
A Real-time Network Traffic Profiling System

Kuai Xu, Feng Wang, Supratik Bhattacharyya, and Zhi-Li Zhang∗

Abstract

This paper presents the design and implementation of
a real-time behavior profiling system for high-speed Inter-
net links. The profiling system uses flow-level information
from continuous packet or flow monitoring systems, and
uses data mining and information-theoretic techniques to
automatically discover significant events based on the com-
munication patterns of end-hosts. We demonstrate the oper-
ational feasibility of the system by implementing it and per-
forming extensive benchmarking of CPU and memory costs
using a variety of packet traces from OC-48 links in an In-
ternet backbone network. To improve the robustness of this
system against sudden traffic surges such as those caused by
denial of service attacks or worm outbreaks, we propose a
simple yet effective filtering algorithm. The proposed algo-
rithm successfully reduces the CPU and memory cost while
maintaining high profiling accuracy.

1 Introduction

Recent years have seen significant progress in real-time,
continuous traffic monitoring and measurement systems in
IP backbone networks [2]. However,real-timetraffic sum-
maries reported by many such systems focus mostly on
volume-based heavy hitters (e.g., top N ports or IP ad-
dresses that send or receive most traffic) or aggregated met-
rics of interest (total packets, bytes, flows, etc) [6], which
are not sufficient for finding interesting or anomalous be-
havior patterns. In this paper, we explore the feasibility of
building a real-time trafficbehavior profilingsystem that
analyzes vast amount of traffic data in an IP backbone net-
work and reportscomprehensive behavior patternsof sig-
nificant end hosts and network applications.

Towards this end, we answer a specific question in this
paper: is it feasible to build arobust real-time traffic be-
havior profiling system that is capable of continuously ex-
tracting and analyzing “interesting” and “significant” traf-
fic patterns on high-speed (OC48 or higher speed) Internet

∗Kuai Xu is with Yahoo! Inc, Feng Wang and Zhi-Li Zhang are with
the University of Minnesota, Supratik Bhattacharyya is with SnapTell Inc.

links, even in the face of sudden surge in traffic (e.g., when
the network is under a denial-of-service attack)? We ad-
dress this question in the context of a traffic behavior pro-
filing methodology we have developed for IP backbone net-
works [9]. The behavior profiling methodology employs a
combination of data-mining and information-theoretic tech-
niques to build comprehensive behavior profiles of Internet
backbone traffic in terms of communication patterns of end
hosts and applications. It consists of three key steps: signif-
icant cluster extraction, automatic behavior classification,
and structural modeling for in-depth interpretive analysis.
This three-step profiling methodology extracts hosts or ser-
vices that generate significant traffic, classifies them into
differentbehavior classesthat provide a general separation
of variouscommon“normal” (e.g., web server and service
traffic) and “abnormal” (e.g., scanning, worm or other ex-
ploit traffic) traffic as well asrare and anomalous traffic be-
havior patterns (see Section 2 for more details). The profil-
ing methodology has been extensively validatedoff-lineus-
ing packet traces collected from a variety of backbone links
in an IP backbone network [9].

To demonstrate the operational feasibility of perform-
ing on-linetraffic behavior profiling on high-speed Internet
backbone links, we build a prototype system of the afore-
mentioned profiling methodology using general-purpose
commodity PCs and integrate it with an existing real-time
traffic monitoring system operating in an Internet backbone
network. The real-time traffic monitoring system captures
packets on a high-speed link (from OC12 to OC192) and
converts them into 5-tuple flows (based on source IP, des-
tination IP, source port, destination port, protocol fields),
which are then continuously fed to the real-time traffic pro-
filing system we build. The large volume of traffic flows
observed from these links creates great challenges for the
profiling system to process themquicklyon commodity PCs
with limited memorycapacity. We incorporate several op-
timization features in our implementation such as efficient
data structures for storing and processing cluster informa-
tion to address these challenges.

After designing and implementing this real-time traffic
profiling system, we perform extensive benchmarking of
CPU and memory costs using packet-level traces from In-
ternet backbone links to identify the potential challenges

and resource bottlenecks. We find that CPU and memory
costs increase linearly with number of flows seen in a given
time interval. Nevertheless, resources on a commodity PC
are sufficient to continuously process flow records and build
behavior profiles for high-speed links in operational net-
works. For example, on a dual 1.5 GHz PC with 2048 MB
of memory, building behavior profiles once every 5 minutes
for an 2.5 Gbps link loaded at 209 Mbpstypically takes 45
seconds of CPU time and 96 MB of memory.

However, resource requirements are much higher un-
der anomalous traffic patterns such as sudden traffic surges
caused by denial of service attacks, when the flow arrival
rate can increase by several orders of magnitude. We study
this phenomenon by superposing “synthetic” packet traces
containing a mix of known denial of service (DoS) attacks
[1] on real backbone packet traces. To enhance the robust-
ness of our profiling system under these stress conditions,
we propose and develop sampling-basedflow filteringalgo-
rithms and show that these algorithms are able to curb steep
increase in CPU and memory costs while maintaining high
profiling accuracy.

The contributions of this paper are two-fold:

• We present the design and implementation of a real-
time behavior profiling system for link-level Internet
traffic, and demonstrate its operational feasibility by
benchmarking CPU and memory costs using packet
traces from an operational backbone.

