An Interactive Web GUI for Virtual **Backbone in Wireless Networks**

David Boston (DBoston@asu.edu) Faculty Advisor: Dr. Feng Wang **Applied Computing Division of Mathematical and Natural Sciences New College of Interdisciplinary Arts & Sciences**

Purpose of Project

- ☐ To design an interactive web interface for modeling virtual backbones in wireless ad hoc networks
 - > Allows user to choose network parameters
 - > Draw network topology

Background

□ Wireless ad hoc Networks

- Decentralized wireless network
- > Determination of who serves who dynamically configured based on network connectivity
- > Depend on broadcast and multicast traffic for network management

□ Broadcast Storm Problem

- > Extreme amounts of broadcast control message traffic is considered a broadcast storm
- > Consumes network resources sufficient to render the network incapable of transmitting important data traffic

□ Virtual Backbone

- > Infrastructure to reduce broadcasting storm problem
- > Limits the control messages within the virtual backbone

Illustration of Virtual Backbone

Virtual Backbone Examples

Star Example

☐ Centralized nodes serving as backbone for many outer nodes

☐ One or more consecutive backbone nodes in a network that forms a ring

Ring Example

Bridge Example

☐ One or more consecutive backbone nodes connecting network clusters

Design

Challenge

☐ Design an interactive web user interface to demonstrate a virtual backbone algorithm

Solution

☐ Java Applet-Servlet technology to interact with algorithm written in C

- 2. Applet creates an HttpMessage with user's input
- 3. HttpMessage sent to web server
- Web server starts the Servlet
- Servlet creates Network based on user input
- 6. Servlet writes Network object to a file and starts virtual backbone algorithm
- 7. Algorithm reads Network file, creates virtual backbone, writes Network to file
- 8. Servlet reads Network Object file and sends it back to Applet
- 9. Applet receives Network object and finds the edges
- 10. User defined network is displayed in browser

Implementation

- Applet and Servlet have many other helper components:
 - Node and Network -describe objects that are displayed in the Applet
 - > JFrame -handles the graphics that are displayed in the browser
 - > ActionListener -listens for user requests such as button clicks
 - > GraphPainter -draws the Node Network for display in the Applet
 - > HttpMessage -formats the http communication to the Servlet

Web Interface

- ☐ A visitor of the site will first be asked to enter three parameters:
 - ➤ Node Count the number of Nodes to be displayed
 - ➤ Node Range the wireless range, used to find edges
 - ➤ Network Area length and width of the Network deployment area
- ☐ Upon entering the parameters and clicking the Test Nodes button with the mouse the Network will be built and viola! You have a Network
- ☐ All the work is transparent to the visitors:
 - 1. Passing the parameters to the Servlet
 - 2. Servlet creates the Network and sends it back to the Applet
 - 3. Applet finds the edges and sends Network to the GraphPainter
 - 4. GraphPainter displays the Network (before you can say "ad hoc!")

Conclusions

- ☐ Java Applet-Servlet environment is suitable for demonstrating virtual backbone algorithm in ad hoc environment
- ☐ Applet-Servlet programming offers performance enhancements for users and web application developers
- > Part of code runs on server, part on user's computer ☐ Virtual Backbone algorithm was never fully integrated but Servlet is designed to mimic the result
- ☐ Future revisions to Servlet will integrate Virtual Backbone Algorithm
- ☐ Future projects may work on redesigning application in Visual C#, a more popular language with better support