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Abstract

Since no fixed infrastructure and no cen-

tralized management present in wireless net-

works, a Connected Dominating Set (CDS)

of the graph representing the network is

widely used as a virtual backbone. Con-

structing a minimum CDS is NP-hard. In
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this paper, we propose a new greedy algo-

rithm, called S-MIS, with the help of Steiner

tree that can construct a CDS within a fac-

tor of 5.8 + ln 4 from the optimal solution.

We also introduce the distributed version of

this algorithm. A simulation is conducted

to compare S-MIS with its variation which

is rS-MIS. The simulation shows that the

sizes of the CDSs generated by S-MIS and

rS-MIS are almost the same.

1 Introduction

Wireless networks are bringing more and

more benefits to us. There are no fixed

or pre-defined infrastructure in wireless net-

works and hosts in a wireless network

communicate via a shared medium either

through a single hop or multihops. Usu-
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ally, there is no central management in wire-

less networks either. Therefore, each host

also needs to serve as a router so that it

can forward the received messages accord-

ing to some routing protocols. Broadcast

and multicast are two popular communi-

cation methods in wireless networks. Due

to the different kinds of transmission media

and methods of wired networks and wireless

networks, the broadcast and multicast pro-

tocols in wired networks are not suitable for

wireless networks. Currently, virtual back-

bones are usually used to support broad-

cast and multicast in wireless networks and

a Connected Dominating Set (CDS) is the

best candidate to work as a virtual backbone

stimulated by the characteristics of wireless

networks.

In this study, we use G = (V, E) to rep-

resent a wireless network where V is the set

of hosts in the network and E represents all

the links in the network. We assume that all

the hosts are deployed in a 2-D plane and

their maximum transmission range are the

same. Thus the resultant topology of the

network is modelled as an undirected Unit

Disk Graph (UDG) [6]. A Dominating Set

(DS) of a graph G is a subset S ⊂ V such

that for each node in G, it either belongs

to S or has at least one neighbor in S. A

CDS is a DS which induces a connected sub-

graph. The nodes in the CDS are called the

dominators, otherwise, dominatees. It is de-

sirable to build a Minimum-sized Connected

Dominating Set (MCDS) in consideration

of reducing more traffic and maintenance.

However, the construction of an MCDS in a

UDG is proved to be NP-hard [6]. With the

help of CDS, routing is easier and can adapt

quickly to topology changes of a network.

Only the nodes in the CDS need to main-

tain the routing information. Furthermore,

if there is no topology changes in the sub-

graph induced by the CDS, there is no need

to update the routing information, which re-

duces both storage and message complexi-

ties. If a dominatee wants to deliver a mes-

sage to another dominatee, it first sends the

message to its dominator. Then the search

space for the route is reduced to the CDS.

After the message is relayed to the destina-

tion’s dominator, this dominator will deliver

the message to the destination. To construct

a CDS, we utilize an Maximal Independent

Set (MIS). The nodes in an MIS are pair-

wise nonadjacent and no more nodes can be
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added to remain the non-adjacency prop-

erty of this set. Thus each node which is

not in the MIS is adjacent to at least one

node in the MIS. Thus an MIS is a DS. If we

connect the nodes in an MIS through some

nodes not in the MIS (we call them Steiner

nodes), a CDS is then constructed. We use

performance ratio (PR) to evaluate a CDS

construction algorithm. PR is defined as the

ratio of the size of the constructed CDS over

the size of MCDS. In this paper, we propose

a new greedy algorithm with PR of 5.8+ln4.

2 Related Work

The idea of using a CDS as a virtual back-

bone for routing was proposed in [8]. Since

then many efforts have been made to design

approximations algorithms for CDS con-

struction. In most of the CDS construction

algorithms, a coloring mechanism is used

where initially all the nodes are white, a

dominator is colored black and a dominatee

is colored grey.

Guha and Khuller [9] first proposed

two 2-phase centralized greedy algorithms

to construct CDSs in general graphs. In

the first algorithm, the CDS is built up at

one node, then the searching space for the

next dominator(s) is restricted to the cur-

rent dominatees and the CDS expands until

there is no white nodes. In the second algo-

rithm, all the possible dominators are deter-

mined in the first phase, then they are con-

nected through some intermediate nodes in

the second phase. Das et al. [14] gave the

implementations of the algorithms in [9].

Ruan et al. [13] then designed a 1-phase

greedy algorithm with PR of 2 + ln∆ where

∆ is the maximum degree in the graph. Wu

and Li [18] proposed a distributed algo-

rithm where each node knows the connec-

tivity information within the 2-hop neigh-

borhood, but they did not specify the PR.