• We propose a new filtering algorithm to improve the
robustness of the profiling system against traffic surges
and anomalous traffic patterns, and show that the pro-
posed algorithm successfully reduces CPU and mem-
ory costs while maintaining high profiling accuracy.

2 Behavior Profiling Methodology

In light of wide spread cyber attacks and frequent emer-
gence of disruptive applications, we have developed a gen-
eral traffic profiling methodology that automatically discov-
ers significant behaviors with plausible interpretations from
vast amount of traffic data. This methodology employs a
combination of data mining and information-theoretic tech-
niques to classify and build behavior models and structural
models of communication patterns for end hosts and net-
work applications.

The profiling methodology uses (uni-directional) 5-tuple
flows, i.e., source IP address (srcIP), destination IP ad-
dress (dstIP), source port number (srcPrt), destination
port number (dstPrt), and protocol, collected in a time in-
terval (e.g., 5 minutes) from Internet backbone links. Since
our goal is to profile traffic based on communication pat-
terns of end hosts and applications, we focus on the first four
feature dimensions in 5-tuples, and extract clusters along

each dimension. Each cluster consists of flows with the
same feature value in a given dimension. The value and its
dimension are denoted ascluster keyandcluster dimension.
This leads to four groups of clusters, i.e.,srcIP, dstIP,
srcPrt anddstPrt clusters. The first two represent a
collections of host behavior, while the last two yield a col-
lection of port behaviors that aggregate flows on the corre-
sponding ports.

2.1 Extracting Significant Clusters

Due to massive traffic data and wide diversity of end
hosts and applications observed in backbone links, it is im-
practical to examine all end hosts and applications. Thus,
we attempt to extractsignificant clusters of interest, in
which the number of flows exceeds a threshold. In extract-
ing such clusters, we have introduced an entropy-based al-
gorithm [9] that finds adaptive thresholds along each dimen-
sion based on traffic mix and cluster size distributions.

By applying this algorithm on a variety of backbone
links, we see that the number of significant clusters ex-
tracted along each dimension is far less than the total num-
ber of values. For example, in a 5-min interval on an OC-48
link, the algorithm extracts 117 significantsrcIP clusters,
273dstIP clusters, 8srcPrt clusters and 12dstPrt
clusters from over a total of 250,000 clusters with the re-
sulting thresholds being 0.0626%, 0.03125%, 0.25% and
1%, respectively. This observation suggests that this stepis
very useful and necessary in reducing traffic data for analy-
sis while retaining most interesting behaviors.

2.2 Behavior Classification

Given the extracted significant clusters, the second step
of the methodology is to classify their behaviors based on
communication patterns. The flows in each significant clus-
ter, e.g., asrcIP cluster, share the same feature value in
srcIP dimension, thus most behavior information is con-
tained in the other features includingdstIP, srcPrt,
dstPrt, which might take any possible values.

Traditional approaches mostly focus on volume-based
information, e.g., unique number ofdstIP’s ordstPrt’s
in examining the patterns of such clusters. However, the
traffic volume often is unable to uncover comprehensive
communication patterns. For example, if two hosts commu-
nicate with 100 uniquedstIP’s, we cannot safely conclude
that their communication patterns fromdstIP feature are
the same without further investigation. A simple example is
that one host could be a web server talking to 100 clients,
while another is an infected host randomly scanning 100
targets. More importantly, the number of flows associated
with eachdstIP is very likely to be different. For the case
of the web server, the numbers of flows between clients and

the server tend to be diverse. On the other hand, the number
of probing flows between the scanner and each target is of-
ten uniform, e.g., one in most cases. This insight motivates
us to use relative uncertainty [9] to measure the feature dis-
tribution of free dimensions for all significant clusters.

We use relative uncertainty to measure feature distribu-
tions of three free dimensions. As a result, we obtain a rel-
ative uncertainty vector for each cluster, e.g., [RUsrcPrt,
RUdstPrt andRUdstIP] for srcIP clusters. Recall that
RU is in the range of [0,1], so we could represent the RU
vector of eachsrcIP cluster as a single point in a 3-
dimensional space. Fig. 1 represents eachsrcIP cluster
extracted in each 5-minute time slot over an 1-hour period
from an OC-48 backbone link as a point in a unit cube. We
see that the points are “clustered”, suggesting that there are
few underlying common patterns among them. Such obser-
vation holds for other dimensions as well. This leads to a
behavior classification scheme which classifies allsrcIP’s
into behavior classesbased on their similarity/dissimilarity
in the RU vector space.

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.2

0.4

0.6

0.8

1

RU(srcPort)RU(dstPort)

R
U

(d
st

IP
)

Figure 1. The distribution of relative uncer-
tainty on free dimensions for srcIP’s from an
OC-48 backbone link during an 1-hour period.

By applying the behavior classification on backbone
links and analyzing their temporal properties, we find this
scheme is robust and consistent in capturing behavior sim-
ilarities among significant clusters. Such similarities are
measured on the feature distribution of free dimensions of
these clusters, hence provide useful insight into communi-
cation patterns of end hosts and applications [5, 9].

2.3 Structural Modeling

To provide a plausible interpretation for behavior pat-
terns, we adoptdominant state analysistechnique for mod-
eling and characterizing the interaction of various feature
dimensions in a cluster. The idea of dominant state analysis
comes from structural modeling or reconstructability analy-
sis in system theory ([11]) as well as more recent graphical
models in statistical learning theory [3].

