Fig. 3: Comparision of DDA with k-Coverage.

of coordinating node activities. A probabilistic distributed
algorithm with lower overhead in spite of a very low
probability of failure in constructing a kmCDS could be a
potential direction.

ACKNOWLEDGEMENT

This work is supported in part by the NSF CAREER
Award under Grant No. CCF-0545667.

REFERENCES

[1] B. Das and V. Bharghavan, Routing in Ad Hoc Networks Using
Minimum Connected Dominating Set, International Conference
on Communications, 1997

[2] C. Bettstetter, On the Minimum Node Degree and Connectivity
of a Wireless Multihop Network, MOBIHOC’02, 2002.

[3] D. B. West, Introduction to Graph Theory (Second Edition),
Prentice-Hall, Inc. ISBN 0-13-014400-2, 2001

[4] F. Dai and J. Wu, On Constructing k-Connected k-Dominating
Set in Wireless Network, IEEE International Parallel & Dis-
tributed Processing Symposium, 2005 .

[5] F. Wang, M. T. Thai, D.-Z. Du, 2-connected Virtual Backbone
in Wireless Network, IEEE Transactions on Wireless Communi-
cations, accepted with revisions, 2007.

[6] J. Wu and H. Li, On Calculating Connected Dominating Set
for Effecient Routing in Ad Hoc Wireless Networks, Proc. of
the Third International Workshop on Discrete Algorithms and
Methods for Mobile Computing and Communications, PP.7-14,
August 1999.

[7] K. M. Alzoubi, P.-J. Wan and O. Frieder, Message-Optimal
Connected Dominating Sets in Mobile Ad Hoc Networks, MO-
BIHOC, Switzerland, 2002.

[8] M. T. Thai, N. Zhang, R. Tiwari and X. Xu, On approximation
algorithms of k-connected m-dominating sets in disk graphs
Theoretical Computer Science, to appear, 2007.

[9] P. Wan, K.M. Alzoubi and O. Frieder, Distributed Construction
of Connected Dominating Set in Wireless Ad Hoc Networks,
in Preceeding of 21th Annual Joint Conference of the IEEE
Computer and Communication Societies (InfoCom), 2002

[10] R. Klasing and C. Laforest, Hardness Results and Approxima-
tion Algorithms of k-tuple Domination in Graphs, Information
Processing Letters, 89(2), PP.75-83, 2004.

[11] S. Even and R. E. Tarjan, Network Flow and Testing Graph
Connectivity, SIAM, J. Computing, Col. 4, PP.507-518, 1975.

[12] S. Guha and S. Khuller, Approximation Algorithms for Con-
nected Dominating sets, Algorithmica, vol.20, PP.374-387, 1998

[13] X. Cheng, M. Ding, D. Du and X. Jia, Virtual Backbone
Construction in Multihop Ad Hoc Wireless Networks, Wirel.
Commun. Mob. COmput. PP.183-190, 2006

[14] Y. Li, M.T. Thai, F. Wang, C.-W. Yi, P.-J. Wang and D.-Z.
Du, On Greedy Construction of Connected Dominating Sets in
Wireless Nwtworks, Special issue of Wireless Communications
and Mobile Computing (WCMC), vol. 5, no. 88, PP.927-932,
2005.

[15] Y. Li, S. Zhu, My T. Thai, and D-Zhu Du, Localized Construc-
tion of Connected Dominating Set in Wireless Networks, NSF
International Workshop on Theoretical Aspects of Wireless Ad
Hoc, Sensor and Peer-to-Peer Networks (TAWN04), Chicago,
June 2004.

7 of 7

