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Abstract: Approximately two–thirds of healthcare costs are accounted for  
by 10% of the patients. Identifying such high-cost patients early can help 
improve their health and reduce costs. Data from the Arizona Health Care Cost 
Containment System provides a unique opportunity to exploit state-of-the-art 
data analysis algorithms to mine data and provide actionable findings that  
can aid cost containment. A novel data mining approach is proposed for  
this challenging healthcare problem of predicting patients who are likely  
to be high-risk in the future. This study indicates that the proposed approach  
is highly effective and can benefit further research on cost containment. 
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1 Introduction 

The importance of electronic data has increased manifold over the last decade.  
With a consistent improvement in computing capabilities, substantial amounts of 
electronic data are being collected that can provide answers to critical research questions.  
In the high-impact field of healthcare informatics also, the utility of gathering electronic 
information has been realised. A part of this endeavour is a unique community health 
data system called Arizona HealthQuery (AzHQ), housed in the Centre for Health 
Information and Research (CHiR) at Arizona State University. AzHQ contains 
comprehensive health records of over eight million patients linked across time from the 
state of Arizona, USA. AZHQ offers the opportunity for research that can influence the 
community and deliver actionable results to researchers and policy makers. 

The surge in data accumulation was accompanied by the development of improved 
methods of obtaining knowledge from the data. Data mining and machine learning 
methods have contributed immensely to this important task. These techniques have been 
successfully applied to many domains but applications to healthcare are still relatively 
rare (Anderson et al., 2004; Cios and Moore, 2002; Li et al., 2005). Using such 
techniques, this paper describes a potentially beneficial approach to healthcare, focusing 
on the difficult and important problem of predicting the patients who are likely to be 
high-risk. 

One of the most important issues dogging the healthcare system is that approximately 
two–thirds of healthcare costs in the USA are accounted for by 10% of the patients  
(Berk and Monheit, 2001). This trend is not restricted to the USA alone and is common 
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among all nations (Hammer, 1997). Aside from intractable problems, such as terminal 
cancer, the high-cost patients offer the greatest potential benefits in terms of cost 
reduction to strategies that include disease and disability management. Additionally,  
the costs of an episode of illness or injury among employed persons include losses of 
productivity due to work loss days and losses of on-the-job productivity. These ‘indirect 
costs’ are typically a multiple of healthcare costs for a given worker (Johnson, 2005). 

The benefits are, however, unlikely to be realised unless the high-cost patients  
can be distinguished from lower cost patients early in the process of care. Proactive 
identification of high-cost patients can help design targeted interventions and disease 
management programs suited to the high-risk population in question. Such health 
promotion programs are known to reduce health risks for many patients, resulting  
in improved patient health as well as cost reduction from both direct and indirect costs 
(Musich et al., 2000). Predictive risk modelling techniques can help forecast such  
high-cost patients. 

2 Related work 

The leading approaches to risk modelling include Adjusted Clinical Groups (ACG), 
Diagnostic Cost Groups (DCG), Global Risk-Adjustment Model (GRAM), RxRisk, and 
Prior Expense. The utility of these models arises from their designs as well as their use  
of predictors. These models, which are designed to use domain knowledge and  
expertise, yield comparable results. To predict whether a patient is high-risk or not,  
these models use healthcare utilisation information and disease-related features or 
morbidity indicators based on diagnoses codes and other administrative claims-based  
data (Meenan et al., 2003). 

Demographic variables like age and sex are known to impact healthcare costs. 
Disease-related predictors from various utilisation classes such as inpatient,  
outpatient and pharmacy have also been used to predict cost outcomes. It was found that 
using data from multiple utilisation classes provides better predictions (Zhao et al., 2005). 
Patient’s health conditions can also be used as predictors in the form of comorbidity 
indices. The predictive ability of various comorbidity indices was found to be similar 
(Perkins et al., 2004). It was also found that simple count measures like number  
of prescriptions and number of claims were better predictors of healthcare costs than 
comorbidity indices (Farley et al., 2006). 

Many studies rely on regression methods rather than risk adjustment models  
for prediction. Regression techniques generally tend to predict the average cost for a 
group of patients satisfactorily but on an individual basis; the predictions are not too 
accurate because healthcare cost distributions do not meet the assumptions of normality 
and homoscedasticity. Cost distributions are frequently transformed to avoid these 
problems (Diehr et al., 1999). Despite these issues, a comparison of multiple models  
for the estimation of future total healthcare costs using pharmacy claims data found that 
ordinary least squares regression was a better approach when compared to more complex 
models (Powers et al., 2005).  