The objective of dominant state analysis is to explore
the interaction or dependence among the free dimensions
by identifying “simpler” subsets of values or constraints
(calledstructural modelsin the literature [7]) to represent
the original data in their probability distribution. Consider
a simple example, asrcIP cluster consists of 98% scans
(with a fixedsrcPrt 220) to over 1200 random destina-
tions ondstPrt 6129. Then the values in thesrcPrt,
dstPrt anddstIP dimensions these flows take are of the
form 〈220, 6129, ∗〉, where∗ (wildcard) indicates random
values. Clearly this cluster is dominated by the flows of the
form 〈220, 6129, ∗〉. We refer to such forms asstatesof a
cluster. Hence given the information about the states, we
can not onlyapproximatelyreproduce the original flow pat-
terns, but also explain thedominantactivities of end hosts
or applications.

2.4 Properties of Behavior Profiles

We have applied the profiling methodology on traffic
data collected from a variety of links at the core of the
Internet throughoff-line analysis. We find that a large
fraction of clusters fall into three typical behavior profiles:
server/service behavior profile, heavy hitter host behav-
ior, and scan/exploit behavior profile. These behavior pro-
files are built based on various aspects, including behavior
classes, dominant states, and additional attributes such as
average packets and bytes per flow. These behavior profiles
are recorded in a database for further event analysis, such as
temporal properties of behavior classes and individual clus-
ters, or behavior change detection based on RU vectors.

The profiling methodology is able to find various inter-
esting and anomalous events. First, it automatically de-
tects novel or unknown exploit behaviors that match typ-
ical exploit profiles, but exhibit unusual dominant states
(e.g.,dstPrt’s). Second, any atypical behavior is worth
close examination, since they represent as “outliers” or
“anomaly” among behavior profiles. Third, the methodol-
ogy could point out deviant behaviors of end hosts or appli-
cations that deviate from previous patterns.

To summarize, the profiling methodology has demon-
strated the applicability of the profiling methodology to
critical problem of detecting anomalies or the spread of
unknown security exploits, profiling unwanted traffic, and
tracking the growth of new applications. However, the prac-
tical value of the profiling framework largely depends on the
operational feasibility of this system in areal-timemanner.

In the rest of this paper, we will demonstrate the fea-
sibility of designing and implementing a real-time traffic
profiling system that uses flow-level information generated
from “always-on” packet monitors and reports significant
online events based on communication patterns of end hosts
and applications even faced with anomalous traffic patterns,

e.g., denial of service attacks or worm outbreaks.

3 Real-time Profiling System

3.1 Design Guidelines

Four key considerations guide the design of our profiling
system:

• scalability: The profiling system is targeted at high-
speed (1 Gbps or more) backbone links and hence must
scale to the traffic load offered by such links. Specifi-
cally, if the system has to continuously build behavior
profiles of significant clusters once every time inter-
val T (e.g,T = 5 minutes), then it has to take less than
timeT to process all the flow records aggregated in ev-
ery time intervalT . And this has to be accomplished
on a commodity PC platform.

• robustness:The profiling system should be robust to
anomalous traffic patterns such as those caused by de-
nial of service attacks, flash crowds, etc. These traf-
fic patterns can place a heavy demand on system re-
sources. At the same time, it is vital for the profiling
system to be functioning during such events since it
will generate data for effective response and forensic
analysis. Therefore the system must adapt gracefully
to these situations and achieve a suitable balance be-
tween profiling accuracy and resource utilization.

• modularity: The profiling system should be designed
in a modular fashion with each module encapsulating
a specific function or step in the profiling methodol-
ogy. Information exchange between modules should
be clearly specified. In addition, the system should be
designed to accept input from any packet or flow mon-
itoring system that exports a continuous stream of flow
records. However, the flow record export format has to
be known to the system.

• usability: The profiling system should be easy to con-
figure and customize so that a network operator can
focus on specific events of interest and obtain vary-
ing levels of information about these events. At the
same time, it should expose minimal details about the
methodology to an average user. Finally it should gen-
erate meaningful and easy-to-interpret event reports,
instead of streams of statistics.

3.2 System Architecture

Fig. 2 depicts the architecture of the profiling system that
is integrated with an “always-on” monitoring system and an

Figure 2. The architecture of real-time traffic
profiling system

event analysis engine. The flow-level information used by
the profiling system are generated from continuous packet
or flow monitoring systems that capture packet headers on a
high-speed Internet link via an optical splitter and a packet
capturing device, i.e., DAG card. The monitoring system
aggregates packets into 5-tuple flows and exports the flow
records for a given time interval into disk files. In gen-
eral, the profiling system obtains flow records through three
ways: i) shared disk access, ii) file transfer over socket, and
iii) flow transfer over a streaming socket. The option in
practice will depend on the locations of the profiling and
monitoring systems. The first way works when both sys-
tems run on the same machine, while the last two can be
applied if they are located in different machines.

In order to improve the efficiency of the profiling system,
we use distinct process threads to carry out multiple task in
parallel. Specifically, one thread continuously reads flow
records in the current time intervalTi from the monitoring
systems, while another thread profiles flow records that are
complete for the previous time intervalTi−1.

