# Intelligent Driving Data Analysis

#### Kari Torkkola

Motorola Labs Human Interface Lab Tempe, AZ, USA

#### **Contents of the Presentation**

- What is Motorola Driver Advocate<sup>™</sup>?
- Driving Simulator – Data collection
- Characteristics of driving data
- Data mining / machine learning problems in driving domain

MOTOROLA LABS

### Driver Advocate<sup>™</sup>

• Problem:

- Productivity, entertainment in the automobile environment
- Driver distraction due to these and other factors
- Solution:
  - Use intelligent systems to control distraction, reduce cognitive load, and aid the driver in his tasks
  - Create an assistant to aid the driver -- not a substitute for the driver -- using artificial intelligence technologies (machine learning discussed here)

#### Driver Advocate<sup>™</sup>



\Lambda MOTOROLA LABS

# Driver Advocate<sup>™</sup> Defined

#### Vision

Manage driving and non-driving information to enhance road safety

#### Concept

Intelligent system controller integrates, prioritizes, and manages information from sensors and devices, and delivers through a multimodal user interface

- Roadway: weather, location, adjacent vehicles...
- Vehicle: tires, speed, braking, steering, yaw rate...
- Cockpit: personal UI, occupant sensors, infotainment, navigation...
- Driver: driving performance, distraction, drowsiness...
- Communications: cell phone, web browsing...

#### Goals

- Improves driving safety by enhancing driver situational awareness
- Reduces distraction by directing driver's attention to critical tasks
- Alerts the driver to potential road hazards

MOTOROLA LABS

## How about Pilot's Assistance Systems

- Pilot vs. Driver (training received is different)
- Response time (sky vs. road)
- Traffic conditions
- Systems with different sophistication
- Ranges of interference
- Degrees of mission Criticality

MOTOROLA LABS

# How to get there?

- Target: Intelligent Driving Assistance Systems
- Research Task
  - To investigate information presentation to vehicle operators to improve safety in the face of distraction and workload
  - In other words: better behavior with a nonautonomous vehicle
- Our Starting Place

An automobile simulator which is currently being used for Human Factors research

#### **Motorola Labs Driver Research Facility**



### **Auto Simulator Test Area**



### **Tech Area**



MOTOROLA LABS

## **Driver Monitoring**



# **Demo Video Clips**

- Channel 12 News
- Eye Tracker

#### Data Collection- ~40GB/HF experiment

| KQ                                                 | Sim     |          | Driver Advocate <sup>™</sup>    |                        |        |                                                                |         |           |        |          | faceLAB           |         |       |  |
|----------------------------------------------------|---------|----------|---------------------------------|------------------------|--------|----------------------------------------------------------------|---------|-----------|--------|----------|-------------------|---------|-------|--|
| 76 Var                                             | iables  |          | 244 Variables<br>60 samples/sec |                        |        |                                                                |         |           |        |          | 88 Variables      |         |       |  |
| ) samr                                             | oles/se | c        |                                 |                        |        |                                                                |         |           |        |          | 30<br>samples/sec |         |       |  |
| 1MB/min                                            |         | •        |                                 | 0.1MB/min (compressed) |        |                                                                |         |           |        |          |                   |         |       |  |
| TWID                                               |         |          |                                 |                        |        |                                                                |         |           |        |          | 1 2 MB/min        |         |       |  |
|                                                    |         |          | lano                            |                        |        | Subject                                                        | Subject |           | long   |          | Headway           | Headway |       |  |
| Time                                               | Frame   | Velocity | Pos                             | Steer                  | Brake  | X                                                              | Y       | I atAccel |        | Veh∆head | Time              | Dist    | TTC   |  |
| 586 70                                             | 35200   | 20.82    | 0 741                           | -4 00                  | 0.0350 | 97 46                                                          | 844 79  | -0 254    | -0.693 | LeadCar1 | 2 137             | 44 502  | 7 538 |  |
| 586.71                                             | 35201   | 20.81    | 0.741                           | -4.00                  | 0.0540 | 97.46                                                          | 844.45  | -0.254    | -0.792 | LeadCar1 | 2.134             | 44.404  | 7.475 |  |
| 586.73                                             | 35202   | 20.79    | 0.741                           | -3.80                  | 0.0650 | 97.46                                                          | 844.12  | -0.251    | -0.997 | LeadCar1 | 2.131             | 44.322  | 7.419 |  |
| 586.75                                             | 35203   | 20.78    | 0.741                           | -3.80                  | 0.0750 | 97.46                                                          | 843.75  | -0.251    | -1.161 | LeadCar1 | 2.128             | 44.205  | 7.362 |  |
| 586.76                                             | 35204   | 20.76    | 0.741                           | -3.70                  | 0.0770 | 97.46                                                          | 843.44  | -0.249    | -1.204 | LeadCar1 | 2.126             | 44.140  | 7.313 |  |
| 586.78                                             | 35205   | 20.74    | 0.740                           | -3.50                  | 0.0680 | 97.46                                                          | 843.08  | -0.243    | -1.184 | LeadCar1 | 2.123             | 44.022  | 7.260 |  |
| 586.80                                             | 35206   | 20.72    | 0.740                           | -3.30                  | 0.0750 | 97.46                                                          | 842.73  | -0.241    | -1.215 | LeadCar1 | 2.120             | 43.922  | 7.209 |  |
| 586.81                                             | 35207   | 20.70    | 0.740                           | -3.10                  | 0.0770 | 97.46                                                          | 842.41  | -0.235    | -1.205 | LeadCar1 | 2.118             | 43.837  | 7.160 |  |
| 586.83                                             | 35208   | 20.68    | 0.739                           | -2.90                  | 0.0770 | 97.46                                                          | 842.04  | -0.226    | -1.224 | LeadCar1 | 2.114             | 43.718  | 7.108 |  |
| 586.85                                             | 35209   | 20.66    | 0.739                           | -2.60                  | 0.0780 | 97.46                                                          | 841.70  | -0.220    | -1.249 | LeadCar1 | 2.112             | 43.616  | 7.059 |  |
| 586.86                                             | 35210   | 20.64    | 0.738                           | -2.40                  | 0.0830 | 97.46                                                          | 841.37  | -0.211    | -1.272 | LeadCar1 | 2.110             | 43.531  | 7.012 |  |
| 586.88                                             | 35211   | 20.61    | 0.738                           | -2.10                  | 0.0850 | 97.46                                                          | 841.01  | -0.199    | -1.311 | LeadCar1 | 2.106             | 43.410  | 6.964 |  |
| Audio/Video<br>ereo/Quad Screen<br>IPEG-2 30MB/min |         |          |                                 |                        |        | Personal Data,<br>Workload, Value Judgme<br>129 Variables x 20 |         |           |        |          |                   |         |       |  |

