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Abstract

Microblogging systems such as Twitter have seen explosive
use in public and private sectors. The age information of mi-
crobloggers can be very useful for many applications such
as viral marketing and social studies/surveys. Current mi-
croblogging systems, however, have very sparse age infor-
mation. In this paper, we present MAIF, a novel framework
that explores public content and interaction information in
microblogging systems to explore the hidden ages of mi-
crobloggers. We thoroughly evaluate the accuracy of MAIF
with a real-world dataset with 54,879 Twitter users. Our re-
sults show that MAIF can achieve up to 81.38% inference
accuracy and outperforms the state of the art by 9.15%. We
also discuss some countermeasures to alleviate the possible
privacy concerns caused by MAIF.

1 Introduction
Microblogging systems have become important platforms
for information sharing and social networking. As the end
of 2015, Twitter—the most popular microblogging system
in the world—has 320 million monthly active users. Peo-
ple have been using microblogging systems in social net-
working, massive information campaigns, public relation-
ships, political campaigns, pandemic and crisis situations,
business marketing, crowdsourcing, and many other pub-
lic/private contexts (Zafarani, Abbasi, and Liu 2014).

Age information is much scarcer in microblogging sys-
tems than in traditional online social networks (OSNs). In a
traditional OSN such as Facebook or LinkedIn, the users aim
to maintain their personal identities and social connection-
s with friends, so their personal profiles often contain true
birthdate, school finishing/enrollment time, and other sensi-
tive information, which can be directly used to infer accurate
user ages (Dey et al. 2012). As more open social-networking
platforms, however, microblogging systems are more infor-
mal than traditional OSNs in terms of maintaining social i-
dentities such that their user profiles often have no specific
age-related information.

Age information in microblogging systems have impor-
tant applications in both positive and negative ways. As an
example for the positive aspect, the ability to select a group
of users in the specific age range can enable numerous social
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and health studies such as investigating the diet habits of the
college students between 18 and 22 years old and monitoring
the workout habit of elderly or middle-aged people. The age
information is also useful for cost-effective business market-
ing. For example, to launch a viral marketing campaign for a
new wearable device via Twitter, a known strategy is for the
marketer to seed the product with a few selected influential
users from 30 to 50 years old who can potentially influence
a disproportionately large number of others and also quickly
trigger a cascade of influence (Zhang et al. 2015a). As an
example for the negative aspect, being able to infer the age
and other latent attributes based on the users’ public infor-
mation such as tweets can help the adversary better profile
the users for planning more advanced attacks such as spam
campaigns or phishing attacks aiming at the elderly.

Accurate age inference is still an open challenge in mi-
croblogging systems due to three reasons. First, as stated
before, the age information in microblogging systems is s-
carce. The microblogging service provider such as Twit-
ter offers no explicit channel for users to indicate their
age information. Therefore, existing methods that infer-
ring a user’s personal attributes directly from his/her on-
line social neighbors’ (Mislove et al. 2010; Dey et al. 2012;
Liao et al. 2014) are inapplicable because the neighbors’
age information is also missing. Second, the microblog-
ging messages (microblogs for short) posted by the users
are highly unstructured, noisy, and massive. For example,
each tweet in Twitter is composed of at most 140 characters,
and hence microbloggers have created various slang and ab-
breviations to express their feelings and opinions, such as
“wish4u a gr8 day” meaning “wish for you a great day.”
There are about 500M tweets per day, and each user is al-
lowed to send up to 1000 tweets per day. These constrains
make traditional text analysis for regular documents inap-
plicable in our context (Hu et al. 2009). Finally, the content
information of the microbloggers is connected by online in-
teractions such as following and retweeting. Traditional con-
tent analysis treating each user’s content information inde-
pendently fails to explore such rich online interactions.

In this paper, we propose a new framework to infer mi-
crobloggers’ ages by seamlessly integrating the content and
interaction information on microblogging systems. Our key
idea is driven by the presence of homophily, which has been
discovered in many social studies (Zamal, Liu, and Ruths



2012). In our context, homophily refers to the tendency of
a microblogger to associate and bond with similar others.
For example, two colleague alumni in the same age group
would be more inclined to follow each other in microblog-
ging systems. In addition, the microbloggers with more in-
tensive online interactions are very likely to have more sim-
ilar content information in their microblogs. To fully lever-
age the presence of homophily in microblogging systems,
this paper aims to answer two critical questions. First, how
can we model both the content and interaction information
in microblogging systems? Second, how can we effectively
combine the content and interaction information together to
accurately infer a microblogger’s age?

Our contributions are summarized as follows.
• We motivate and formally define the age inference prob-

lem in microblogging systems with both content and in-
teraction information.

• We propose MAIF, a unified framework to model and
seamlessly integrate both the content and interaction in-
formation by considering the homophily of the content
information among connected microbloggers.

• We thoroughly evaluate the proposed framework on a
real-world dataset with 54,879 Twitter users, the largest in
the community. Our results show that MAIF can achieve
up to 81.38% inference accuracy and outperforms the s-
tate of the art by 9.15%.

• We outline some countermeasures for those wishing to
preserve age privacy if our system were in place.
The rest of this paper is organized as follows. Section

2 introduces the background and defines the problem. Sec-
tion 3 details the age inference framework. Section 4 evalu-
ates the proposed framework. Section 5 surveys the related
work. Section 6 summarizes this paper and future work.

