Transfer Learning for Text Categorization

Chuong B. Do and Andrew Y. Ng
Presenter: Lei Tang

Department of Computer Science & Engineering
Arizona State University

10th March 2006
- also Meta Learning, Multi-task Learning, Structural Learning
- For linear classifiers, past work (naive Bayes, TFIDF) focus on learning the weight (actually try to identify better functions mapping from statistics to weight)
- This work focus on learning the MAPPING FUNCTION from related classification problems
Linear Classifier: \(f_k(x) = \sum \theta_{ki}x_i \), and

\[
y = \arg \max_k f_k(x)
\]

where \(x_i \) is usually a frequency corresponding to term \(i \).

Naïve Bayes:

\[
f_k^{NB}(x) = \log \hat{p}(y = k) + \sum_{i=1}^{n} x_i \log \hat{p}(w_i|y = k)
\]

Rocchio Alorithm

\[
f_k^{Rocchio} = \sum_{i=1}^{n} (\bar{x}_i|y = k \cdot \log idf)(x_i \cdot \log idf)
\]
Linear Classifier: $f_k(x) = \sum \theta_{ki} x_i$, and where x_i is usually a frequency corresponding to term i. We can rewrite $f_k(x) = \sum \theta_{ki} x_i$ as

$$f_k(x) = \sum g(u_{ki}) x_i$$

where u_{ki} is a vector of some statistics computed from the training set. (Similar to the concept of sufficient statistics)

$$u_{ki} = \begin{bmatrix} u_{ki1} \\ u_{ki2} \\ u_{ki3} \\ u_{ki4} \\ u_{ki5} \end{bmatrix} = \begin{bmatrix} \#w_i\text{ appear in documents of class } k \\ \#\text{documents of class } k\text{ containing } w_i \\ \#\text{total words in documents of class } k \\ \#\text{documents of class } k \\ \#\text{total documents} \end{bmatrix}$$
Mapping Function (2)

\[f_k^{NB}(x) = \log \hat{p}(y = k) + \sum_{i=1}^{n} x_i \log \hat{p}(w_i | y = k) \]

\[u_{ki} = \begin{bmatrix} u_{ki1} \\ u_{ki2} \\ u_{ki3} \\ u_{ki4} \\ u_{ki5} \end{bmatrix} = \begin{bmatrix} \# w_i \text{ appear in documents of class } k \\ \# \text{documents of class } k \text{ containing } w_i \\ \# \text{total words in documents of class } k \\ \# \text{documents of class } k \\ \# \text{total documents} \end{bmatrix} \]

\[g_{NB}(u_{ki}) = \log \frac{u_{ki1} + \varepsilon}{u_{ki3} + n\varepsilon} \]

Similarly, TFIDF can also be written as linear combination of
\[g(u_{ki}) \cdot x_i \]
Reformulation of logistic regression

- Why not learn the mapping function \(g \) automatically?
- The authors assume the mapping function to be linear (Can be extended later to nonlinear case by kernel trick)

\[
g(u_{ki}) = \beta^T u_{ki}
\]

- Reformulate the logistic regression:

\[
p(y = k | x ; \{ \theta_{ki} \}) := \frac{\exp(\sum_i \theta_{ki} x_i)}{\sum_{k'} \exp(\sum_i \theta_{k'i} x_i)}
\]

\[
p(y = k | x ; \beta) = \frac{\exp(\sum_i \beta^T u_{ki} x_i)}{\sum_{k'} \exp(\sum_i \beta^T u_{k'i} x_i)}
\]

To maximize the log likelihood

\[
\ell(\beta : \Omega) = \sum_{i=1}^{m} \log p(y^{(i)} | x^{(i)} ; \beta) - C \| \beta \|^2
\]
Reformulation of logistic regression

- Why not learn the mapping function g automatically?
- The authors assume the mapping function to be linear (Can be extended later to nonlinear case by kernel trick)

$$g(u_{ki}) = \beta^T u_{ki}$$

Reformulate the logistic regression:

$$p(y = k | x; \{\theta_{ki}\}) := \frac{\exp(\sum_i \theta_{ki} x_i)}{\sum_{k'} \exp(\sum_i \theta_{k'i} x_i)}$$

$$p(y = k | x; \beta) = \frac{\exp(\sum_i \beta^T u_{ki} x_i)}{\sum_{k'} \exp(\sum_i \beta^T u_{k'i} x_i)}$$

To maximize the log likelihood

$$\ell(\beta : \Omega) = \sum_{i=1}^{m} \log p(y^{(i)} | x^{(i)} ; \beta) - C \| \beta \|^2$$
Reformulation of logistic regression