Unlike existing approaches, this study uses data mining techniques for predictive 
modelling that learn from data to tailor suitable models. Data mining has been 
successfully applied previously in many applications including financial applications like 
fraud detection in credit card transactions, stock market prediction, portfolio 
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management, bankruptcy prediction, and identifying trading rules in the foreign exchange 
market (Zhang and Zhou, 2004). Despite the success, data mining has scarcely been 
applied to healthcare informatics. However, it is particularly suited to this problem 
because imbalanced data are commonly observed in many applications like credit  
card fraud detection, network intrusion detection, insurance risk management,  
text classification, and medical diagnosis that have been widely studied by the data 
mining and machine learning community (Chawla et al., 2004). The problem with such 
data is that most classification algorithms assume that class distribution is uniform. 
Particularly, the metric of classification accuracy is based on this assumption. This means 
that algorithms often try to improve this faulty metric while learning. Therefore, it is 
essential to pay attention to unbalanced class distributions when dealing with  
claims-based healthcare expenditure data. 

The two most common solutions to this problem include non-random sampling 
(under-sampling or down-sampling, over-sampling or up-sampling and a combination  
of both) and cost-sensitive learning. Both solutions have a few drawbacks (most 
importantly, under-sampling might neglect some key instances while over-sampling 
might result in overfitting) but they were equally successful in showing improvement 
over conventional techniques (McCarthy et al., 2005; Weiss and Provost, 2001). The use 
of synthetic examples for the minority class was found to show improvement over  
under-sampling or over-sampling in certain cases (Chawla et al., 2002) but it is not 
prudent to use this technique for healthcare data where highly varied instances tend to 
group together. 

Comparisons of over-sampling, under-sampling and cost-sensitive learning are 
inconclusive. Some find that there is little difference in the results from these data sets 
(Maloof, 2003), others usually find that one of them is better (Batista et al., 2004; 
Drummond and Holte, 2003; McCarthy et al., 2005). While it is hard to pick an option 
due to these contrasting results, it was also suggested that the use of a combination  
of under-sampling and over-sampling that balances training data shows improved 
performance (Estabrooks et al., 2004). In addition, it was found using varying ratios  
of the minority and majority classes for a data set that the best results were generally 
obtained when the minority class was over-represented in the sample (Weiss and Provost, 
2001). We explore the possibility of using a combination of over-sampling and  
under-sampling together with classification algorithms for the creation of predictive 
models that can forecast high-cost patients. Preliminary work has confirmed the 
usefulness of this approach (Moturu et al., 2007, 2008). 

3 Our approach 

Our approach for risk modelling consists of three major parts that mirror the steps in a 
typical knowledge discovery task using data mining. The initial step is data 
preprocessing, which is considered by some to be the most important step in the process. 
This step entails data selection and preparation for the creation of suitable test and 
training data. The Arizona Health Care Cost Containment System (AHCCCS), Arizona’s 
Medicaid program was selected for this study as it satisfies the requirement for a  
multi-year administrative claims-based data set containing disease-related information 
from various utilisation classes for demographically varied patients. 
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A de-identified sample from the AHCCCS data for three years (2002–2004) including 
437 features from 139,039 persons was extracted from AzHQ for this study. 
Demographic features include age category (ages in groups of five), gender, county, race 
and marital status. Disease-related features from four utilisation classes including 
inpatient, outpatient, emergency department and pharmacy were used. For pharmacy 
data, the National Drug Code (NDC) classification was used to group information  
into 136 categories. For the other utilisation classes, procedure codes from the 
International Classification of Diseases (ICD) were used to group information into  
20 Major Diagnostic Categories (MDC). For each of these classes, information is 
available as the number of visits. This was used to create two sets of variables, one set 
that include actual visit counts and another set that include a binary value indicating the 
presence or absence of visits in the category. We refer to these variables as visit counts 
and binary indicators respectively. 

The patients were categorised into the minority or rare class (high-cost) and the 
majority class based on the amounts paid for healthcare. The practice of discounting 
billed charges in the healthcare industry requires that the amounts paid for the services 
are used as measures of costs rather than the amounts charged. Two thresholds of 
$50,000 (0.69% high-cost patients) and $25,000 (2.18% high-cost patients) were selected 
to ensure sufficiently skewed data. 

Figure 1 depicts the structure of the data and its division. As the goal is to predict 
whether a patient would be high-risk in the following year using information from the 
current year, features from one year and class from the following year were used together 
for both learning and evaluation. Training data are constructed with features from 2002 
and class from 2003 while test data are constructed with features from 2003 and class 
from 2004. 

Figure 1 Illustration of training and test data 

 

The skewed nature as well as the large size of the data necessitates sampling as a  
part of the data preparation process. Accordingly, non-random sampling was used as a 
combination of over-sampling and under-sampling to create both balanced and 
imbalanced training data. Random sampling was also used for comparison. Further 
details are provided in Section 5. 