2 Background and Problem Statement
In this paper, we use Twitter as a representative microblog-
ging system to illustrate our proposed framework. In what
follows, we briefly introduce Twitter and then formally de-
fine the age inference problem.

After registering an account in Twitter, a user can post
text-based microblogging messages of up to 140 characters,
known as tweets. S/he can also retweet, reply to, mark fa-
vorite any other public Twitter user’s tweets. The user can
also mention anyone else in the tweet by @someone. Unlike
Facebook-like OSNs, the social relationships in Twitter are
unidirectional by users following others. If user A follows
user B, A is B’s follower, and B is A’s followee. In this
paper, we call A and B are friends if and only if A and B
follow each other.

In this paper, we are interested in classifying a user into
one of c predefined age groups, which are further defined ac-
cording to a widely-used adult development model (Levin-
son 1986) in Section 4.1. We do not want to infer the user’s
exact age for two main reasons. First, we observed that the
majority of commercial advertisements and online surveys
focus on the users of a specific age group. Hence our frame-
work can well satisfy the requirements of such important

applications. Second, there are no enough labeled users to
infer exact ages. Nevertheless, our framework is flexible and
extensible to infer the exact age by having one group per age
as long as there are sufficient labeled users.

We assume that there is a set of labeled users in Twit-
ter with explicit age information specified through tweets or
other sources. As stated before, labeled users in microblog-
ging systems are scarce. To tackle this challenge, we design
a novel method to collect sufficient labeled users for build-
ing and evaluating our proposed framework. The details for
labeled user collection are postponed to Section 3.1.

Problem Formulation. We formally model the mi-
croblogger’s age inference problem as follows. Let U denote
a set of n labeled users, UF ⊆ U denote the union of each
labeled user’s friends in U , Xu represent the microblogging
messages of each user u ∈ U in the past year from the same
given date, and Y ∈ Rn×c be an age-label matrix in which c
is the number of classes, and Yi,j is equal to 1 if user i is in
age group j and 0 otherwise. We aim to build a classifier W
to automatically assign the age labels for unknown users ac-
cording to their microblogging messages. Here we leverage
online interaction information (if there is) to train the clas-
sifier but do not need it for labeling unknown users, which
is critical for the usability of the framework because the la-
beled users are scarce and so for the interactions between the
unknown and labeled users.

3 Microbloggers’ Age Inference Framework
As mentioned before, it is very challenging to infer the age
information of Twitter users because of the tweets’ unstruc-
tured, noisy, and massive nature as well as the scarcity of
labeled users in Twitter. In this section, we first conduct an
analysis of a dataset which is crawled via a novel method,
and the analysis motivates the design of our microblogger’s
age inference framework (MAIF for short). Then we present
a content metric to model each user u’s tweet set Xu in
Section 3.2. Next, we adopt a sparse representation method
to model the content information for age inference in Sec-
tion 3.3 and then use community structure to model the in-
teraction information in Section 3.4. Finally, we integrate
the content and interaction information to formulate the age
inference problem as a convex optimization problem in Sec-
tion 3.5 and then present our solution in Section 3.6.

3.1 Data Crawling and Analysis
We design a method to crawl the ground-truth labeled users.
Inspired by (Zamal, Liu, and Ruths 2012; Liao et al. 2014),
we found that many users like to send their birthday greet-
ings to their friends by posting a tweet containing two parts:
a phrase of “happy yth birthday” where y is the age of the
friend, and a mentioned user who is likely to be the friend’s
Twitter name. For example, userA has posted a tweet “Hap-
py 24th Birthday to my best friend @B.” It is clear that user
B is 24 years old now. We then use Twitter’s Streaming API
to record all the tweets which contain one of the keywords
“happy yth birthday” with y ranging from 14 to 70. Since
the tweets are noisy, we use the following tricks to refine the
collected tweets. First, we only select the tweets which men-
tion only one person because it is very difficult to determine
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which user has the age information if more than one user
have been mentioned. Moreover, if the tweet sender and the
mentioned user are not friends, the tweet is excluded. This
trick is to deal with the cases that the sender may just men-
tion and require a celebrity to greet the sender’s friend (e.g.,
an ordinary person, not mentioned). Since our framework
relies on credible interactions among the users, such tweets
and the corresponding users should not be considered. Final-
ly, each user mentioned in the remaining tweets is assigned
an age label y from the tweet, and we check the labeled users
manually to exclude the users who are obviously not at the
labeled age. The readers can check (Kumar, Morstatter, and
Liu 2013) for more details on how to crawl and analyze the
Twitter system.

Based on the above method, we crawled the largest age-
based ground-truth Twitter dataset in the community which
is composed of 54,879 labeled users, each user’s labeled
friends, and each user’s tweets from June 1, 2014 to May 30,
2015. Fig. 1 shows the age distribution of our dataset, which
is consistent with the result in (Zamal, Liu, and Ruths 2012;
Liao et al. 2014). As we can see, 88.06% of labeled users
are aged below 24, which is expected because young peo-
ple are more likely to explicitly express their greetings us-
ing the social media. We notice that the dataset is biased to-
ward young people, as Pew shows that 47% of Twitter user-
s are older than 30 years old (Duggan et al. 2015). How-
ever, the datasets with the similar distribution have been
used in many previous work (Zamal, Liu, and Ruths 2012;
Liao et al. 2014), and it is still valuable and reliable for mo-
tivating our system design. We will also evaluate the impact
of the biased dataset on system performance in Section 4.