If a node has two unconnected neighbors, it

becomes a dominator. The generated CDS

is easy to maintain. But the size of the CDS

is large. In [16], the authors gave out the

PR of Wu and Li’s algorithm which is O(n).

Recently, tt is popular to construct a CDS

by first constructing an MIS, then by con-

necting the nodes in the MIS, a CDS is gen-

erated. Alzoubi et. al. [1, 16] made a great

improvement by proposing two 2-phase dis-

tributed algorithms. A spanning tree is con-

structed first and then each node in the tree

3



is labelled as either a dominator or a dom-

inatee. The algorithms are employed in a

UDG to obtain a constant PR which is 8.

Cardei et. al. [3] presented a 2-phase

distributed algorithm. This algorithm re-

quires a leader to be selected at the begin-

ning of the first phase. The improvement

over Alzoubi et. al.’s algorithms is that the

root does not need to wait for the COM-

PLETE messages from the furthest nodes.

The PR of this algorithm is also 8. Al-

zoubi et. al. [2] noticed the difficulty of

the maintenance of the CDS constructed by

their previous algorithms and designed a lo-

calized distributed 2-phase algorithm which

is good at maintenance in general graphs.

An MIS is generated in a distributed fash-

ion without building a tree or selecting a

leader. Once a node knows that it has the

smallest ID within its 1-hop neighborhood,

this node becomes a dominator. After there

are no white nodes, the dominators are re-

sponsible for identifying a path to connect

all the dominators. In this algorithm, no

network connectivity information is utilized

and the PR is 192. In [10], the authors gave

another localized distributed algorithm with

PR of 172.

In this paper, we will present an algorithm

with PR of (5.8+ln 4), which can also be im-

plemented as a distributed algorithm. Our

main idea is to employ a Steiner tree in the

second step to connect the nodes in the MIS.

In a graph, a Steiner tree for a given sub-

set of nodes, called terminals, is a tree in-

terconnecting all the terminals. Every node

other than the terminals in the Steiner tree

is called a Steiner node. Clearly, a small

number of Steiner nodes is expected in or-

der to obtain a small CDS. Therefore, we

will study the following Steiner tree problem

in UDGs. Steiner Tree with Minimum

Number of Steiner Nodes (ST-MSN):

Given a UDG G and a subset P of nodes,

compute a Steiner tree for P with the min-

imum number of Steiner nodes. The ST-

MSN problem in UDGs has not been stud-

ied very much, unlike its geometric version

in the Euclidean plane, which has been stud-

ied extensively [11, 4, 17]. However, some

results cannot be extended to UDGs. For

example, two points with distance 2 can be

connected with a Steiner point in the Eu-

clidean plane. But, two nodes with dis-

tance 2 may not be able to be connected by

a Steiner node since such a node may not
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exist. Fortunately, a 3-approximation algo-

rithm for ST-MSN can be extended from the

the Euclidean plane to UDGs with a quite

different proof, which becomes a fundamen-

tal part in our approximation algorithm.

3 The S-MIS Algorithm

In this section, a new greedy algorithm,

which is called S-MIS, is introduced. S-MIS

consists of two steps. At the first step, we

construct a MIS. An important property of

an independent set is that [12] In a unit disk

graph, every node is adjacent to at most five

independent nodes. It is shown in [15] that

the size of every MIS is upper-bounded by

4opt + 1.2 where opt is the size of a MCDS

in unit disk graphs. The following lemma

is a recent and better result in [19] about

the relation between the size of the MIS and

the MCDS in a UDG. The authors obtain

this result through an elementary geometric

method. Especially, Wan [15] and Cheng

[5] constructed a MIS having the following

property in Lemma 2.

Lemma 1 In any unit disk graph, the size

of every maximal independent set is upper-

bounded by 3.8opt+1.2 where opt is the size

of the minimum connected dominating set in

this unit disk graph.

Lemma 2 Any pair of complementary sub-

sets of the MIS are separate by exactly two

hops.

This lemma indicates that for each pair of

the nodes in the constructed MIS, the dis-

tance between these two nodes is at most 3

hops. Therefore, at most 2 more nodes are

needed for connecting this pair of nodes. We

assume throughout this paper that the MIS

satisfies Lemma 2.

At the second step, we employ a greedy

approximation for the ST-MSN to intercon-

nect the nodes in the MIS. We will show

that this greedy approximation has PR of

2 + ln 4. Note that the size of the optimal

solution for the ST-MSN cannot exceed the

size of the MCDS since the latter can also in-

terconnect the MIS. Therefore, we spend at

most (2+ln 4)opt Steiner nodes in the second

step. By Lemma 1, the resulting CDS would

have size bounded by (5.8 + ln 4)opt + 1.2.