### **Collected Data**

- Data is
  - Multimedia, mixed type
  - Sequential, streaming
  - Abundant
  - High temporal resolution
- Three main purposes
  - Analysis of human factors experiments (standard statistics of a couple of variables)
  - Machine Learning
  - Data Mining

MOTOROLA LABS

# **Machine Learning**

- Learn driver models from the data, for example,
  - Steering response
  - Driver's cognitive workload
  - Attentional model (from eye-gaze)
- Learn classifiers for driving states from the data
  - High-workload traffic vs. leisurely cruising (do we let the cell-phone call through or not?)
  - Learn building-blocks for modeling driving state sequences ("drivemes")
- Learn to give advice

#### Demos

- Annotation tool demo
- Learning steering response demo

## Why Learning to Give Advice?

- Avoid programming the response of the DA to every imaginable situation, but rather ...
- Learn the response of the DA from either simulated or collected data, or on-line, and ...
- Learn in a way that generalizes well to unseen situations.
- Learn user behavior/desired response through interaction.

#### More intelligence for intelligent systems!

MOTOROLA LABS

### Technology Scan: Machine Learning for Driving

- Top players (young field, no established players)
  - 1. Carnegie Mellon
  - 2. Daimler Chrysler
  - 3. Cambridge Basic Research (Nissan)
  - 4. MIT
  - 5. University of Michigan

#### Observations

- Almost half of the published papers were concerned with pattern recognition and feature extraction, that is, generating something more intelligent from the raw sensory input
- User modeling is also a dominant area

#### **Steps to an Intelligent Driver Advocate**

- Technology Survey:
  - Key players, trends
- Machine Learning Approach:
  - An architecture for modeling driver distraction
  - Components of the architecture
  - Key research needed
- Where we are now:
  - Simulator facility
  - Driver monitoring
  - Data collection
  - Machine learning tool development
  - Experimentation

MOTOROLA LABS

### Machine Learning Architecture (long term!)

- Learn how to advise a driver to avoid distraction
  - Can be viewed as a human "control" problem
  - Limit response to alerts; do not control the car
- · Learn how a user reacts
  - Model human response with sufficient fidelity
  - Create a humanized agent
- Use a simulator platform to simulate interaction
  - Avoids issues of safety
  - Can be made faster than real time

### **Machine Learning Architecture**



Humanized driving agent: An aide to help learn the Driver's Advocate, bootstrapped from user models .

Agents may interact faster than real time and explore simulated driving incidents.

MOTOROLA LABS

# **Reinforcement Learning (to Advise)**

- Humanized Agent
  - Data collection, incl. eye/head tracking
  - Supervised learning to simulate human response
  - Create fidelity only in areas needed
- Advising ٠
  - Handcrafted rule system done
  - Bootstrap from those
  - Use reinforcement learning to learn how to advise a humanized agent
  - Difficulties: large state spaces, need for generalization



MOTOROLA LABS

# **Driving State Modeling** and Segmentation

- Can we divide world into states for which actions are learned?
- Unsupervised state segmentation using Hidden Markov Models (discovering "drivemes")
- Example: Four-state HMM segmenting a -2 1400 driving path. X,Y 1300 coordinates are the 1200 1100 driving coordinates, 1000 Z is accelerator, 900 segmentation is 800 indicated by the color.



# **Data Mining Techniques for Driving Data**

- Visualization and rule induction tools in the simulator environment
- Simple example: In what situations does driver use the left turn signal?
- Visualization of Signal=L outlined over the steering angle (green=left,







SubjectPitch <= -0.10 (-73)

MOTOROLA LABS

## Conclusions

- Exciting area to explore:
  - Advising a driver to mitigate distraction
  - Analyze massive streaming multimedia databases

#### • Opportunities

- Learn driver models from data
- Learn driving models from data
- Learn to advise from the data
- In human factors experiments, instead of relationships between 2-3 variables, explore relationships between ~400 variables