Fig. 2 shows the generation gap (Giancola 2006) in terms
of the word usage. Specifically, we selected six keywords,
“home”, “hate”, “support”, “look forward”, “high school”,
“hard work”, and check how many users at each specific age
have used them in their tweet corpus. We can see that people
with different ages have different keyword usage patterns.
For example, users aged from 18 to 21 increase the usage of
“home” because they might leave home for colleges; older
people are less likely to use “hate” because they are more
mature, but they are more likely to use “hard work” because
they are highly engaged in the professional work; etc.

Fig. 3 and Fig. 4 demonstrate the social homophily in
Twitter. Specifically, we first investigate the similarity in the
ages of the users who have online interactions. For this pur-
pose, we measure the age difference of each friend pair in

the dataset and draw the distribution in Fig. 3. To evaluate
the impact of dataset bias, we also calculate the expected
distribution of the age difference. To that end, we let each
user befriend with each of other 54,878 users, and then mea-
sure the number of user pairs with a specific age difference.
As we can see, in the original dataset, 40.84% of friend pairs
have the same age, and 93.64% of the pairs have the age d-
ifference within 5 years while only 14.21% and 63.32% of
the pairs in the fully-connected network have the same age
and the age difference within 5 years, respectively. To mea-
sure the corpus similarity of each friend pair, we treat each
user’s tweets as a set of words and compute a Jaccard metric
as |A∩B||A∪B| , where A and B denote the word sets for the two
users involved, respectively. For all the friend pairs with the
same age difference, we average their Jaccard similarities.
As shown in Fig. 4, the corpus similarity decreases as the
age difference of a friend pair increases.

We can draw two observations from the above analysis.
First, the users at different ages have different topics in their
tweets due to the age gap. Second, because of the social ho-
mophily (Zamal, Liu, and Ruths 2012), a user is more likely
to befriend with thoses of the similar age, and their tweet
topics tend to have higher similarity than the friend pairs
with large age difference. These two observations drive us
to design a framework to well integrate the content and in-
teraction information to infer a Twitter user’s age.

3.2 Model Tweets by τ -gram
Given the Xi of tweets of any labeled user i ∈ {1, · · · , n}
in the past year, we first need to construct a mathematical
model to represent it. Here we use a feature matrix X ∈
Rn×m to model labeled users’ tweets, where m refers to the
dimension of a feature space F in the whole message space.
In what follows, we describe how to construct the feature
space F and then the feature matrix X.

We first remove stop words in a stop-word list,1 in
which the words such as “the” and “those” are considered
more general and meaningless. Then we conduct stemming
(Porter 1997) to reduce inflected words to their stem form-
s such that the words with different forms can be related
to the same word. For example, “watch”, “watching”, and
“watched” are all reduced to “watch”.

Next, we represent the feature space for the cleansed
tweets using a τ -gram technique, which is widely used for

1http://www.lextek.com/manuals/onix/



statistical text analysis. The τ -gram technique splits a give
message into sequences of τ contiguous words, each re-
ferred to as a τ -gram with τ ranging from 1 to the message
length. For example, consider a tweet {“Playing basketball
against those guys was a bad idea”}. After removing stop
words and performing stemming, we have {“play basket-
ball against guy bad idea”}. The corresponding 1-grams are
{“play”, “basketball”, “against”, “guy”, “bad”, “idea”}, and
the corresponding 2-grams are {“play basketball”, “basket-
ball against”, “against guy”, “guy bad”, “bad idea”}. We let
Ni denote the τ -grams of Xi for each user i ∈ U for all pos-
sible values of τ . Then we choose the top m most frequent
τ -grams in

⋃
1≤i≤nNi as the feature space F .

Finally, we use the Term Frequency Inverse Documen-
t Frequency (TF-IDF) technique (Leskovec, Rajaraman, and
Ullman 2014) to derive each element Xi,j in X. Specifical-
ly, let Γ(j) be the number of times a τ -gram j appears in
the τ -gram listNi of user i, Γ∗i = maxj∈Ni

Γ(j), and Γ′(j)
denote the number of users in U whose τ -gram lists contain
j. We define

Xi,j = (0.5 + 0.5 ∗ Γ(j)

Γ∗i
) ∗ log(

n

Γ′(j)
) . (1)

The above normalization based on Γ∗i is necessary be-
cause the users normally have very different tweet sets and
thus different τ -gram lists. We refer interested readers to
(Leskovec, Rajaraman, and Ullman 2014) for the details of
the TF-IDF technique.

It is a common practice to use 1-grams and 2-grams only
for high computational efficiency without significantly sacri-
ficing the analysis accuracy. So the feature space and matrix
can be constructed very quickly in practice.

3.3 Modeling Content Information
Given the feature matrix X ∈ Rn×m and the age-label ma-
trix Y ∈ Rn×c, a traditional method to build the classifier
W is Least Square optimization(Lawson and Hanson 1974),
which learns a weighted model to minimize the estimation
and the labeled data by solving

min
W

1

2
‖XW −Y‖2F , (2)

where ‖A‖F represent the Frobenius norm of matrix A

which is defined as ‖A‖F =
√∑n

i=1

∑m
j=1 A

2
i,j .