Theorem 1 The S-MIS algorithm produces

a CDS with size bounded by (5.8+ln 4)opt+

1.2 where opt is the size of the MCDS.
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We can use the method in [15] or Cheng

[5] to construct a MIS at the first step. At

the second step, a greedy algorithm A is em-

ployed, which is described as following.

Algorithm A: Input a MIS and mark all

the nodes in this MIS black. Mark the other

nodes in the UDG grey. In the following,

we will change some grey nodes to blue ac-

cording to some certain rules. A black-blue

component is a connected component of the

subgraph induced only by black and blue

nodes and by ignoring connections between

blue nodes.

for i = 5, 4, 3, 2 do

while there exists a grey node

adjacent to at least i black

nodes in different black-blue

components

do change its color from grey to

blue;

return all blue nodes.

Theorem 2 Let T ∗ be an optimal tree for

the ST-MSN problem on an input MIS.

Then the number of the output blue nodes

is at most (2 + ln 4)C(T ∗), where C(T ∗) is

the number of the Steiner nodes in T ∗.

Proof. If the input MIS contains only one

node, then C(T ∗) = 0. The theorem is triv-

ial. Thus, we may assume that the input

MIS contains at least two nodes and hence

C(T ∗) ≥ 1. Let n be the number of the

black nodes. Let x1, ..., xk be the blue nodes

in the order of appearance in the Algorithm

A. Let ai be the number of the black-blue

components after x1, ..., xi turns from grey

to blue. Note that every black-blue com-

ponent contains a black node which is ad-

jacent to a Steiner node of T ∗. Therefore,

there exists a Steiner node xi which is adja-

cent to at least ai/C(T ∗) black nodes in dif-

ferent black-blue components, so does xi+1.

Hence, ai+1 ≤ ai − ai/C(T ∗) + 1. There-

fore, ai ≤ ai−1(1− 1
C(T ∗)) + 1 ≤ ... ≤ a0(1−

1
C(T ∗))

i +
∑j=i−1

j=0 (1− 1
C(T ∗))

j. Because of the

fact that ln(1− x) ≤ −x and the geometric

series property, we have ai ≤ a0e
− i

C(T∗) +

C(T ∗). Note that ak = 1 ≤ C(T ∗) and

a0 = n > C(T ∗). There exists h, 1 ≤ h ≤ k

such that h = C(T ∗) ln a0

C(T ∗) . Then ah ≤

a0e
−

C(T∗) ln
a0

C(T∗)
C(T∗) + C(T ∗) = 2C(T ∗). Since

ai+1 − ai ≤ −1 for any i, ak ≤ ak1 − 1 ≤
... ≤ ah+1− (k− h− 1). We can derive that

ah+1 ≤ 2C(T ∗). Thus, k − h ≤ 2C(T ∗).

Note that a0 is the of the connected compo-

nents and each node can reduce at most 4

connected components. Thus, a0/C(T∗) ≤
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4. Therefore, h ≤ C(T ∗) ln 4. We conclude

that k ≤ h + 2C(T ∗) ≤ (2 + ln 4)C(T ∗). 2

From Theorem 2, we can derive Theorem

1. From Theorem 1 and Theorem 2, we con-

clude that the PR of the S-MIS algorithm is

(5.8 + ln 4)opt + 1.2.

4 Simulation Results

In the definition of a black-blue component,

we ignore the connections between any two

blue nodes. This is important to the proof

of Theorem 2. Actually, ignoring those con-

nections makes the following fact true: the

connecting ability of each grey node can-

not increase after some grey nodes change to

blue. In other words, the number of the con-

nected black-blue components is a submod-

ular function on the grey nodes. Loss of this

submodular property would make the theo-

retical analysis harder and the result would

be worse (see [7] for the detailed discus-

sion on this matter). Therefore, in order

to see how this ignorance affects the perfor-

mance of the S-MIS algorithm, we conduct

a simulation to compare the results of the

S-MIS algorithm and the revised S-MIS (rS-

MIS) algorithm considering the connections

between the blue nodes.

In this simulation, the number of the blue

nodes is the measurement to evaluate the

sizes of the CDSs generated by the S-MIS al-

gorithm and the rS-MIS algorithm since the

number of the black nodes are the same for

these two algorithms. Totally N hosts are

randomly generated in a fixed 1000*1000 2-

D square. The transmission range of each

node is R. Only the connected networks

are considered in this simulation. The al-

gorithms are run 100 times for each group

of N and R and the results averaged. For

R ∈ [200, 800], we change N from 20 to 100.