The event analysis engine analyzes abehavior profile
database, which includes current and historical behavior
profiles of end hosts and network applications reported by
the behavior profilingandprofile trackingmodules in the
profiling system.

The real-time traffic profiling system consists of four
functional modules (shadowed boxes), namely, “cluster
construction”, “adaptive thresholding”, “behavior profil-
ing” and “profile tracking”. Each of these modules im-
plements one step in the traffic profiling methodology de-
scribed in Section 2.

3.3 Key Implementation Details

3.3.1 Data Structures

High speed backbone links typically carry a large amount of
traffic flows. Efficiently storing and searching these flows is
critical for thescalabilityof our real-time profiling system.

Figure 3. Data structure of flow table and
cluster table

We design two efficient data structures, namelyFTable
andCTable for efficient storage and fast lookups during
cluster extraction and behavior modeling.

Figure 3 illustrates the data structure ofFTable
and CTable with an example. FTable, an ar-
ray data structure, provides an index of 5-tuple
flows through a commonly-used hash function,
FH = srcip∧dstip∧srcport∧dstport∧proto %
(FTableEntries − 1), where FTableEntries de-
notes the maximum entries ofFTable. For example, in
Figure 3,flow 1 is mapped to the entry181 in FTable,
while flow 2 is mapped to the entry1. In case of hashing
collision, i.e., two or more flows mapping to the same
table entry, we use a linked list to manage them. In our
experiments, the (average) collision rate of this flow hash
function is below 5% withFTableEntries = 220. While
constructing clusters, the naive approach would be to make
four copies of 5-tuple flows, and then group each flow into
four clusters along each dimension. However, this method
dramatically increases the memory cost of the system since
the flow table typically has hundreds or millions of flows in
each time interval. Instead of duplicating flows, which is
expensive, we add four flow pointers (i.e.,next srcIP,
next dstIP, next srcPrt, andnext dstPrt) in
each flow. Each flow pointer will link the flows sharing the
same feature value in the given dimension. For example,
thenext srcIP pointer offlow 4 links toflow 3 since

they share the samesrcIP 10.0.0.1. Similarly, thenext
srcPrt pointer of flow 4 links to flow 1 since they
share the samesrcPrt 80. However, the question is how
to quickly find the “old” flows of the same clusters when
adding a new flow in the flow table.

To address this problem, we create another data struc-
ture,CTable, which links the first flow of each cluster in
FTable. Since there are four types of clusters, we cre-
ate four instances ofCTable for managing clusters along
four dimensions. ConsideringsrcPrt anddstPrt di-
mensions with65536 possible clusters (ports), we use an
array with a size of 65536 to manage the clusters for each
of these two dimensions. The index of the array for each
port is the same as the port number. ForsrcIP anddstIP
dimensions, we use a simple hash function that performs a
bitwise exclusive OR (XOR) operation on the first 16 bits
and the last 16 bits ofIP address to map eachsrcIP or
dstIP into its CTable entry. When adding a new flow,
e.g.,flow 3 in Fig. 3, in the givendstPrt, we first lo-
cate the first flow (flow 2) of the clusterdstPrt 443,
and make thenext dstPrt pointer offlow 3 toflow
2. Finally the first flow of the clusterdstPrt 443 is up-
dated toflow 3. This process is similar for the cluster
srcPrt 1208, as well as the the clusterssrcIP 10.0.0.1
anddstIP 192.168.0.2.

In addition to pointing to the first flow in each cluster,
eachCTable entry also includes flow count for the clus-
ter and significant bit for marking significant clusters. The
former maintains flow counts for cluster keys. As discussed
in Section 2, the flow count distribution will determine the
adaptive threshold for extracting significant clusters.

3.3.2 Space and Time Complexity of Modules

The space and time complexity of modules essentially de-
termines the CPU and memory cost of the profiling system.
Thus, we quantify the complexity of each module in our
profiling system. For convenience, Table 1 shows the defi-
nitions of the notations that will be used in the complexity
analysis.

The time complexity of cluster construction isO(|F | +
∑3

i=0 |Ci|) for FTable andCTable constructions. Simi-
larly, the space complexity isO(|F |∗sfr+

∑3
i=0(|Ci|∗rv)).

The time complexity of adaptive thresholding is∑3
i=0(|Ci| ∗ ei). This module does not allocate additional

memory, since its operations are mainly on the existing
CTable. Thus, the space complexity is zero.

The time complexity of behavior profiling is
O(

∑3
i=0

∑|Si|
j=0 |sj |), while the space complexity is

O(
∑3

i=0[|Si| ∗ (rb + rs)]). The output of this step are
the behavior profiles of significant clusters, which are
recorded into a database along with the timestamp for
further analysis.

Table 1. Notations used in the paper
Notation Definition
F set of 5-tuple flows in a time interval
i dimension id (0/1/2/3 =srcIP/dstIP/

srcPort/dstPort)
Ci set of clusters in dimensioni
Si set of significant clusters in dimensioni
ci a cluster in dimensioni
si a significant cluster in dimensioni
rf size of a flow record
rv size of the volume information of a cluster
rb size of behavior information of a sig. cluster
rs size of dominant states of a significant cluster

Table 2. Total CPU and memory cost of
the real-time profiling system on 5-min flow
traces

Link Util. CPU time (sec) Memory (MB)
min avg max min avg max

L1 207 Mbps 25 46 65 82 96 183
L2 86 Mbps 7 11 16 46 56 71
L3 78 Mbps 7 12 82 45 68 842

Due to a small number of significant clusters extracted,
the computation complexity of profile tracking is often less
than the others in two or three orders of magnitude, so for
simplicity we will not consider its time and space require-
ment.