The traditional Least Square method for a large feature set
can lead to overfitting (Tibshirani 2011) in that the learned
model may be too specific due to the limited training da-
ta and thus be inaccurate for inferring the ages of unknown
users. Moreover, it has been observed in many domains that
the underlying representations of many objects are sparse.
For example, a signal could be efficiently reconstructed by
far fewer samples in compressive sensing (Baraniuk 2007);
when people speed-read documents, they may seek a sparse
representation with key phrases or words instead of fully un-
derstanding every single word (Marinis 2003). These sparse
features represent the given object more accurately and effi-
ciently by capturing its underlying essence. In addition, by
selecting a sparse and meaningful group of τ -grams rather

than non-intuitive ones for each user, it could help sociolo-
gists, market planners and even the public to understand the
behavior of the people in different age groups. To find and
explore these sparse features in our feature space, we can
improve the model defined in Eq. (2) by assigning higher
weight to the most representative τ -grams. One widely-used
method(Tibshirani 2011) is to introduce the `1-norm regu-
larization for the weight matrix W as follows,

min
W

1

2
‖XW −Y‖2F + λ1‖W‖1, (3)

where ‖W‖1 =
∑n
i=1

∑m
j=1 |Wi,j |, and λ1 is the param-

eter to control the sparse regularization. By adding this `1-
norm constraint to the minimization problem, it enforces the
coefficients of many non-representative features in W to be
zero, thus making these features have no effect on the predic-
tion model. With this strategy, we select relatively more “im-
portant” features (equivalently, τ -grams) to represent each
age group.

3.4 Modelling Online Interaction Information
The content information in Twitter is networked. As shown
in Section 3.1, people within the same age group have higher
probability to share content similarity and also befriend with
each other. For example, two college classmates follow each
other on Twitter, often discuss final exam preparations for
the same course, and/or cheer for the wins of their college
sports teams. Given such observations, the content model
in Eq. (3) should assign higher weights to similar τ -grams,
such as “final” and “exam”, so that the two users can be clas-
sified into the same age group with high probability. How to
achieve this, however, is challenging because the two users
very likely also tweet on different topics. Below we present
how to model the online interactions among labeled user-
s and then how to integrate the interaction information into
the content model in Eq. (3).

We use the community concept to model the online inter-
actions among the labeled users. For this purpose, it is worth
noting that we can construct an undirected social graph from
the labeled dataset, where each vertex corresponds to a la-
beled user, and an edge exists between two users if and only
if they are friends (i.e., each other’s follower and followee).
It has been widely reported that the users with the similar
attributes such as ages would connect with each other more
than the users with different attributes, hence forming a local
community (Mislove et al. 2010). The community structure
can be inferred by maximizing the modularity (Newman and
Girvan 2004), which is defined as follows.

Definition 1 (Modularity). Given an undirected graph G =
〈U , E〉, where |U| = n is the user set, and eij ∈ E equals
1 if users i and j are friends and equals 0 otherwise. As-
sume that G has been partitioned into k communities, and
that each user belongs to one and only one community. The
modularity of this partition is defined as

Q =
1

2t

∑
i,j

(eij −
didj
2t

)δ(Ci, Cj), (4)



where t = 1
2

∑
i,j eij is the number of edges in G, di =∑

j eij is the degree of user i, Ci is the community contain-
ing user i, and the δ−function δ(Ci, Cj) is 1 if Ci = Cj and
0 otherwise.

The intuition behind the modularity is as follows. didj
2m

represents the expectation that any two users with degree di
and dj could form an edge in the graph. If they are con-
nected (i.e., eij = 1) and are in the same community (i.e.,
Ci = Cj), they will contribute to the whole modularity
Q. If they are not connected (i.e., eij = 0) but are in the
same community (i.e., Ci = Cj), they will reduce the mod-
ularity Q. Finally, if they are in different communities (i.e.,
Ci 6= Cj), they have no impact onQ. Hence, the more edges
in the same community, the higher its modularity.

Next, we present how to infer the community structure by
maximizing the modularity. Let matrix G ∈ Rn×n repre-
sent the adjacent matrix for graph G where Gi,j equals 1 if
eij = 1 and 0 otherwise. Let matrix C ∈ Rn×k represent
a community partition for G where Ci,j is 1 if user i is in
community j, and 0 otherwise. Note that

∑
j Ci,j = 1 since

any user belongs to one and only one community. Then we
could formulate the community partition problem as

max
C

Tr(CMCT), s.t. CCT = I (5)

where

M = G− ddT

2t
(6)

where d is the degree vector for G, and Tr(A) =
∑
iAi,i

represents the sum of the diagonal elements of A. Since this
problem is NP-hard (Newman and Girvan 2004), we resort
to the widely used Louvain method (Blondel et al. 2008) to
obtain the approximation result.

After the community structure C is obtained, we expect
that the users from the same community are in the same age
group. Therefore we can use the community structure to im-
prove our model in Eq. (3). To that end, inspired by (Tang
and Liu 2012), given Ŷ as the estimated age group labels for
all the users in U , we first compute the scatter of user pairs
who are in the same community but have been estimated in
either the same age group or two different age groups as:

S =ŶTFFT Ŷ (7)

where F is the weighted community indicator matrix, which
can be obtained from C as

F = C(CCT )−
1
2 , (8)

where Fij equals 1√
fj

if user i is in community Cj with fj
users and equals 0 otherwise.