It is shown that the sizes of the CDSs gen-

erated by S-MIS and rS-MIS are quite sim-

ilar to each other. Only occasionally, rS-

MIS can generate a slightly smaller CDS.

Let P = # blue nodes
# black nodes

. Figure 1(a) illustrates

the relation between PS−MIS and PrS−MIS

when R is set to 400. In the figure, the

two lines almost overlap with each other and

have different values at only some points

such as N = 37 and N = 72. There-

fore, even if we do not consider the blue-

blue connections, the result would not be

affected greatly. For different R, the im-

provement of rS-MIS over S-MIS, which is

7



equal to PS−MIS−PrS−MIS

PS−MIS
∗ 100%, is averaged

for N ∈ [10, 100]. Figure 1(b) illustrates

the result. Again, this figure shows that the

improvement of rS-MIS over S-MIS is quite

small.

5 Distributed Implemen-

tation

In wireless networks, there is no central-

ized management and nodes may have mo-

bility, therefore, distributed algorithms are

expected. In this section, we briefly de-

scribe the distributed version of the S-MIS

algorithm. There already exist several dis-

tributed algorithms for constructing a MIS

in literature [15, 5]. Thus, we only introduce

a distributed implementation of the greedy

Algorithm A.

Each black or blue node carries a z-value

which is an identification for the black com-

ponent it belongs to, that is, all nodes with

the same z-value form a black-blue compo-

nent. Initially, the z-value of each black

node equals its ID. Grey nodes are ranked

based on two values. The first one is the

y-value which is the number of the adjacent

black nodes in different black-blue compo-

nents. The second one is its ID. The node

with a larger y-value is ranked higher. If two

grey nodes have the same y-value, then the

one with a smaller ID is ranked higher. A

grey node is adjacent to a black-blue com-

ponent if it is adjacent to a black node in

the black-blue component. A grey node u is

a competitor of another grey node v if u and

v are adjacent to the same black-blue com-

ponent. A grey node u is going to change

its color to blue if and only if u is ranked

higher than every competitor of u. Every

grey node keeps two lists, a black list and

a competitor list. The black list contains

all the adjacent black nodes with their z-

values, which enables the grey node to com-

pute its y-value. The competitor list con-

tains all its competitors and their black lists

so that each grey node can also compute the

y-value of every competitor of it, which en-

ables the grey node to make a decision on

whether it should change its color nor not.

The following events will be triggered un-

der certain conditions. (i) When a grey

node u changes its color to blue, all its ad-

jacent black-blue components are merged

into one black-blue component and hence

their z-values should be updated to the

8



10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Network size

N
um

be
r o

f b
lu

e 
no

de
s 

/ N
um

be
r o

f b
la

ck
 n

od
es

Comparison of S−MIS and rS−MIS (R=400)

S−MIS
rS−MIS

(a) Performance comparison of S-MIS and

rS-MIS

200 300 400 500 600 700 800
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Transmission Range

Im
pr

ov
em

en
t o

f r
S

−M
IS

 o
ve

r S
−M

IS

Comparison of S−MIS and rS−MIS

(b) Performance comparison of S-MIS

and rS-MIS

Figure 1: Simulation results.

same one, say the smallest one among them.

Meanwhile, all the competitors of u become

the competitors of every competitor of u.

Therefore, the competitor list of each com-

petitor of u should also be updated. So, af-

ter u changes its color, u will send an UP-

DATE(u) message to all its neighbors. The

message contains u’ ID and its two lists.

(ii) When a black node v receives an UP-

DATE(u) message, it will update z, send

out a COMPLETE(u) message and pass

the UPDATE(u) message to its neighbors

other than the nodes which already sent to

the v UPDATE(u) or COMPLETE(u) mes-

sage. (iii) When a grey node receives an

UPDATE(u) message, it updates both of its

black and competitor lists and sends out a

COMPLETE(u) message to its neighbors.

6 Conclusion

In this paper, we study the problem of con-

structing a CDS in wireless networks with

the help of a Steiner tree. We propose a

new greedy algorithm which is S-MIS with

performance ratio of (5.8+ln 4)opt+1.2. We

also introduce the distributed version of this

algorithm. In the S-MIS algorithm, we ig-

nore the blue-blue connections when choos-

ing the connectors for the black nodes. The

simulation result shows that this ignorance

does not affect the result much and the the-

oretical proof of the bound of the size of the

generated CDS still holds. It is our inter-

est to further investigate the maintenance

of the CDS when nodes have mobility and

the routing protocols based on the gener-

ated CDS. The work can also be extended to
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develop CDS construction algorithms when

hosts in a network have different transmis-

sion ranges, not just be limited in UDGs.
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