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Big	Data	Challenges	Tradi1onal	Thinking	

•  Data	is	ubiquitous	and	can	only	become	bigger	
•  Big	data	is	not	just	big	
– Transforming	how	we	live,	work,	and	think	

•  Big	data	makes	many	tasks	easier	and	beGer	
•  An	example	of	big	mobile	data	
–  	Using	GPS	to	guide	our	travel	today	vs.	not	so	long	
ago	

•  OpportuniQes	are	where	challenges	are	



Uncovering	Novel	Opportuni1es	Arizona	State	University	
	Data	Mining	and	Machine	Learning	Lab	 DFC2016,	Nov	13	 4	

Tradi1onal	Media	and	Data	

Broadcast	Media	
One-to-Many	

CommunicaQon	Media	
One-to-One	 Tradi1onal	Data	
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Some	Challenges	in	Understanding	Social	Media	

•  Noise-Removal	Fallacy	
–  Can	we	remove	noise	without	losing	much	informaQon?		

•  Studying	Distrust	(the	Implicit)	in	Social	Media	
– Where	to	find	the	invisible	distrust?	

•  Big-Data	Paradox	
–  Lack	of	data	with	big	social	media	data	

•  EvaluaQon	Dilemma	
– Where	is	ground	truth?	How	to	evaluate	without	it?		

•  Data	Sampling	Bias	and	Its	MiQgaQon	
– O^en	we	get	a	small	sample	of	(sQll	big)	data.	Would	
that	data	suffice	to	obtain	credible	findings?			



Uncovering	Novel	Opportuni1es	Arizona	State	University	
	Data	Mining	and	Machine	Learning	Lab	 DFC2016,	Nov	13	 6	

The	Good,	the	Bad,	and	the	Ugly	of	Social	Media	Data	

•  The	good	
–  Social	media	data	is	big	and	linked		

•  The	bad	
–  Social	media	data	is	noisy	and	short	of	data	where	it	is	
most	needed	

•  The	ugly	
–  Social	media	data	is	heterogeneous,	parQal,	and	
asymmetrical	

Two	IllustraQve	Cases	for	Novel	Challenges:		
	(1)	Removing	noise,	and		
	(2)	Inferring	the	implicit	
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•  We	o^en	heard	that:	“99%	TwiGer	data	is	useless.”	
– “Had	eggs,	sunny-side-up,	this	morning”	
– Can	we	remove	noise	as	we	usually	do	in	DM?	

•  What	is	le^	a^er	noise	removal?	
– TwiGer	data	can	be	rendered	useless	a^er	
convenQonal	noise	removal	

•  As	we	are	certain	there	is	noise	in	data,		
should	we	remove	it?		
–  If	yes,	how?	

•  A	new	challenge:	Feature	selecQon	with	linked	
data	

Removing	Noise	–	a	First	Task	in	Data	Mining	
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Social	Data	and	Feature	Selec1on	

•  High-dimensional	social	media	data	poses	
unique	challenges	to	data	mining	tasks	

•  Feature	selecQon	has	been	widely	used	to	
prepare	large-scale,	high-dimensional	data	for	
effecQve	data	mining	

•  TradiQonal	feature	selecQon	algorithms	deal	
with	only	“flat"	data	(a0ribute-value	data).	

•  We	now	can	take	advantage	of	linked	data	for	
feature	selecQon	
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Representa1on	for	Social	Media	Data	

Social	
Context	
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New	Problem	Statement	of	Feature	Selec1on	

•  Given	labeled	data	X	and	its	label	indicator	
matrix	Y,	the	dataset	F,	its	social	context	
including	user-user	following	relaQonships	S	
and	user-post	relaQonships	P,		

•  Select	k	most	relevant	features	from	m	
features	for	dataset	F	with	its	social	context	S	
and	P	
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How	to	Use	Link	Informa1on	

•  Would	the	addiQonal	(i.e.,	link)	informaQon	be	
useful	for	feature	selecQon?	

•  Some	technical	challenges	
– RelaQon	extracQon:	What	are	disQnct	relaQons	
that	can	be	extracted	from	linked	data	

– MathemaQcal	representaQon:	How	to	use	these	
relaQons	in	feature	selecQon	formulaQon	

•  Are	there	theories	to	guide	us	in	generaQng	
hypotheses?	
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Social	Theories	Guided	Research	

•  Social	correlaQon	theories	suggest	that	the	four	
relaQons	may	affect	the	relaQonships	between	
posts		

•  Social	correlaQon	theories	
– Homophily:	People	with	similar	interests	are	more	
likely	to	be	linked	

–  Influence:	People	who	are	linked	are	more	likely	to	
have	similar	interests	

•  Guided	by	theories,	we	turn	
				social	relaQons								hypotheses	for	invesQgaQon	
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1.  CoPost	
2.  CoFollowing	
3.  CoFollowed	
4.  Following	

Rela1on	Extrac1on	
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Evalua1on	Results	on	Digg	
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Evalua1on	Results	on	Digg	
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Summary	

•  We	evaluate	if	link	informaQon	can	be	used	
for	feature	selecQon	and	understand	how	it	
works		
– Link	informaQon	can	help	feature	selec<on	
for	social	media	data,	in	parQcular,	when	
we	are	short	of	data	

•  Unlabeled	data	is	more	o^en	in	social	media,	
unsupervised	learning	is	more	sensible,	but	
also	more	challenging	
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Inferring	the	Implicit	–	Second	Case	

•  Both	trust	and	distrust	(posiQve	and	negaQve	
info)	help	decision	makers	reduce	the	
uncertainty	and	risk	associated	with	decisions	