It can be easily found that in Eq. (7), since ŶT Ŷ is a
diagonal matrix with the (i, i)-th element equal to the num-
ber of users in the i-th age group, the (i, i)-th element of S
measures how many user pairs in the i-th age group are in
the same community, and the (i, j)-th (i 6= j) element of S
measures how many user pairs in the i-th age group and j-th
age group are in the same community. Therefore, in order to
classify the users in the same community into the same age

range, we just need to maximize the sum of (i, i)-th element
in S, i.e.,

max
W

Tr(S). (9)

Note that we ignore the user pairs who are in the same
community but in different age groups because they violate
the community structure.

3.5 Integrating Content and Interaction
Information

Many existing methods on age estimation use either content
or interaction information independently by assuming that
these two pieces of information are unrelated. This assump-
tion is not valid according to the intuition and also our data
analysis in Section 3.1. So we propose to integrate both the
content and interaction information into a unified model.

Particularly, since Ŷ = XW, Eq. (9) can be re-written as

max
W

Tr(WTXTFTFXW). (10)

By considering both the content information and interaction
information, the age estimation problem defined in Eq. (3)
could be reformulated as follows,

min
W

1

2
‖XW−Y‖2F+λ1‖W‖1−

λ2
2
Tr(WTXTFTFXW),

(11)
where λ1 and λ2 are the parameters for sparse regulariza-
tion (for content information) and integration of interaction
information, respectively. By varying these two parameter-
s, we could set the importance of sparse regularization and
interaction integration on the original Least Square model.

3.6 An Optimization Algorithm
The problem defined in Eq. (11) is non-smooth because
the `1 regularization ‖W‖1 is not differentiable. Hence we
transform it into its differentiable Lagrange dual function as:

min
W

1

2
‖XW −Y‖2F −

λ2
2
Tr(WTXTFTFXW),

s.t. ‖W‖1 ≤ z,
(12)

where z ≥ 0 is the radius of the `1-ball and has a one-to-one
correspondence with λ1. Let

f(W) =
1

2
‖XW −Y‖2F −

λ2
2
Tr(WTXTFTFXW),

(13)
we can see that f(W) is a smooth objective function, and
the optimization problem is convex which can be solved by
gradient descending methods. It is known (Bertsekas 1999)
that the gradient step

W(k) = W(k−1) − 1

t(k)
5 f(W(k−1)) (14)

for solving the smooth optimization problem in Eq. (12)
can be treated as finding the minimum Euclidean projection
(Boyd and Vandenberghe 2004) of W(k) defined above on
the `1-ball ‖W‖1 ≤ z, which is

W(k) = arg min
W

Mt(k)(W,W(k−1)), (15)



Mt(k)(W,W(k−1)) =f(W) + 〈W −W(k−1),5f(W(k−1))〉

+
t(k)

2
‖W −W(k−1)‖2F ,

(16)
where t(k) is the step size, 〈A,B〉 = Tr(ATB) denotes the
matrix inner product, and

5f(W(k−1)) = XTXW(k−1)−XTY−λ2XTFTFXW(k−1).
(17)

Let U(k−1) = W(k−1) − 1
t(k) 5 f(W(k−1)). The Eu-

clidean projection in Eq. (15) has a closed-form solution (Li-
u, Ji, and Ye 2009) as follows,

w
(k)
j =

{
(1− λ1

t(k)‖u(k−1)
j ‖

)u
(k−1)
j if ‖u(k−1)

j ‖ ≥ λ1

t(k)

0 o.w.
(18)

where w
(k)
j and u

(k−1)
j are the j-th rows of W(k) and

U(k−1), respectively.
Algorithm 1 details the algorithm which comprises an

outer loop and an inner loop. The inter loop from Line 4
to 9 searches the step size t(k) to solve the gradient step de-
fined in Eq. (15) according to Eq. (18). The outer loop then
updates the W(k). To accelerate the gradient descent in E-
q. (15), we build a linear combination of W(k) and W(k−1)

as H(k) in line 3 (Ji and Ye 2009). The algorithm terminates
when |f(W(k))− f(W(k−1))| ≤ ε|f(W(k−1))|. Similar to
the proof in (Liu, Ji, and Ye 2009), given the termination pa-
rameter ε, it is easy to verify that the convergence rate of our
algorithm is O( 1√

ε
).

Algorithm 1: Classier Training for Age Inference
input : X,Y,F, λ1, λ2, ε
output: W, i.e., the feature-to-label matrix.

1 Initialize W(k) ← 0, η(0) ← 0, η(1) ← 1, k ← 1;
2 while |f(W(k))− f(W(k−1))| > ε|f(W(k−1))| do
3 Set H(k) ←W(k) + η(k−1)−1

η(k) (W(k) −W(k−1)) ;
4 while True do
5 Set U(k−1) ← H(k−1) − 1

t(k) 5 f(W(k−1)) ;

6 Compute w
(k)
j according to Eq. (18) ;

7 if f(W(k)) ≤Mt(k)(H(k−1),W(k)) then
8 break;

9 t(k) ← 2× t(k−1) ;

10 W←W(k), η(k) ← 1+
√

1+4(η(k−1))2

2 , k ← k + 1 ;
11 return W.