3.3.3 Parallelization of Input and Profiling

In order to improve the efficiency of the profiling system,
we usethreadmechanisms for parallelizing tasks in multi-
ple modules, such as continuously importing flow records in
the current time intervalTi, and profiling flow records that
are complete for the previous time intervalTi−1. Clearly,
the parallelization could reduce the time cost of the profil-
ing system. The disadvantage of doing so is that we have to
maintain two set ofFTable andCTable for two consec-
utive time intervals.

4 Performance Evaluation

4.1 Benchmarking

We measure CPU usage of the profiling process by us-
ing a system call, namely,getrusage(), which queries actual
system and user CPU time of the process. The system call
returns with the resource utilization includingru utimeand
ru stime, which represent the user and system time used by

the process, respectively. The sum of these two times indi-
cates the total CPU time that the profiling process uses. Let
T denote the total CPU time, andTl, Ta, andTp denote the
CPU usage for the modules of cluster construction, adaptive
thresholding and behavior profiling, respectively. Then we
have

T = Tl + Ta + Tp (1)

Similarly, we collect memory usage with another system
call, mallinfo(), which collects information of the dynamic
memory allocation. LetM denote the total memory usage,
andMl, Ma, andMp denote the memory usage in three key
modules. Then we have

M = Ml + Ma + Mb (2)

In oder to track the CPU and memory usages of each
module, we use these two system calls before and after the
module. The difference of the output becomes the actual
CPU and memory consumption of each module. Next, we
show the CPU time and memory cost of profiling system on
three OC-48 links during a continuous 18-hour period with
an average link utilization of 209 Mbps, 86 Mbps, and 78
Mbps. For convenience, letL1, L2, andL3 denote these
three links, respectively.

0 50 100 150 200 250
20

30

40

50

60

70

80

90

Index of time slots

C
P

U
 ti

m
e

(s
ec

on
ds

)

(a) CPU time

0 50 100 150 200 250
80

100

120

140

160

180

200

Index of time slots

T
ot

al
 m

em
or

y
(M

B
)

(b) Memory cost

Figure 4. CPU and memory cost of the real-
time profiling system on flow records in 5-
min time interval collected in L1 for 18 con-
secutive hours

.

Table 2 shows a summary of CPU time and memory
cost of the profiling system onL1 to L3 for 18 consecu-
tive hours. It is not surprising to see that the average CPU
and memory costs forL1 are larger than the other two links
due to a higher link utilization. Fig. 4 shows the CPU and
memory cost of the profiling system on all 5-min intervals
for L1 (the link with the highest utilization). For the major-
ity of time intervals, the profiling system requires less than
60 seconds (1 minute) of CPU time and 150MB of memory
using the flow records in 5-min time intervals forL1.

Fig. 5[a] further illustrates the number of flow records
over time that ranges from 600K to 1.6M, while Fig. 5[b]

0 50 100 150 200 250

200

400

600

800

1000

1200

1400

1600

Index of time slots

F
lo

w
s(

K
)

(a) Size ofFTable

0 50 100 150 200 250
10

2

10
4

10
6

Index of time slots

C
lu

st
er

s

Total clusters
Total significant clusters

(b) Number of clusters

Figure 5. Input of flow traces in 5-min time
interval collected in L1 for 18 consecutive
hours

shows the number of all clusters as well as the extracted sig-
nificant clusters. It is very interesting to observe the similar
patterns in the plot of memory cost (Fig. 4[b]) and that of
the flow count over time (Fig 5[a]). This observation leads
us to analyze the correlation between these two measure-
ments. By examining the breakdown of the memory cost,
we find thatMl in the cluster construction module accounts
for over 98% of the total memory consumptions. Recall that
the space complexity of this module is larger than the oth-
ers by two or three orders of magnitude, and dominated by
the size of flow table|F |. A deep examination on|F | vs.
Ml confirms the linear relationship between them. There-
fore, this strong correlation suggests that the memory cost
of the profiling system is mainly determined by the num-
ber of flow records collected by the monitoring system in a
given time interval.

The breakdown in CPU usage suggests that cluster con-
struction and behavior profiling account for a large fraction
of CPU time. Similar to the space complexity, the time com-
plexity in cluster construction is also determined by|F |.
The linear relationship demonstrated by the scatter plot of
|F | vs. Tl confirms this complexity analysis. In addition,
we observe an approximately linear relationship between
the number of significant clusters and CPU time in behav-
ior profiling. This suggests that the CPU cost in behavior
profiling is largely determined by the number of significant
clusters whose behavior patterns are being analyzed.

In summary, the average CPU and memory costs of the
real-time profiling system on 5-min flow records collected
from an OC-48 link with a 10% link utilization are 60 sec-
onds and 100 MB, respectively. Moreover, the CPU time is
largely determined by the number of flow records as well
as that of significant clusters, and the memory cost is deter-
mined by the number of flow records. During these moni-
toring periods, these links are not fully utilized, so we can
not extensively measure the performance of the real-time
profiling system for a highly loaded link. Next, we will
test the profiling system during sudden traffic surges such as

those caused by denial of service attacks, flash crowds, and
worm outbreaks that increases the link utilization as well as
the number of flow records.