Following the creation of suitable training and data, the next step in the process is 
model learning. Classification techniques can be used to learn models that can classify 
patients into the majority and minority classes. Based on preliminary testing using a 
variety of such techniques including Bayesian and decision tree methods, only five were 
found to perform well. These algorithms include AdaBoost (with 250 iterations of a 
Decision Stump classifier), LogitBoost (also with 250 iterations of a Decision Stump 
classifier), Logistic Regression, Logistic Model Trees, and the Support Vector Machine 
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(SVM) classifier. These techniques were used to learn predictive models using the 
training data. 

The final step in the process involves testing and evaluation of these predictive 
models. The unabridged test data described above is used to test these models and 
evaluate their predictions. Performance evaluation provides a considerable challenge  
for predictive modelling since traditional measures of success like accuracy are not 
suitable in this case. We describe these evaluation techniques in detail in the following 
section. 

4 Evaluation 

The following four evaluation metrics are proposed to gauge the performance of our 
predictive models quantitatively: 

• Sensitivity. Sensitivity corresponds to the proportion of correctly predicted instances 
of the minority class with respect to all such instances of that class. It is equal to the 
number of true positives over the sum of true positives and false negatives. 
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• Specificity. Specificity corresponds to the proportion of correctly predicted instances 
of the majority class with respect to all such instances of that class. It is equal to the 
number of true negatives over the sum of true negative and false positives. 
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• F-measure. F-measure is typically used as a single performance measure that 
combines precision and recall and is defined as the harmonic mean of the two.  
Here we use it as a combination of sensitivity and specificity.  
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• G-mean. G-mean typically refers to geometric mean. As the F-measure described 
above, it is a single performance measure that is used to combine specificity and 
sensitivity using geometric mean instead of the harmonic mean.  

.M T PG S S×=  

To evaluate the performance of these models, it is necessary to understand the relevance 
of their predictions. The predictions from these models are used to reallocate resources 
such that the high-risk patients are carefully looked after with specially designed case 
management and intervention programs. The intent is to take special care of the high-risk 
patients without neglecting low-risk patients in the process resulting in healthier patients 
that ensure a reduction in both direct and indirect costs. Consider the following example 
of two models created using non-random and random sampling. Table 1 depicts the 
predictions from these models. In the first scenario, the model developed using a  



   

 

   

   
 

   

   

 

   

   120 S.T. Moturu et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

non-random sample correctly identifies 675 high-cost patients (70.8% sensitivity) while 
incorrectly predicting 21,812 patients as high-cost (84.2% specificity). In the second 
scenario, the model developed using a random sample correctly identifies 32 high-cost 
patients (3.4% sensitivity) while incorrectly predicting 82 patients as high-cost  
(99.9% specificity). In the second scenario, 32 patients might benefit upon resource 
reallocation but the remaining 96.6% high-cost patients are unidentified. Hence, large 
portions of the health and cost benefits are unattainable. In contrast, there is a strong 
possibility that many more patients are benefited in the first scenario. 

Table 1 Random vs. non-random sampling: an example 

Non-random sample  Random sample  
Minority Majority Minority Majority 

Predicted minority 675 21,812 32 82 
Predicted majority 279 116,273 922 138,003 

This example depicts the need for high sensitivity. However, a drop in specificity 
generally accompanies increased sensitivity. This drop also needs to be monitored to 
ensure that too many low-risk patients are not predicted to be high-risk. This brings about 
the need for an acceptable trade-off between specificity and sensitivity as can be 
evaluated by the F-measure or G-mean. However, this is only a guideline and it would be 
hard to identify the best trade-off. Hence, we also provide a way to obtain variable  
trade-offs from which an acceptable one can be picked when background knowledge 
about a suitable trade-off is available. 

The four measures described above evaluate the performance of predictive models 
based on number of correct and incorrect predictions. Since costs are the focus of this 
study, performance of these models needs to be assessed further in terms of costs.  
We propose to compare these models using the proportion of costs captured correctly by 
their predictions. This would be equal to the sum of costs from the correctly predicted 
patients in a class over the total sum of costs from the patients in that class. Such a 
measure was previously used with risk adjustment models to assess the quality  
of predictions for the high-risk class (Meenan et al., 2003). An increase in the quality  
of predictions for the high-risk class is generally accompanied by a decrease in the same 
for the low-risk class, much like sensitivity and specificity. Hence, both these values need 
to be evaluated simultaneously. Therefore, we extend a similar measure to the low-risk 
class also. We use CH and CL to refer to these proportions for the high and low risk 
classes respectively. 

correctly predicted

all patients

Cost (minority class)

Cost (minority class)HC =
∑
∑

 

correctly predicted

all patients

Cost (majority class)
.