3.7 Inferring Age Group of an Unknown User
After we build a classifier W, we can estimate the age range
of any unknown user u as follows. We crawl the tweets from
u as Xu in the past year and then build the τ -gram list Nu.
Based on the feature space F , we then construct the feature
vector xu ∈ R1×m by calculating the TF-IDF of each τ -
gram in F according to Eq. (1). The final step is to estimate

the age group with the maximum likelihood as follows,

arg max
i={1,2,...,c}

xuwi, (19)

where c is the number of age groups, and wi ∈ Rm×1 is the
i-th column of the classifier matrix W. Note that this step
needs no interaction information from user u. This feature
can be very useful because it makes our algorithm above di-
rectly applicable to an arbitrary unknown user with or with-
out interactions with labeled users in the classifier W.

Note that MAIF needs the labelled users and their con-
tent/network information to build the classifier W, which
can be crawled by the method presented in Section 3.1. Due
to the scarcity of the age information, the network informa-
tion between the labelled users might be limited. However,
MAIF could work even with zero network information, and
as shown in the evaluation below, the richer the network in-
formation, the better the performance.

4 Evaluation
In this section, we thoroughly evaluate the proposed frame-
work. Specifically, we want to answer these four questions:

1. How accurate is the proposed framework in comparison
with other age inference schemes?

2. What is the impact of dataset bias on the performance?
3. What is the benefit of integrating both the content and so-

cial interaction information?
4. What is the impact of key parameters in the framework?
In what follows, we first introduce the dataset as well as the
evaluation methodology and metrics. Then we seek to an-
swer the above questions. Finally, we briefly discuss possi-
ble countermeasures for sensitive users to preserve their age
privacy if our framework were deployed.

4.1 Dataset, Methodology and Metrics
We first partition the Twitter users into five groups according
to Levinson’s adult development model (Levinson 1986):
• Group 1: 14-18. This group is for juvenile and adoles-

cence users. Since Twitter only allows the users older than
13 years to access the service, we start this group from 14
years old.

• Group 2: 19-22. According to Levinson’s model, this
group is a transition phase from the pre-adulthood to the
early adulthood. People in this age group are usually en-
rolled in the college.

• Group 3: 23-33. This group is the “time for building and
maintaining an initial mode of adult living.” People with-
in this age group are beginning their professional career,
building the family, or getting prepared for their career by
further graduate study.

• Group 4: 34-45. This is the phase of early adulthood to
define a new era which belongs to them.

• Group 5: > 46. This group include people from 46 to 65
who are in their middle adulthood and people who are
older than 65 in the phase of the late adulthood.



Table 1: The summary of the datasets.

Datasets #Users #Age Groups Age Group Distribution #Tweets #Edges (Avg.) #Communities
Original 54,879 Group 1-5 [0.505, 0.376, 0.076, 0.022, 0.021] 51,756,652 58,267 (1.06) 19,978
Sampled 8,958 Group 1-3 [0.333, 0.333, 0.333] 8,567,085 1,263 (0.141) 7,743

Table 2: The performance on the original dataset.

Average Accuracy F-score for each group
Precision Recall F-score Group 1 Group 2 Group 3 Group 4 Group 5

Content-I 0.7397 0.7538 0.7456 0.8246 0.7300 0.2451 0.1022 0.0301
Content-II 0.7435 0.7585 0.7495 0.8284 0.7349 0.2481 0.0670 0.0465

Neighbor-I (f = 10) 0.6677 0.6816 0.6557 0.7737 0.5883 0.0694 0.3281 0.1429
Neighbor-I (f = 20) 0.6886 0.7038 0.6809 0.7879 0.6318 0.0952 0.2642 0

Neighbor-II 0.4861 0.5021 0.4899 0.5589 0.4729 0 0 0
MAIF 0.8069 0.8349 0.8138 0.9022 0.8196 0.1795 0.0122 0.0441

Table 3: The performance on the sampled dataset.

Average Accuracy F-score for each group
Precision Recall F-score Group 1 Group 2 Group 3

Content-I 0.5828 0.5829 0.5823 0.5661 0.5253 0.6557
Content-II 0.6930 0.6946 0.6935 0.6857 0.6221 0.7726

Neighbor-I (f = 10) 0.5606 0.5626 0.5073 0.6547 0.2125 0.6548
Neighbor-I (f = 20) 0.5721 0.5663 0.5078 0.6824 0.1930 0.6481

Neighbor-II 0.2392 0.3460 0.2506 0.2808 0.4787 0
MAIF 0.7587 0.7611 0.7582 0.7572 0.6828 0.8347

We use two datasets to evaluate the proposed framework,
as shown in Table 1. First, the original dataset crawled in
Section 3.1 is partitioned to five age groups as described
above. Fig. 1 shows that the age distribution is highly bi-
ased toward Group 1 and 2, which occupy 88.06% of all the
users. This is because the young people are more active in
posting their birthday greetings to their friends. We first e-
valuate MAIF on this original dataset. Moreover, to evaluate
the impact of the dataset bias, we build a comparable and
balanced dataset as follows. We keep all the users in Group
3, which have 2,986 users, and then randomly sample the
same number of users from both Group 1 and 2. After sam-
pling, the network is less connected. Specifically, in the orig-
inal dataset, each user has on average 1.06 friends within the
dataset in contrast to 0.141 friends in the sampled dataset.

We use cross validation to evaluate the proposed frame-
work. Specifically, given a ground-truth dataset composed of
users who have indicated their ages, we split it into five sub-
sets and conducted the experiment by five rounds. In each
round, we choose four different subsets to build the classifi-
er W, then apply it to the remaining subset to estimate the
users’ ages, and finally compare them with the ground truth.