4.2 Stress Test

The performance benchmarking of CPU and memory
costs demonstrate the operational feasibility of our traffic
profiling system during normal traffic patterns. However,
the profiling system should also be robust during atypi-
cal traffic patterns, such as denial of service attacks, flash
crowds, and worm outbreaks [4, 8, 10]. In order to under-
stand the system performance during these incidents, we in-
ject packet traces of three known denial of service attacks
and simulated worm outbreaks by superposing them with
backbone traffic.

We use the packet traces of three DoS attacks with vary-
ing intensity and behavior studied in [1]. All of these at-
tacks are targeted on a single destination IP address. The
first case is a multiple-source DoS attack, in which hun-
dreds of source IP addresses send 4200 ICMP echo request
packets with per second for about 5 minutes. The second
case is a TCP SYN attack lasting 12 minutes from random
IP addresses that send 1100 TCP SYN packets per second.
In the last attack, a single source sends over 24Kip-proto
255packets per second for 15 minutes. In addition to DoS
attacks, we simulate the SQL slammer worm on January
25th 2003 [8] with an Internet Worm Propagation Simula-
tor used in [10]. In the simulation experiments, we adopt
the same set of parameters in [10] to obtain similar worm
simulation results, and collect worm traffic monitored in a
220 IP space.

For each of these four anomalous traffic patterns, we re-
play packet traces along with backbone traffic, and aggre-
gate synthetic packets traces into 5-tuple flows. For sim-
plicity, we still use 5 minutes as the size of the time inter-
val, and run the profiling system against the flow records
collected in an interval. Table 3 shows a summary on flow
traces of the first 5-minute interval for these four cases. The
flow, packet and byte counts reflect the intensity of attacks
or worm propagation, while the link utilization indicates the
impact of such anomaly behaviors on Internet links. For all
of these cases, the profiling system is able to successfully
generate event reports in less than 5 minutes.

During the emulation process, the link utilization ranged
from 314.5 Mbps to 629.2Mbps. We run the profiling sys-
tem on flow traces after replaying synthetic packets and col-
lect CPU and memory cost of each time interval, which is
also shown in Table 3. The system works well for low in-
tense DoS attacks in the first two cases. However, due to
intense attacks in the last DoS case (DoS-3) and worm prop-
agations, the CPU time of the system increases to 210 and
231 seconds, but still under the 5 minute interval. However,

Table 3. Synthetic packet traces with known denial of servic es attacks and worm simulations
Anomaly Flows Packets Bytes Link Utilization CPU time Memory Details
DoS-1 2.08 M 18.9 M 11.8 G 314.5 Mbps 45 seconds 245.5 MB distributed dos attacks from multiple sources
DoS-2 1.80 M 20.7 M 12.5 G 333.5 Mbps 59 seconds 266.1 MB distributed dos attacks from random sources
DoS-3 16.5 M 39.8 M 16.1 G 430.1 Mbps 210 seconds 1.75GB dos attacks from single source
Worm 18.9 M 43.0 M 23.6 G 629.2 Mbps 231 seconds 2.01GB slammer worm simulations

Table 4. Reduction of CPU time and memory
cost using the random sampling technique

Case µ Size ofFTable CPU time memory
DoS attack 66% 10M 89 seconds 867 MB
Worm 55% 10M 97 seconds 912 MB

the memory cost jumps to 1.75GB and 2.01GB indicating
a performance bottleneck. This clearly suggests that we
need to provide practical solutions to improve the robust-
ness of the system under stress. In the next section, we will
discuss various approaches, including traditional sampling
techniques and new profiling-aware filtering techniques to-
wards this problem, and evaluate the tradeoff between per-
formance benefits and profiling accuracy.

5 Sampling and Filtering

5.1 Random Sampling

Random sampling is a widely-used simple sampling
technique in which each object, flow in our case, is ran-
domly chosen based on the same probability (also known
as sampling ratioµ). Clearly, the number of selected flows
is entirely decided by the sampling ratioµ. During the
stress test in the last section, the profiling system requires
about 2GB memory when the number of flow records reach
16.5M and 18.9 during DoS attacks and worm outbreaks.
Such high memory requirement is not affordable in real-
time since the machine installed with the profiling system
could have other tasks as well, e.g., packet and flow mon-
itoring. As a result, we attempt to set 1GB as the upper
bound of the memory cost. Recall that in the performance
benchmarking, we find that memory cost is determined by
the number of flow records. Based on their linear relation-
ship we estimate that flow records with a size of 10M will
require approximately 1GB memory. Thus, 10M is the de-
sirable limit for the size of the flow records.

