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Ubiquitous Big Data and Data Science

• Abundant Data is Ubiquitous
– It has changed the AI playing ground

• “Data is the New Oil”
– AI finds a new lifeline from data
– Data Science emerges from CS, Statistics, IS, etc. 

• Recent success of AI is due to its use of data
– Machine Learning (e.g., Deep Learning)

• For any ML algorithm to work, data is key
– We use social media data to illustrate Data Challenges 
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Social Media Data – A New Source of Big Data

• Twitter
– 300 million users
– 500 million tweets / day
– 1% (5 million) released for research

• Facebook
– 2 billion users
– 422 million updates / day
– 196 million photos / day

• Instagram
– 700 million users
– 80 million photos / day

Facebook Degree Distribution

Instagram Users over Time
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Mining Social Media Data 

• Graph Theories
• Network Measures and Models
• Data Mining, NLP, and Visual Analytics
• Community Detection and Analysis
• Information Diffusion
• Influence and Homophily
• Recommender Systems
• Behavior Analytics 
– Sentiment Analysis
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https://www.kdnuggets.com/2018/05/10-more-free-must-read-books-for-machine-learning-
and-data-science.html
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Social-Media-Data Challenges

• SM data seems really big, is it really so?
–How can we make data bigger? 

• Data can be revealing, where is our privacy?
–Do we have to make a trade-off between 

privacy and utility?

• An ultimate challenge for our research to be 
accepted or reproducible is …?
–How can we evaluate without ground truth?
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Making Big Data “Bigger”

• What is big data?
–A conventional answer is 4Vs
–A practitioner’s answer is more nuanced

• Big data can be actually little or thin
• When small data alone is insufficient, we 

need to find more or bigger data 
–Make little data bigger
–Make thin data thicker
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• Sparsity becomes exponentially worse as 
dimensionality increases
– Conventional distance metric becomes ineffective as 

far and near neighbors have similar distances

Curse of Dimensionality: Required Samples

3 samples per unit region 1 sample per region 1/3 sample per region

http://nikhilbuduma.com/2015/03/10/the-curse-of-dimensionality/
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Relevant, Redundant and Irrelevant Features

• Feature selection retains relevant features for 
learning and removes redundant or irrelevant ones

• For a binary classification task below, f1 is relevant, 
f2 is redundant given f1, and f3 is irrelevant
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Feature Selection Can Make Data Bigger

Feature selection finds an ‘optimal’ subset of 
relevant features from the original high-
dimensional data given a certain criterion
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Feature Selection and scikit-feature
• Feature selection can make data `bigger’
– Assuming all binary attribute

values in our toy example
– Before FS, 5/210 = 5/1024,

after FS, 5/23 = 5/8

• Does FS always work?
– Yes, for most high-d data

• Where can we find it?
• scikit-feature, an open-

source repository 
in Python
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Making Thin Data 

• Most people like many of us 
are in the long tail
– Our data is thin or sparse
– With little data, machine learning is powerless

• Social media data offers new opportunities
– Multiple facets: posts, profile, linked information
– Multiple platforms that offer different functions

• Two illustrative cases
– Selecting features using social network information
– Connecting users across social media sites
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Online User Data: Utility vs. Privacy 

• Users conduct numerous online activities
• Each user is leaving their data traces
• Their data helps improve personalized services
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Browsing Histories Can also Reveal Privacy

• Adversaries can infer different types of 
personally identifiable information

• Web browsing history data is finger-printable
– New attacks that map a given history to a social 

media profile 

• Users can become vulnerable 
to various harms 

6
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The Relationship btw Privacy and Utility

• Conventional solutions often
make a trade-off 
between privacy and utility

• Reduced utility can result in decreased quality 
of online personalized services

• Hence, the dilemma of privacy and utility
– Can we have both?
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Attacks via Web Browsing History

Threat Model: Given u’s browsing history                               , 
map u to a social media profile based on the links in its feed
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Challenges in Anonymizing Browsing Histories

• How privacy and utility should be defined in 
this context?

• How many links should be added?

• What links should be added?
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Measuring Privacy

• The more ambiguous a user’s interests are, the 
harder it is for the adversary to infer her 
characteristics

• Entropy is used as a measure of ambiguity

Topic probability distribution The higher the 
entropy, the 
higher the privacy
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Measuring Utility Loss

• The more difference between user’s topic 
distribution before and after anonymization, 
the more lost utility of her browsing history 

Topic probability distribution 
after anonymization
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PBooster Algorithm

1. Topic Selection
– Select a subset of topics and calculate the number 

of links that should be added to each topic 

2. Link Selection
– Select a proper set of links that corresponds to the 

identified topics and their numbers

Beauty Sport Food Politics
5 0 3 10



New Data Challenges for DSArizona State University
Data Mining and Machine Learning Lab 7/30/19, IEEE IRI 24

Experimental Evaluation

• To answer the following questions:
1. Can PBooster help protect user privacy?
2. How does PBooster change the utility, or the 

quality of online services?
3. Do we have to make a trade-off between 

privacy and utility?
• Does PBooster make a difference?