Since we aim to classify a user into c(c > 2) groups, we
derive both the separate accuracy for each group and the
overall accuracy for all the groups from the confusion ma-
trix2. For each age group i, we denote the number of true

2Here we didn’t use the confusion matrix directly because it is
not efficient to compare the MAIF with several baseline methods.
However, the derived separate and overall accuracy can represent

positives, false positives, true negatives, and false negatives
by #TPi,#FPi,#TNi, and #FNi, respectively. Then we de-
fine the Precisioni, Recalli, F− scorei as the separate
accuracy for age group i as follows:

Precisioni =
#TPi

#TPi + #FPi
; Recalli =

#TPi
#TPi + #TNi

;

F− Scorei =
2× Precisioni × Recalli

Precisioni + Recalli
.

(20)
We then define the overall accuracy as X =

∑c
i=1 riXi,

where X represents Precision, Recall, or F− score, and
ri is the ratio of users in age group i over the whole dataset,
which is listed as the age distribution in Table 1.

4.2 Assessing Accuracy
We first evaluate the accuracy of the proposed framework
and compare it with both the state-of-the-art methods and
the baseline methods summarized as follows.

• Content-based methods I. The state-of-the-art content-
based method is proposed by (Nguyen et al. 2013) to
use the linear regression model with the `2 regularization,
which is equivalent to adding ‖W‖F to the least square
method defined in Eq. (2). We use the top-10000 1-gram
and 2-gram as the features to infer the age information.

• Content-based methods II with sparse representation. We
use the least square method with the `1 regularization in

well the confusion matrix.



Eq. (3) to evaluate the inference performance by including
the sparse representation for the content information.

• Neighbor-based method I. We infer the age information
from neighbors’ content information as used in (Zamal,
Liu, and Ruths 2012; Chen et al. 2015). Specifically, for
each user i, we use the least square method with the `1
regularization in Eq. (3) to estimate the age information
of i’s f friends who are not in the labeled user set, and
then set the average value as i’s age information. In the
experiment, we set f be 10 and 20.

• Neighbor-based method II. We infer the age information
from labeled neighbors’ age information as used in (Dey
et al. 2012; Liao et al. 2014). Specifically, we implement
the more advanced method in (Liao et al. 2014) which
assigns a weight between every friend pair in the labeled
user set and then uses the label propagation to estimate
the unknown users’ ages. We use 80% of the users as the
training set and the remaining as the testing set.

• The proposed framework. We set both λ1 and λ2 in the
Eq. (11) to be 1 for the general experiment, and we will
explore the effects of parameters later. Moreover, we set
the size of the feature space m = 10, 000 with 5,000 of
1-grams and 2-grams each and the termination condition
ε = 10−4 in Alg. 1.

For each method, we compare the separate accuracy of
each group and the overall accuracy, as shown in Table 2.
We could draw three conclusions from the overall accura-
cy. First, the proposed MAIF is better than all other four
methods, verifying that our framework can accurately inte-
grate the content information and the interaction informa-
tion, which are the essential behavior pattern of twitterers,
to infer the age information. Second, the sparse represen-
tation in Content-II method outperforms the least square
in Content-I, meaning that the content information in mi-
croblogging services is indeed sparse, and that the sparse
features could represent age groups more accurately. Third,
directly inferring the age information from labeled neigh-
bors’ age information as in Neighbor-II method is not effec-
tive for the dataset. The reason is that the age information
in Twitter is so scarce that many users lack the neighbors
who have specified their ages. As we can see from Table 1,
the average friends in the original dataset is 1.06, meaning
that every labeled user only has average one friend in the
dataset. To overcome this issue, MAIF leverages the com-
munity structure which contains more users and integrates it
with the content information.

As for the separate accuracy, we could see that although
MAIF outperforms other methods in Group 1 and 2, al-
l methods have low accuracy for the remaining groups. We
conjectured that the low accuracy for Group 3 to 5 is caused
by the bias of the dataset. To verify this conjecture, we ap-
plied these five methods on the sampled dataset described in
Table 1 and obtained the results in Table 3. The results show
that MAIF outperforms all other four methods in both aver-
age and separate accuracy. Moreover, the accuracy of MAIF
for each age group on this dataset is significantly balanced
than on the original dataset, which justifies our conjecture

and also answers the second question stated in the beginning
of this section.

4.3 Performance of the Content and Interaction
information

Since the proposed MAIF framework explores content and
also interaction information, we aim to investigate the con-
tribution of each type and the benefit of the integration.
Specifically, we consider the following methods.

• Content-only methods. We use both the widely-used Sup-
port Vector Machine (SVM) (Suykens and Vandewalle
1999) and the least square with the `1 regularization in
Eq. (3) to evaluate the performance on the content feature
matrix X.

• Network-only methods. We use the adjacent matrix G as
the feature matrix and then apply both SVM and the least
square with the `1 regularization in Eq. (3) on them.

Fig. 5 shows the overall accuracy of content-only meth-
ods, network-only methods, and the proposed framework.
As we can see, MAIF outperforms both content-only and
network-only methods, meaning that the accuracy will in-
crease if we integrate both content and interaction infor-
mation instead of considering only one type of informa-
tion. Moreover, content-only methods perform better than
network-only methods, indicating that content information
is more reliable and contributes more than the network in-
formation to infer the age information. Again, we conjecture
that this is caused by the scarcity of the age information in
Twitter and hence the scarcity of the network information
between the labeled users.