•  Distrust	may	play	an	equally,	if	not	more,	criQcal	
role	as	trust	does	in	decision	making	

•  Distrust	is	new	in	Social	Media	Analysis	
-	Asymmetry		of	informaQon	available	(like	vs	dislike)	

•  Distrust	is,	however,	not	new	in	Social	Sciences	
-	Various	definiQon	of	distrust	in	Social	Sciences	
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Two	Theories	of	Distrust	from	Social	Sciences	

•  	Distrust	is	the	negaQon	of	trust	
─ 	Low	trust	is	equivalent	to	high	distrust	
─ 	The	absence	of	distrust	means	high	trust	
─ 	Lack	of	the	studying	of	distrust	maGers	liGle	

		

•  	Distrust	is	a	new	dimension	of	trust	
─ 	Trust	and	distrust	are	two	separate	concepts		
─ 	Trust	and	distrust	can	co-exist	
─ 	A	study	ignoring	distrust	would	yield	an	
incomplete	esQmate	of	the	effect	of	trust						
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Challenges	in	Studying	Distrust	in	Social	Media	

•  Challenge	1:	Lack	of	computaQonal	
understanding	of	distrust	with	social	media	data	
– Social	media	data	is	based	on	passive	observaQons	
– Lack	of	some	informaQon	that	social	sciences	
convenQonally	use	to	conduct	studies	

•  Challenge	2:	Distrust	informaQon	is	usually	not	
publicly	available	
– Trust	is	desired	while	distrust	is	not	for	open	online	
social	plaoorms	
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Computa1onal	Understanding	of	Distrust		

•  Design	computaQonal	tasks	to	help	understand	
distrust	with	passively	observed	social	media	data		

§ 	Q1:	Is	distrust	the	nega1on	of	trust?		
– Yes	or	No?	

§ 	Q2:	Is	there	any	value	of	distrust	aYer	Q1	is	answered?		
–  	If	distrust	is	a	new	dimension	of	trust,	what	is	added	
value	of	distrust		

•  How	can	we	use	social	media	data	to	
computaQonally	answer	the	two	quesQons?	
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Task	1:	Is	distrust	the	nega1on	of	trust?	

•  If	distrust	is	the	negaQon	of	trust,	or	low	trust	
is	equivalent	to	distrust,	distrust	should	be	
predictable	using	trust	informaQon	

Distrust		 Low	Trust		

Predic1ng		
Distrust		

Predic1ng		
Low	Trust	

IF		

THEN	

≡

≡
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Evalua1on	of	Task	1

§ 	The	performance	of	using	low	trust	for	distrust	is	
consistently	worse	than	randomly	guessing		
§ 	Task	1:	Since	it	fails	to	predict	distrust	with	only	trust,		
distrust	is	not	the	negaQon	of	trust		

	dTP:	It	uses	trust	propagaQon	to	calculate	trust	scores	for	pairs	of	users	
	dMF:	It	uses	the	matrix	factorizaQon	based	predictor	to	compute	trust	scores	for	pairs	of	users	
dTP-MF:	It	is	the	combinaQon	of	dTP	and	dMF	using	OR	
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Task	2:	Is	there	any	added	value	of	distrust?	

•  	If	distrust	has	any	added	value,	we	should	
predict	trust	beGer	with	distrust		

	

	
	
		
•  To	verify	the	above	statement,	we	define	the	
second	computaQonal	task	involving	distrust		
–  IncorporaQng	distrust	in	trust	predic1on	

Old	Trust	 New	Trust		 Distrust	

Trust	PredicQon	
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Evalua1on	of	Distrust	in	Trust	Propaga1on	

•  IncorporaQng	distrust	propagaQon	can	improve	the	
performance	of	trust	measurement	

	
	
	
	

•  One	step	distrust	propagaQon	usually	outperforms	
mulQple	step	distrust	propagaQon			

x%	
x	

PA	
Performance	
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Experimental	Se[ngs	for	Task	2	

•  x%	of	pairs	of	users	with	trust	relaQons	are	chosen	
as	old	trust	relaQons	and	the	remaining	as	new	trust	
relaQons			

	
	
	
	
•  	Task	2	predicts									pairs	of	users	P	from							as	new	
trust	relaQons	

•  	The	performance	is	computed	as	 ||
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Findings	from	Understanding	Distrust	

•  Distrust	presents	disQnct	properQes		
– ProperQes	of	trust	cannot	be	extended	to	distrust				

•  Distrust	is	not	the	negaQon	of		trust		
– Low	trust	fails	to	predict	distrust	

•  Distrust	has	added	value	over	trust	
– Distrust	helps	improve	trust	predicQon	performance	

•  However,	distrust	informaQon	is	usually	not	
available	on	a	social	networking	site	

•  Next	task	-	discovering	negaQve	links	like	distrust	
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Some	Challenges	in	Understanding	Social	Media	

•  Noise-Removal	Fallacy	
–  Can	we	remove	noise	without	losing	much	informaQon?		

•  Studying	Distrust	in	Social	Media	
– Where	to	find	the	invisible	distrust?	

•  Big-Data	Paradox	
–  Lack	of	data	with	big	social	media	data	

•  EvaluaQon	Dilemma	
– Where	is	ground	truth?	How	to	evaluate	without	it?		

•  Sampling	Bias	and	Its	MiQgaQon	
– O^en	we	get	a	small	sample	of	(sQll	big)	data.	Would	
that	data	suffice	to	obtain	credible	findings?			
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•  scikit-feature	–	an	open	source	feature	
selecQon	repository	in	Python	

•  Social	CompuQng	Repository	
•  Some	books	available	as	free	download	

Repositories	and	Recent	Books	
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