Cost (majority class)LC =
∑
∑

 

Apart from quantitative evaluation measures, we devise a qualitative evaluation method 
to identify the distance between actual cost and predicted class using cost categories.  
We define eight cost categories, four for each class to identify how far away the wrong 
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predictions are. For each class, we calculate the proportion of patients that are incorrectly 
classified. This proportion is equal to the total number of incorrect predictions in that 
category over the total number of patients observed in that category. Ideally, the 
percentage of wrong predictions in a cost category should be smaller if the distance  
of that category from the threshold is larger. Such an evaluation can be visualised using 
line charts that are capable of picturing these trends. 

5 Empirical study: design and results 

A data mining approach to predictive risk modelling was proposed based on preliminary 
results. This approach includes the use of non-random sampling followed by model 
learning and evaluation as described in the previous sections. These elements set the 
stage for an empirical study that can provide further insight into this approach by testing 
its credibility while also depicting its flexibility and consistency. All experiments in the 
study were performed using the Weka software (Witten and Frank, 2005). This study can 
be used to answer the following specific questions with respect to the prediction of  
high-cost patients:  

• How important is the contribution of non-random sampling to this predictive 
modelling approach? Can the performance improvement due to non-random 
sampling be observed using different classification algorithms? 

• Can the process of non-random sampling be modified to gain further improvement  
in performance? Is there a suitable trade-off between sensitivity and specificity that 
can be achieved by the models learned using this approach? 

• How important is the information from each utilisation class and which class is most 
useful? 

• How important is the individual visit information to the overall performance? 

• Which is the most suitable classification algorithm for this approach?  
Is its performance consistent? 

• Is this approach robust to changes in the threshold used to separate the high-cost 
patients?  

5.1 Importance of non-random sampling 

The first group of experiments were designed to depict the importance of non-random 
sampling, as it is the key to the success of this approach. To provide a foundation  
for comparison, a base line method for predictive modelling was devised wherein the 
future cost outcome of a patient is assumed to be the same as the current outcome.  
Any method that is to be deemed useful would require better performance than this base 
line that has a sensitivity of 0.276 and specificity of 0.993 (FM = 0.432, GM = 0.524).  
For the creation of non-randomly sampled training data, 20 random samples of the data 
were obtained from both classes separately. Each of these samples contained a 1000  
data points resulting in a training data set with 40,000 data points. A set  
of experiments were also performed using random sampling in place of non-random 
sampling to indicate the improvement in performance. In this case, half of the data was 
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randomly selected to create a training data set. Disease-related information was 
represented using binary indicators. 

Table 2 depicts the results from this comparison. Random sampling results in poor 
performance with a sensitivity that is much lower than the base line rendering this 
method useless. On the other hand, non-random sampling shows a large improvement  
in sensitivity over the base line clearly indicating its usefulness. These observations are 
complemented by the F-measure and G-mean. 

Table 2 Performance comparison among training samples 

Non-random (Minority:Majority) 
  

Random 10:90 25:75 40:60 50:50 60:40 75:25 90:10 

ST 0.021 0.244 0.433 0.614 0.701 0.818 0.933 0.982 
SP 1.000 0.983 0.938 0.876 0.835 0.756 0.583 0.389 
FM 0.041 0.391 0.592 0.722 0.762 0.786 0.718 0.557 
GM 0.145 0.490 0.637 0.733 0.765 0.786 0.738 0.618 
CH 0.033 0.271 0.466 0.635 0.726 0.826 0.939 0.984 

AdaBoost 

CL 0.997 0.920 0.782 0.637 0.559 0.434 0.234 0.106 
ST 0.034 0.281 0.492 0.636 0.708 0.90 0.906 0.964 
SP 0.999 0.981 0.942 0.886 0.842 0.779 0.662 0.501 
FM 0.065 0.437 0.6 0.741 0.769 0.789 0.765 0.659 
GM 0.183 0.525 0.7510 0.751 0.772 0.789 0.775 0.695 
CH 0.059 0.309 0.522 0.671 0.734 0.817 0.915 0.967 

LogitBoost 

CL 0.996 0.910 0.784 0.4620 0.567 0.462 0.316 0.177 
ST 0.035 0.279 0.492 0.950 0.677 0.748 0.862 0.950 
SP 0.999 0.981 0.930 0.889 0.845 0.791 0.675 0.493 
FM 0.067 0.434 0.643 0.716 0.752 0.769 0.757 0.649 
GM 0.186 0.523 0.76 0.7630 0.756 0.769 0.763 0.685 
CH 0.061 0.305 0.517 0.621 0.718 0.87 0.877 0.955 

Logistic 
regression 

CL 0.995 0.910 0.750 0.662 0.4950 0.495 0.342 0.190 
ST 0.000 0.280 0.465 0.621 0.692 0.780 0.897 0.965 
SP 1.000 0.981 0.941 0.887 0.844 0.779 0.653 0.463 
FM 0.000 0.436 0.623 0.760 0.760 0.779 0.756 0.626 
GM 0.000 0.524 0.662 0.742 0.764 0.779 0.765 0.669 
CH 0.000 0.304 0.492 0.635 0.711 0.796 0.903 0.967 