- Why not learn the mapping function \(g \) automatically?
- The authors assume the mapping function to be linear (Can be extended later to nonlinear case by kernel trick)

\[
g(u_{ki}) = \beta^T u_{ki}
\]

Reformulate the logistic regression:

\[
p(y = k | x; \{\theta_{ki}\}) := \frac{\exp(\sum_i \theta_{ki} x_i)}{\sum_{k'} \exp(\sum_i \theta_{k'i} x_i)}
\]

\[
p(y = k | x; \beta) = \frac{\exp(\sum_i \beta^T u_{ki} x_i)}{\sum_{k'} \exp(\sum_i \beta^T u_{k'i} x_i)}
\]

To maximize the log likelihood

\[
\ell(\beta : \Omega) = \sum_{i=1}^{m} \log p(y^{(j)} | x^{(j)}; \beta) - C \| \beta \|^2
\]
Reformulation of logistic regression

- Why not learn the mapping function g automatically?
- The authors assume the mapping function to be linear (Can be extended later to nonlinear case by kernel trick)

$$g(u_{ki}) = \beta^T u_{ki}$$

Reformulate the logistic regression:

$$p(y = k|\mathbf{x}; \{\theta_{ki}\}) := \frac{\exp(\sum_i \theta_{ki} x_i)}{\sum_{k'} \exp(\sum_i \theta_{k'i} x_i)}$$

$$p(y = k|\mathbf{x}; \beta) = \frac{\exp(\sum_i \beta^T u_{ki} x_i)}{\sum_{k'} \exp(\sum_i \beta^T u_{k'i} x_i)}$$

To maximize the log likelihood

$$\ell(\beta : \Omega) = \sum_{i=1}^{m} \log p(y^{(i)}|x^{(i)}; \beta) - C\|\beta\|^2$$
Reformulation of logistic regression

- Why not learn the mapping function g automatically?
- The authors assume the mapping function to be linear (Can be extended later to nonlinear case by kernel trick)

$$g(u_{ki}) = \beta^T u_{ki}$$

Reformulate the logistic regression:

$$p(y = k | x; \{\theta_{ki}\}) := \frac{\exp(\sum_i \theta_{ki} x_i)}{\sum_{k'} \exp(\sum_i \theta_{k'i} x_i)}$$

$$p(y = k | x; \beta) = \frac{\exp(\sum_i \beta^T u_{ki} x_i)}{\sum_{k'} \exp(\sum_i \beta^T u_{k'i} x_i)}$$

To maximize the log likelihood

$$\ell(\beta : \Omega) = \sum_{i=1}^{m} \log p(y^{(i)}|x^{(i)}; \beta) - C \|\beta\|^2$$
Nonlinear case

\[\beta^* = \sum_{j=1}^{m} \sum_{k} \alpha^*_{jk} \sum_{i} u^{(j)}_{ki} x^{(j)} \]

User kernel trick, we can extend the mapping function \(g \) to nonlinear cases (Details skipped here).
How to evaluate?

- Typical cross validation
- dmoz with 16 top-level categories: Test on one category based on built 450 classification problems from the other 15 categories
- Four corpora: learned from one corpora and test on the other three corpora

Results:
Better than NBC, logistic regression, 1-vs-all SVM, MC-SVM
Some concerns

1. Each learning task is 10-class with 2 instances in each category for training, and 1 instance in each category for testing. Not very surprising that it outperforms SVM.

2. Why regularization?
 God says: regularization is always helpful! ??

3. Why use logistic regression formulation?
 Because logistic regression can model any decision boundaries?

4. Transfer Learning: Learn how to learn!
 A new machine learning problem?
Some concerns

1. Each learning task is 10-class with 2 instances in each category for training, and 1 instance in each category for testing. Not very surprising that it outperforms SVM.

2. Why regularization?

 God says: regularization is always helpful! ??

3. Why use logistic regression formulation?

 Because logistic regression can model any decision boundaries?

4. Transfer Learning: Learn how to learn!

 A new machine learning problem?
Some concerns

1. Each learning task is 10-class with 2 instances in each category for training, and 1 instance in each category for testing. Not very surprising that it outperforms SVM.

2. Why regularization?

 God says: regularization is always helpful! ??

3. Why use logistic regression formulation?

 Because logistic regression can model any decision boundaries?

4. Transfer Learning: Learn how to learn!

 A new machine learning problem?
Some concerns

1. Each learning task is 10-class with 2 instances in each category for training, and 1 instance in each category for testing. Not very surprising that it outperforms SVM.

2. Why regularization?

 God says: regularization is always helpful! ??

3. Why use logistic regression formulation?

 Because logistic regression can model any decision boundaries?

4. Transfer Learning: Learn how to learn!

 A new machine learning problem?