Using the limit of flow records,l, we could configure the
sampling ratio during sudden traffic increase asµ = l

|F | .
As a result, we set the sampling ratios in the last DoS at-
tacks and worm outbreaks as60% and55%, respectively,
and randomly choose flows in loading flow tables in the
cluster constructionmodule. Table 4 shows the reduction
of CPU time and memory consumptions with the sampled

flow tables for both cases.
On the other hand, random sampling has substantial im-

pact on behavior accuracy. First, the set of significant clus-
ters from four feature dimensions are smaller than that with-
out sampling, which is caused by the changes of the un-
derlying cluster size distribution after flow sampling. Ta-
ble 5 shows the number of significant clusters extracted
along each dimension without and with sampling for the
DoS case. In total, among 309 significant clusters without
sampling, 180 (58%) of themost significantclusters are still
extracted with random sampling. Secondly, the behavior of
a number of extracted clusters are altered, since flow sam-
pling changes the feature distribution of free dimensions as
well as the behavior classes for these clusters. As shown in
the last column of Table 5, 161 out 180 significant clusters
with random sampling are classified with the same behavior
as those without sampling. In other words, the behavior of
19 (10.5%) extracted significant clusters are changed as a
result of random sampling. Fig. 6 shows the feature distri-
butions of free dimensions for 140dstIP clusters with and
without random sampling. The deviations from the diago-
nal line indicate the changes of feature distribution and the
behavior due to flow sampling. We also perform random
sampling on the synthetic flow traces in the case of worm
outbreak, and the results of sampling impact on cluster ex-
tractions and behavior accuracy are very similar.

Table 5. Reduction of significant clusters and
behavior accuracy

Dim. Sig. clusters Sig. clusters Clusters with same
without sampling with sampling behavior classes

srcPrt 23 4 3
dstPrt 6 5 4
srcIP 47 31 29
dstIP 233 140 125
Total 309 180 161

In summary, random sampling could reduce the CPU
time and memory cost during sudden traffic surges caused
by DoS attacks or worm outbreaks. However, random sam-
pling reduces the number of interesting events, and also al-
ters the behavior classes of some significant clusters. Such
impact could have become worse if “lower” sampling rates
are selected. Thus, it becomes necessary to develop a
profiling-aware algorithm that not only reduces the size of

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Relative uncertainty w/o sampling

R
el

at
iv

e
un

ce
rt

ai
nt

y
w

/ s
am

pl
in

g

(a) srcPort

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Relative uncertainty w/o sampling

R
el

at
iv

e
un

ce
rt

ai
nt

y
w

/ s
am

pl
in

g

(b) dstPort

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Relative uncertainty w/o sampling

R
el

at
iv

e
un

ce
rt

ai
nt

y
w

/ s
am

pl
in

g

(c) srcIP

Figure 6. Feature distribution of free dimensions for 140 dstIP clusters with and without random
sampling

flow tables, but also retains the (approximately) same set
significant clusters and their behavior.

5.2 Profiling-aware Filtering

A key lesson from random sampling is that the clusters
associated with denial of service attacks are usually very
large in flow count, and hence consume a large amount of
memory and CPU time. In addition, profiling such behavior
does not require a large number of flows, since the feature
distributions very likely remain the same even with a small
percentage of traffic flows. Based on this insight, we de-
velop a profiling-aware filtering solution that limits the size
of very large clusters, and adaptively samples on the rest
of clusters when the system is faced with sudden explosive
growth in the number of flows.

The details of the profiling-aware sampling algorithm are
as follow. First, we choose twowatermarks(L andH) for
the profiling system.L represents the moving average of
flow tables over time, andH represents the maximum size
of flow tables that system will accept. In our experiments,
we setH = 10M , which is estimated to require 1GB mem-
ory cost. In addition, we set the maximum and minimum
sampling ratios, i.g.,µmax andµmin. The actual sampling
µ will be adaptively decided based on the status of flow ta-
ble size. Specifically, the sampling ratio becomes thinner as
the size of flow table increases. For simplicity, letftable
denote the size of flow table. Ifftable is belowL, the
profiling system accepts every flow. In contrary, ifftable
is equal toH , the system will stop reading flows and exit
with a warning signal.

If ftable is equal toL or certain marks, i.e.,L+ i∗D,
where D is the incremental factor andi = 1, 2..., (H −
L)/D − 1, the system computes the relative uncertainty of
each dimension and evaluates whether there is one or a few
dominant feature values along each dimension. In our ex-
periments, we setD = 1M as the incremental factor. The
existence of such values suggests that certain types of flows
dominate current flow tables, and indicates anomalous traf-
fic patterns. Thus, the system searches these values and

marks them as significant clusters for flow filtering. Sub-
sequently, any flow, which contains a feature value marked
with significant, will be filtered, since such flow will not
affect the behavior of the associated clusters. On the other
hand, additional flows for other small clusters have substan-
tial contributions to their behavior. Thus, we should give
preference to flows that belong to such small clusters. On
the other hand, the system could not accept all of these flows
with preference afterftable exceedsL watermark. As a re-
sult, each of these flows is added with the adaptive sampling
ratioµ = µmax − i ∗ µmax−µmin

(H−L)/D−1 .

We run the profiling system on the flow tables in the
cases of DoS attack and worm outbreaks with the profile-
aware filtering algorithm. Like random sampling,profiling-
awaresampling also reduces CPU time and memory cost
by limiting the size of flow table. On the other hand, the
profiling-aware sampling has two advantages over the ran-
dom sampling. First, the set of clusters extracted using this
algorithm is very close to the set without sampling. For
example, in the case of DoS attack, the system obtains 41
srcIP clusters, 210dstIP clusters, 21srcPrt clus-
ters and 6dstPrt cluster, respectively. Compared with
58% of significant clusters extracted in random sampling,
our profiling-aware algorithm could extract over 90% of
309 original clusters that are selected without any sam-
pling. Second, the behavior accuracy of significant clus-
ters are also improved. Specifically, among 41srcIP’s,
210dstIP’s, 21 srcPrt’s, and 6dstPrt’s significant
clusters, only 3dstIP’s and 1srcPrt clusters change to
“akin” classes from their original behavior classes. These
findings suggest that theprofiling-awareprofiling algorithm
approximately retains the feature distributions of significant
clusters and behaviors.