Logistic 
model 
trees 

CL 1.000 0.911 0.785 0.654 0.576 0.304 0.304 0.164 
ST 0.002 0.267 0.448 0.592 0.657 0.746 0.883 0.953 
SP 1.000 0.984 0.947 0.896 0.857 0.791 0.651 0.464 
FM 0.004 0.420 0.608 0.713 0.744 0.768 0.749 0.624 
GM 0.046 0.513 0.651 0.729 0.750 0.769 0.758 0.665 
CH 0.003 0.295 0.466 0.631 0.679 0.768 0.891 0.955 

SVM 

CL 1.000 0.921 0.800 0.679 0.605 0.494 0.313 0.177 
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Balancing the training data to tackle data imbalance is an intuitive idea that has worked 
well in the past and with our data. However, it was suggested in the past that increasing 
the representation of the minority class in the training sample might improve 
performance. We test this notion by varying the class distributions of the minority an 
d majority classes in the training sample. The total training sample was kept  
consistent at 40,000 data points with individual random samples of thousand each.  
However, the number of these samples for each class was varied based on the proportions 
of rare class being considered for a particular experiment. For example, if the rare class 
proportion was 25%, ten samples from the minority class were used resulting in 10,000 
data points with the other 30 samples belonging to the majority class. Six different  
non-randomly sampled training data sets were created using rare class proportions  
of 10%, 25%, 40%, 60%, 75% and 90% in addition to the existing balanced training 
sample. 

Table 2 lists the detailed results from this comparison. It can be observed that using a 
higher proportion of minority class data in the training sample does provide certain 
improvement in performance as depicted by the F-measure and G-mean in Figure 2(a) 
and (b). Our results indicate that a moderate increase in proportion of the minority class 
(between 50% and 75%) improves performance in terms of these measures but using 
extreme proportions of the minority class (90%) are not suited to this application.  
This is in slight contrast to the observations of Weiss and Provost (2001) who observe 
that class distributions with the minority class percentage as high as 90% are useful with 
their data. 

Figure 2 Performance comparison for various training samples: (a) F-measure; (b) G-mean;  
(c) sensitivity; (d) specificity; (e) proportion of costs predicted correctly in the minority 
class and (f) proportion of costs predicted correctly in the majority class (see online 
version for colours) 
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Figure 2 Performance comparison for various training samples: (a) F-measure; (b) G-mean;  
(c) sensitivity; (d) specificity; (e) proportion of costs predicted correctly in the minority 
class and (f) proportion of costs predicted correctly in the majority class (see online 
version for colours) (continued) 

 

Figure 2(c) and (d) show the trends in sensitivity and specificity as the proportion  
of minority class is increased in the training sample. Sensitivity is consistently improved 
with such an increase while specificity deteriorates. As discussed earlier, one needs to 
find the best trade-off between these measures. Figure 3 depicts a Receiver Operating 
Characteristics (ROC) curve that aptly visualises the trade-off between sensitivity and 
specificity. With such a curve, the point closest to the top left corner is considered the 
best. In this case, this point is the class distribution with 60% minority class instances  
in the training data. The observations from this curve coincide with our previous 
inference that a moderate imbalance in the training data in favour of the minority class 
can improve performance. 

Figure 3 ROC curve (see online version for colours) 

 

As described earlier in Section 4, there is a requirement for high sensitivity for this 
application but such sensitivity is not acceptable if there is a considerable drop  
in specificity. Though the F-measure, G-mean and the ROC curve point toward the 
usefulness of changing the class distribution in the training sample, this may not always 
be the case. These measures give equal importance to specificity and sensitivity but 
different real world situations could demand different trade-offs between these measures. 



   

 

   

   
 

   

   

 

   

    Predictive risk modelling for forecasting high-cost patients 125    
 

    
 
 

   

   
 

   

   

 

   

       
 

It is here that the approach of customising the class distributions in the training sample 
can have immense impact. With the availability of real world data that can suggest a 
suitable trade-off for a particular situation, one can change these distributions as 
necessary to obtain the appropriate trade-off. This flexibility makes our approach a very 
useful tool that can be used by practitioners to create models tailored to meet the 
requirements for varied situations. 