Privacy
Utility



New Data Challenges for DSArizona State University
Data Mining and Machine Learning Lab 7/30/19, IEEE IRI 25

Privacy Analysis

•Privacy evaluation: Deploy de-anonymization attack 
•Evaluation metric: Attack success rate = !"#
• Attack is successful if the user is among the top 10 results 
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Utility Analysis

•Utility evaluation: Cluster users with k-means based on 
topic probability distributions into k = 5 groups
•Evaluation metric: Evaluate quality of generated clusters 

with Silhouette Coefficient ranges from [-1,1]
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Sweet Spots for High Privacy and Utility 

Utility Evaluation: Cluster users 
with k-means based on topic 
probability distributions

Privacy Evaluation: Deploy an 
existing de-anonymization 
attack

Attack is successful if the user is 
among the top 10 results 
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Privacy-Utility Trade-off: Is it Necessary?

Plotting privacy and utility gain values for each user 
after applying different approaches over histories



New Data Challenges for DSArizona State University
Data Mining and Machine Learning Lab 7/30/19, IEEE IRI 30

No Ground Truth: Migration on Social Media Platforms
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Evaluation without Ground Truth 

The CACM article can be found at dl.acm.org
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Social Media Data Challenges

• SM data seems really big, is it really so?
–How can we make data bigger? 

• Data can be revealing, where is our privacy?
–Do we have to make a trade-off between 

privacy and utility?
• An ultimate challenge for our research to be 

accepted or reproducible is …?
–How can we evaluate without ground truth?
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Call for Authors

Use Code FAKENEWS during checkout, 30% Discount
www.morganclaypoolpublishers.com/fakenews
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• scikit-feature – an open source feature selection 
repository in Python

• Social Computing Repository
• Two Recent Surveys
– Learning Causality with Data: Problems & Methods
– Privacy in Social Media: Identification, Mitigation, …

THANKS with Repositories, Surveys, and Books

http://www.public.asu.edu/~huanliu

http://www.public.asu.edu/~huanliu
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Challenges with Social Media Data

• Social media data seems really big, but why 
are we often still short of data?
–How can we make data ‘bigger’? 

• Data is power, so it can produce any result
–Can we algorithmically evaluate the results from 

big data?

• We don’t know what we don’t know 
–How can we know if our result of social media 

analysis is of any value?
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Addressing Don’t-Know-Don’t-Know Problems

• When collecting data, we often don’t know 
when we have a sufficient amount
–We don’t know when to stop collecting, though 

we can’t collect forever
• A dilemma in studying migration on social 

media : 
– If we know its existence, no need for the study 
– If we don’t know, how can we verify the result?
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Illustrative Examples of DNDN

1. When-to-Stop Dilemma: Collecting data forever 
vs. having credible patterns
– How much data vs. how credible

2. Is There Migration on Social Media?
– Users are a primary source of revenue
• Ads, Recommendations, Brand loyalty

– New SM sites need to attract users for expansion 

– Existing SM sites need to retain their users

– Competiting for attention entails the discovery of 
migration patterns
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Migration on Social Media

• Site Migration
– Users leave a site by profile deletion or profile removal
– Difficult to convince a user who left to return
– Hard to study these users cross sites because we need their 

registration information

• Attention Migration
– Users become inactive on a site
– A harbinger for site migration
– Can be detected by observing user activities across sites
– Can take action to prevent site migration after 

understanding migration patterns

Site 2

Site 3Site 1
Site 2 Site 3After 

time t

Site 2

Site 3Site 1

After 
time t

Site 2

Site 3Site 1
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Patterns from Observation



New Data Challenges for DSArizona State University
Data Mining and Machine Learning Lab 7/30/19, IEEE IRI 44

Do We Know What We Didn’t Know?
• If a pattern is significant, it is valid
– Significant differences observed in StumbleUpon, 

Twitter, and YouTube
• When to stop? 

Stop when we are certain, continue otherwise
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Revisit Challenges in Acquiring SM Intelligence

• Social media data is obviously big, but why 
are we often still short of data?
–How can we make data `bigger’? 

• Data is power, so it can produce any result
–Can we algorithmically evaluate the results from 

big data?

• We don’t know what we don’t know 
–How can we know if our result of social media 

analysis is of any value?