4.4 Exploiting the Parameters
We show the impact of λ1 and λ2 in Fig. 6. As stated before,
the parameter λ1 indicates the weight of the sparse repre-
sentation of the content information, and the parameter λ2
indicates the weight of interaction information. As we can
see, both parameters lead to smooth and meaningful result-
s when they are between 0.01 and 100. Moreover, when λ2
increases from 0.01 to 100, the overall accuracy first increas-
es and then decreases; similar trend holds for λ2. Hence we
expect a local optimal parameter pair for λ1 and λ2 to be
both 1. Moreover, the accuracy in this range is smooth and
has limited variance, suggesting that in practice we could
choose these two parameters from 0.01 to 100.

Fig. 7 show the impact of the dataset size. Given the orig-
inal dataset with 54,879 users, we randomly sample 5000,
10000, 20000, 30000, 40000, and 50000 users, respective-
ly, and use five-fold cross validation to yield the results. As
we can see, increasing the dataset size improves the accu-
racy because of the richer content and network information.
Specifically, the more users, the richer content and network
information which could better represent the users in a spe-
cific age group, and hence the higher accuracy.

Our algorithm is stable in terms of other parameters.
Fig. 8 demonstrate the impact of the training set size. 50%
of the training set means that only 50% of the 80%, which
equals 40%, of the users in the whole dataset are used as the
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training set to predict the remaining 20% of users. The train-
ing set size varies from 50% to 100% (corresponds to 40%
to 80% of all users). As expected, increasing the training set
can slightly improve the accuracy. However, the improve-
ment is less significant than increasing the dataset size, as
shown in Fig. 7. The reason is that the training set, which
has 40% of the 54,879 users, is still large enough to obtain
the good results even if we only use 50% of the training
set. Moreover, we have evaluated the impact of feature space
size m (from 5000 to 20000), the different combinations of
1-gram and 2-gram in the feature space, and the variant def-
initions of TF-IDF in Eq. (1), and obtained similar results,
which are omitted here due to space constraints.

4.5 Countermeasures
The above experiments demonstrate the efficacy of using the
public content and interaction information to infer the age
information, one type of highly-private personal attributes.
Since the social homophily and generation gap always ex-
ist, it is very challenging for twitterers to evade the infer-
ence demonstrated in this paper. In order to preserve their
privacy, one way is to set “protected”—a function provided
by Twitter—the critical information such as followers, fol-
lowees, and even all the tweets, such that only authorized
users could visit while the unauthorized third party will fail
to infer due to the absence of content and interaction in-
formation. Another way is to diversify the content and/or
interaction information by posting with the style from oth-
er age groups and/or following people with different ages.
As shown in Fig. 5, the absence of one type of informa-
tion will lower the inference performance, so the age pri-
vacy can be protected to some extent. Nevertheless, this pa-
per mainly aims to demonstrate a more effective method to
infer the hidden age information from public content and in-
teraction information in Twitter. More privacy implications
of our framework and the thorough investigation of counter-
measures are beyond the scope of this paper.

5 Related Work
In this section, we briefly present the existing work mostly
related to this paper.

There has been some effort to infer hidden age informa-
tion in microblogging systems. Nguyen et al. tried to classify
the user ages from different angles such as age range, exac-
t age, and life stage with the 1-grams constructed from the

tweets (Nguyen et al. 2013). Oktay et al. proposed a method
to infer users’ age range by investigating their names. The
idea is that different generations have different preferences
on the baby naming (Oktay, Firat, and Ertem 2014). Liao
et al. use the ages of online neighbors to infer the age of a
given user (Liao et al. 2014). Dey et al. also used the sim-
ilar method to infer the user age in Facebook (Dey et al.
2012). However, this method requires that some neighbors
have specified their ages, which cannot be satisfied in mi-
croblogging systems where age information is scarce.

Other hidden attributes such as location (Li et al. 2012;
Mahmud, Nichols, and Drews 2014; Compton, Jurgens, and
Allen 2014; Zhang et al. 2015b), gender (Rao et al. 2010),
political preference (Zamal, Liu, and Ruths 2012), and eth-
nicity (Chen et al. 2015) have also been inferred by either the
content information and/or the interaction information. Mis-
love et al. used the local connections around the Facebook
users to infer their major, college, and political view (Mis-
love et al. 2010). Location information has attracted many
attentions recently. The content with geographical hints
could be used to infer users’ locations (Mahmud, Nichol-
s, and Drews 2014). Since about 16% of Twitter users have
specified their locations, inferring users’ locations from their
neighbors’ locations can be more effective (Li et al. 2012;
Compton, Jurgens, and Allen 2014) than inferring their ages
from their neighbors’ ages.

6 Conclusion

In this paper, we propose MAIF, a novel framework which
explores public content and interaction information in mi-
croblogging systems to infer the hidden ages of microblog-
gers. We thoroughly evaluate MAIF using a real-world
dataset with 54,879 Twitter users. Our results show that
MAIF can achieve up to 81.38% inference accuracy and out-
performs the state of the art by 9.15%. In our future work,
we seek to incorporate more interaction information such as
retweets, replies, and mentions into MAIF. In addition, we
will evaluate the performance of MAIF for other microblog-
ging systems such as Tumblr. Finally, we plan to thoroughly
investigate the privacy implications of MAIF and possible
countermeasures for the microbloggers particularly wary of
their age privacy.
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