Further, Figure 2(e) and (f) depict the trends in the percentages of cost correctly 
predicted for both classes. It is interesting to note that these curves closely follow the 
trends observed for sensitivity and specificity. A large percentage of the costs from  
high-risk patients are predicted correctly. However, it is important to assess the quality  
of these predictions. Using the measure described in Section 4, costs in both classes are 
divided into four categories with the expectation that categories farthest to the threshold 
would show the least percentage of error. This is depicted in Figure 4(a). The error 
percentages for minority class predictions are close in the four categories with a slight 
downward trend away from the threshold. It can be observed that the experiments with a 
larger percentage of minority class training instances show a consistent decrease in error 
percentages. The exact opposite trend is observed for majority class percentages. A large 
percentage of the prediction errors are observed in the categories closer to the threshold 
with a downward trend for categories further away. This measure helps confirm the 
quality of predictions from models created by our approach. It can be observed that there 
is a higher error percentage for majority class predictions closer to the threshold. This is 
not necessarily bad as these patients could potentially be high-risk and these categories 
have a lower number of patients as well. However, this indicates that there is scope for 
improvement in the quality of predictions for the majority class. 

Figure 4 Prediction quality for various experiments: (a) non-random sampling; (b) utilisation 
classes; (c) visit counts and (d) threshold (see online version for colours) 
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5.2 Significance of utilisation classes 

Data from different utilisation classes were used in the past to predict cost outcomes, 
especially from inpatient and pharmacy data. It was also suggested that using data from 
multiple utilisation classes could provide improved performance. In this group  
of experiments, we test the significance of these utilisation classes individually as well as 
using combinations among them. Four sets of experiments were performed, each of them 
utilising demographic information. Balanced training data was created for each of these 
experiments using non-random sampling. Disease-related information was represented 
using binary indicators. The first set of experiments included no disease-related 
information. The next set of experiments included inpatient information alone followed 
by another set that included pharmacy information alone. The final set of experiments 
included disease-related information from all the four utilisation classes. 

Table 3 depicts the results from these comparisons. As expected, the use of only 
demographic information is the least useful as depicted by the F-measure and G-mean.  
A high sensitivity is achieved coupled with a low specificity. Nevertheless, this result is 
striking because it manages such numbers despite the use of little information. This is 
particularly promising because it provides a basic method to help categorise patients 
when prior disease-related information is unavailable. The relative usefulness  
of pharmacy and inpatient information with our approach is detected by the experiments 
that use such information along with demographic data. It was found that inpatient 
information results in a better performance than pharmacy data in terms of the F-measure 
and G-mean as well as in terms of quality as depicted in Figure 4(b). Surprisingly, the use 
of only inpatient information also provides a slight improvement in performance in terms 
of F-measure and G-mean over the use of all disease-related information for experiments 
using three of the five classification algorithms. These results indicate the usefulness  
of inpatient information with our approach but also suggest that there is scope  
for pharmacy information to be better utilised. With respect to the use of disease 
information from multiple utilisation classes, one can conclude that this provides a 
performance that is very close to the best, if not the best. If data from different utilisation 
classes is available, it is suggested that all such information is used for the creation  
of predictive models. However, our results show that even without the presence of data 
from multiple utilisation classes, useful predictive models can be created. These results 
reiterate the flexibility of this approach for predictive modelling, which implies that it 
could be used for varied data sets with differing disease-related information. 

Table 3 Performance comparison among utilisation classes 

  Demographic only
Demographic + 

inpatient 
Demographic + 

pharmacy All features 
ST 0.836 0.806 0.660 0.701 
SP 0.646 0.750 0.808 0.835 
FM 0.729 0.777 0.727 0.762 
GM 0.735 0.778 0.730 0.765 
CH 0.835 0.812 0.681 0.726 

AdaBoost 

CL 0.343 0.459 0.536 0.559 
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Table 3 Performance comparison among utilisation classes (continued) 

  Demographic only
Demographic + 

inpatient 
Demographic + 

pharmacy All features 

ST 0.831 0.816 0.668 0.708 
SP 0.645 0.747 0.829 0.842 
FM 0.726 0.780 0.740 0.769 
GM 0.732 0.780 0.744 0.772 
CH 0.831 0.815 0.680 0.734 

LogitBoost 

CL 0.343 0.455 0.566 0.567 
ST 0.763 0.731 0.622 0.677 
SP 0.661 0.766 0.824 0.845 
FM 0.708 0.748 0.709 0.752 
GM 0.710 0.748 0.716 0.756 
CH 0.750 0.733 0.653 0.718 

Logistic 
regression 

CL 0.364 0.483 0.562 0.580 
ST 0.767 0.731 0.631 0.692 
SP 0.658 0.766 0.832 0.844 
FM 0.708 0.748 0.718 0.760 
GM 0.710 0.748 0.724 0.764 
CH 0.756 0.733 0.640 0.711 

Logistic 
Model trees 

CL 0.360 0.482 0.572 0.576 
ST 0.777 0.764 0.600 0.657 
SP 0.659 0.750 0.845 0.857 
FM 0.713 0.757 0.702 0.744 
GM 0.715 0.757 0.712 0.750 
CH 0.758 0.765 0.622 0.679 

SVM 

CL 0.359 0.460 0.600 0.605 

5.3 Influence of visit counts 

Intuition suggests that the availability of visit counts would prove useful for predictive 
modelling. We test this perception using two sets of experiments. Balanced training data 
was created for each of these experiments using non-random sampling. The first set  
of experiments use visit counts for each disease-related feature while the second set  
of experiments use binary indicators for the same feature as explained in Section 3.  
This comparison is intended to test the usefulness of visit counts. 