Fig. 7 shows the feature distribution of free dimensions
of 210 dstIP clusters, extracted both without sampling
and with profiling-aware filtering algorithm. In general, the
feature distributions of all free dimensions for almost all
clusters after filtering are approximately the same as those
without sampling. The outliers deviant from the diagonal

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Relative uncertainty w/o sampling

R
el

at
iv

e
un

ce
rt

ai
nt

y
w

/ s
am

pl
in

g

(a) srcPort

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Relative uncertainty w/o sampling

R
el

at
iv

e
un

ce
rt

ai
nt

y
w

/ s
am

pl
in

g

(b) dstPort

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Relative uncertainty w/o sampling

R
el

at
iv

e
un

ce
rt

ai
nt

y
w

/ s
am

pl
in

g

(c) srcIP

Figure 7. Feature distribution of free dimensions for 210 dstIP clusters with and without profiling-
aware sampling

lines correspond to feature distributions of three clusters
whose behavior has changed. Upon close examinations,
we find that flows in these clusters contain a mixture of
Web and ICMP traffic. The latter are the dominant flows
in DoS attacks, so they are filtered after the size of flow ta-
ble reachesL in the profiling-aware filtering algorithm. The
filtered ICMP flows in these clusters explain the changes of
the feature distributions as well as the behavior classes.

In thewormcase, the profiling-aware filtering algorithm
also successfully reduces CPU and memory cost of the pro-
filing system, while maintaining high profiling accuracy in
terms of the number of extracted significant clusters and the
feature distributions of these clusters. Thus, the profiling-
aware filtering algorithm can achieve a significant reduction
of CPU time and memory cost during anomalous traffic pat-
terns while obtaining accurate behavior profiles of end hosts
and network applications.

6 Conclusions and Future Work

This paper explores the feasibility of designing, imple-
menting and utilizing a real-time behavior profiling system
for high-speed Internet links. We first discuss the design
requirements and challenges of such a system and present
an overall architecture that integrates the profiling system
with always-on monitoring systems and an event analysis
engine. Subsequently, we demonstrate the operational fea-
sibility of building this system through extensive perfor-
mance benchmarking of CPU and memory costs using a va-
riety of packet traces collected from OC-48 backbone links.
To improve the robustness of this system during anomalous
traffic patterns such as denial of service attacks or worm
outbreaks, we propose a simple yet effective filtering algo-
rithm to reduce resource consumptions while retaining high
profiling accuracy. We are currently in the process of inte-
grating the event analysis engine into a rule-based anomaly
detection system. In addition, we are extending the flow
import/export protocol so that the profiling system could
work with multiple continuously monitoring systems. Fi-

nally we would like to correlate anomalous and interesting
events from multiple monitoring points.

Acknowledgement:This work was supported in part by
the NSF grants CNS-0435444 and CNS-0626812, a Univer-
sity of Minnesota Digital Technology Center DTI grant and
Sprint ATL gift grant.

References

[1] A. Hussain, J. Heidemann, and C. Papadopoulos. A Frame-
work for Classifying Denial of Service Attacks. InProceed-
ings of ACM SIGCOMM, August 2003.

[2] G. Iannaccone, C. Diot, I. Graham, and N. McKeown. Mon-
itoring Very High Speed Links. InProceedings of ACM SIG-
COMM Internet Measurement Workshop, November 2001.

[3] M. Jordan. Graphical models.Statistical Science, Special
Issue on Bayesian Statistics, 19:140–155, 2004.

[4] S. Kandula, D. Katabi, M. Jacob, and A. Berger. Botz-4-
Sale: Surviving Organized DDoS Attacks That Mimic Flash
Crowds. InProceedings of Symposium on NSDI, May 2005.

[5] T. Karagiannis, K. Papagiannaki, and M. Faloutsos. BLINC:
Multilevel Traffic Classification in the Dark. InProceedings
of ACM SIGCOMM, August 2005.

[6] K. Keys, D. Moore, and C. Estan. A Robust System for Accu-
rate Real-Time Summaries of Internet Traffic. InProceedings
of ACM SIGMETRICS, June 2005.

[7] K. Krippendorff. Information Theory: Structural Models for
Qualitative Data. Sage Publications, 1986.

[8] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford,
and N. Weaver. Inside the Slammer Worm.IEEE Security
and Privacy, July 2003.

[9] K. Xu, Z.-L. Zhang, and S. Bhattacharyya. Profiling Inter-
net Backbone Traffic: Behavior Models and Applications. In
Proceedings of ACM SIGCOMM, August 2005.

[10] C. Zou, L. Gao, W. Gong, and D. Towsley. Monitoring and
Early Warning for Internet Worms. InProceedings of ACM
CCS, October 2003.

[11] M. Zwick. An Overview of Reconstructability Analysis.In-
ternational Journal of Systems & Cybernetics, 2004.