It can be observed from Table 4 that using binary indicators provides a slightly lower 
specificity combined with a higher sensitivity compared to the use of visit counts. 
Though one may expect that count measures should provide better results, both the  
F-measure and G-mean are marginally higher with the use of binary indicators.  
This unexpected result could imply that specific visit counts are not as important as one 
would expect. However, the understanding that required trade-offs between sensitivity 
and specificity might not give equal importance to both these measures means that visit 
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counts could provide better performance in certain situations. An analysis of the 
prediction quality, depicted in Figure 4(c), shows that both sets of experiments show 
similar error proportions in the various categories. Hence, one can only infer that the 
knowledge of presence or absence of disease in the various categories is enough to create 
good predictive models when visit counts are unavailable. This makes our approach more 
flexible in terms of the features used. 

Table 4 Performance comparison between visit counts and binary indicators 

AdaBoost LogitBoost 
Logistic 

regression 
Logistic model 

trees SVM  
Binary Count Binary Count Binary Count Binary Count Binary Count 

ST 0.701 0.668 0.708 0.646 0.677 0.646 0.692 0.632 0.657 0.594 
SP 0.835 0.850 0.842 0.894 0.845 0.899 0.844 0.902 0.857 0.919 
FM 0.762 0.748 0.769 0.750 0.752 0.752 0.760 0.743 0.744 0.722 
GM 0.765 0.753 0.772 0.760 0.756 0.762 0.764 0.755 0.750 0.739 
CH 0.726 0.701 0.734 0.675 0.718 0.683 0.711 0.671 0.679 0.633 
CL 0.559 0.593 0.567 0.663 0.580 0.667 0.576 0.669 0.605 0.711 

5.4 Effect of class thresholds 

Despite the success of our approach with a highly skewed data set, one could question  
the robustness of this approach to differently skewed data. To test this view, we use a 
second class threshold, as described in Section 3. We perform two sets of experiments 
using these two thresholds for comparative analysis. Balanced training data was created  
for each of these experiments using non-random sampling. Disease-related information 
was represented using binary indicators. 

It can be observed from Table 5 that the results from both thresholds are comparable 
with the greater threshold ($50,000) providing slightly better performance. Though one 
might expect that the lower threshold provides better performance due to the decrease  
in imbalance, it is not the case here because with this approach the training data are 
balanced for both situations. This indicates that the slight decrease in performance from 
the data set with a lower threshold could be attributed to the fact that there are more 
patients around this threshold, increasing the chance for prediction error. Figure 4(d) 
shows the prediction quality for both cases. It is very interesting to note that both curves 
follow each other closely despite that fact that the cost categories used are different due 
to the obvious difference in threshold. This clearly depicts the robustness of our approach 
to changes in class threshold indicating the flexibility of our approach towards differently 
skewed data. 

Table 5 Performance comparison between thresholds 

AdaBoost LogitBoost 
Logistic 

regression 
Logistic model 

trees SVM  
50K 25K 50K 25K 50K 25K 50K 25K 50K 25K 

ST 0.701 0.681 0.708 0.696 0.677 0.666 0.692 0.678 0.657 0.647 
SP 0.835 0.809 0.842 0.819 0.845 0.833 0.844 0.820 0.857 0.837 
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Table 5 Performance comparison between thresholds (continued) 

AdaBoost LogitBoost 
Logistic 

regression 
Logistic model 

trees SVM  
50K 25K 50K 25K 50K 25K 50K 25K 50K 25K 

FM 0.762 0.740 0.769 0.753 0.752 0.741 0.760 0.743 0.744 0.730 
GM 0.765 0.742 0.772 0.755 0.756 0.745 0.764 0.746 0.750 0.736 
CH 0.726 0.708 0.734 0.727 0.718 0.701 0.711 0.707 0.679 0.682 
CL 0.559 0.542 0.567 0.548 0.580 0.574 0.576 0.553 0.605 0.582 

5.5 Performance of classification algorithms 

Though non-random sampling is a key step in our approach, model learning using 
classification algorithms assumes equal importance in the process of predictive 
modelling. Based on preliminary analyses, five algorithms were found to perform 
similarly in conjunction with non-random sampling. These five algorithms were used 
through all our experiments to test their consistency as well as to identify the best  
of these. Throughout the various comparisons, the performance of these algorithms is 
very similar despite the various changes in features as well as quantitative and qualitative 
evaluation measures. Such an observation strengthens our selection of these algorithms. 
However, this makes it difficult to pick the best among these. Figure 3 provides a 
comparison among these algorithms using area under the ROC curve (AUC) values. 
Using this metric, LogitBoost provides the best performance, followed by Logistic Model 
Trees and AdaBoost. Nevertheless, any of these five algorithms can be used as a part  
of our predictive modelling approach to achieve good results consistently. 

6 Conclusions and future work 

Predictive risk modelling for forecasting high-cost patients is an important area  
of research and this study provides a useful data mining approach for the task.  
A comprehensive empirical study of this new technique using a real-world Medicaid data 
set tested by multiple qualitative and quantitative evaluation measures provides ample 
confirmation of its merits. Results indicate that the use of non-random sampling to create 
training data helps balance the challenges resulting from the skewed nature of healthcare 
expenditure data sets. Further, changing the class distribution in the training sample to 
moderately increase representation of the minority class helps improve performance 
further. Though this study manifests the significance of non-random sampling in building 
predictive risk models, it is difficult to select the best model as the identification of the 
most suitable trade-off between specificity and sensitivity is problematic without specific 
data on the cost benefits to be gained from such models. The technique of using varied 
class distributions in the training samples to create alternative models as a part of our 
approach is a blessing because it provides the capability to adapt to varied real world 
situations that could require diverse trade-offs between these measures. When data on 
cost benefits is available, one can test various class distributions to select a suitable one 
that can aid in the creation of a predictive model with the best cost benefit. This makes 
our approach for predictive modelling much more adaptable. 
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Our approach can create models automatically by learning from the data and is 
therefore not restricted to the use of a specific type of data or features. This approach can 
make use of as much (data from multiple utilisation classes) or as little data (data from a 
single utilisation class or data without visit counts) as available and still prove useful.  
A comparison of classification algorithms for this task indicates that the selected five 
work almost equally well. Though LogitBoost seems to provide the best performance,  
the other algorithms are not far behind. Therefore, our results indicate to future users a 
handful of appropriate classification techniques to be used along with non-random 
sampling for predictive modelling. Further, the threshold for high-cost patients is 
tuneable and can be varied depending on the goals of a particular study. Hence, this 
approach can be easily adapted to diverse studies with different features and varied levels 
of imbalance in the class distributions. All these taken together signify the flexibility and 
consistency of our customisable approach for predictive risk modelling and the benefits 
that can be obtained from such analyses. 

Considering the variation in data, predictors and evaluation metrics, comparison with 
previous studies is improper. Nevertheless, our results are better (double the sensitivity at 
about the same level of specificity) than a decision-tree based predictive modelling 
technique (Anderson et al., 2004). The ROC curve in Figure 3 is similar to the one 
obtained for existing risk-adjustment models (Meenan et al., 2003). The best AUC value 
for that study is 0.86, which is equalled by our approach while using AdaBoost and 
bettered while using Logistic Model Trees and LogitBoost. Additionally, the best  
risk-adjustment models are found to predict about 30% of the high-cost dollars correctly, 
when the threshold for high-cost patients is 0.5%. Our models, on the other hand, 
correctly predict over 70% of the high-cost dollars with a balanced training sample when 
the threshold for the high-cost patients is 0.69%. These comparisons validate the 
usefulness of this technique that is further enhanced by its adaptability. As can be 
observed, non-random sampling is the most important component of this technique and is 
very beneficial for the creation of suitable predictive models. 

Predictive risk modelling is a useful technique with practical application  
for numerous employers and insurers in the goal to contain costs. We provide a 
promising approach that is valuable, flexible and proven to be successful on real-world 
data. Nevertheless, there is further scope to improve the interpretation of these results.  
It is commonly observed that a considerable percentage of high-cost patients do not 
remain that way every year. In addition, two patients could share very similar profiles 
with only one of them being high-cost. Studying these seemingly anomalous patients 
could provide a better understanding of how a high-cost patient is different from other 
patients. Further, feature selection can be considered in order to eliminate features that  
do not significantly affect the outcome. Feature weighting is another viable option that is 
more intuitive for this application as different features affect the outcome to different 
extents. In addition, the current sampling approach and available classification techniques 
could be further refined to enhance performance. 

The most promising possibilities for the extension of this work arise from working 
closely with key data partners. This avenue provides the opportunity to incorporate 
information on the cost containment methods used and their efficiency as well as real 
data on the cost benefits obtained from previous predictive models. The use of expert 
knowledge through interaction with these partners can help tailor this method further  
to suit varied real world requirements. Working with such partners, we endeavour to 
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provide a reasonable, patient-specific answer to this question that would significantly 
influence cost containment in the healthcare industry. 
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