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Abstract

Collective behavior refers to how individuals behave when they are
exposed in a social network environment. In this article, we examine how
we can predict online behaviors of users in a network, given the behav-
ior information of some actors in the network. Many social media tasks
can be connected to the problem of collective behavior prediction. Since
connections in a social network represent various kinds of relations, a
social-learning framework based on social dimensions is introduced. This
framework suggests extracting social dimensions that represent the latent
affiliations associated with actors, and then applying supervised learn-
ing to determine which dimensions are informative for behavior predic-
tion. It demonstrates many advantages, especially suitable for large-scale
networks, paving the way for the study of collective behavior in many
real-world applications.
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Collective Behavior

Social media such as Facebook, MySpace, Twitter, BlogCatalog, Digg, YouTube
and Flickr, facilitate people of all walks of life to express their thoughts, voice
their opinions, and connect to each other anytime and anywhere. For instance,
popular content-sharing sites like Del.icio.us, Flickr, and YouTube allow users to
upload, tag and comment different types of contents (e.g., bookmarks, photos,
videos). Users registered at these sites can also become friends, a fan or follower
of others. The prolific and expanded use of social media has turned online
interactions into a vital part of human experience. The election of Barack
Obama as the President of United States was partially attributed to his smart
Internet strategy and access to millions of younger voters through the new social
media, such as Facebook, a popular social networking site claiming to attract
400 million active users up to date1. The large population actively involved
in social media also provides great opportunities for business. One of the top

1http://www.facebook.com/press/info.php?statistics



PC companies Dell said that “the company had earned $3 million in revenue
directly through Twitter since 2007”2, where Twitter is a social networking and
micro-blogging service that enables its users to send and read short messages.

Concomitant with the opportunities indicated by the rocketing online traf-
fic in social media are the challenges for user/customer profiling, accurate user
matching at different domains, recommendation as well as effective advertising
and marketing. Take social networking advertising as an example. Currently,
advertising in social media has encountered many challenges3. A recent study4

from the research firm IDC suggested that “just 57% of all users of social net-
works clicked on an ad in the last year, and only 11% of those clicks lead to
a purchase”. Note that some social networking sites can only collect very lim-
ited user profile information, either due to the privacy issue or because the user
declines to share information. On the contrary, a social network such as the
friendship network in Facebook, the contact network in Flickr or YouTube, and
the follower network in Twitter, is accessible. If one can leverage a small portion
of user information and the network data wisely, the situation might improve
significantly.

The aforementioned social network advertizing problem can be generalized
to the study of collective behavior. Here, behavior can include a broad range of
actions: joining a group, connecting to a person, clicking on some ad, becoming
interested in certain topics, dating with people of certain type, etc. Collective
behavior refers to behaviors of individuals who are exposed in a social network
environment.

Collective behavior is not simply the aggregation of individuals’ behavior.
In a connected environment, behaviors of individuals tend to be interdependent.
That is, one’s behavior can be influenced by the behavior of his/her friends. This
naturally leads to behavior correlation between connected users. Such collective
behavior correlation can also be explained by homophily. Homophily [3] is a
term coined in 1950s to explain our tendency to link up with one another in
ways that confirm rather than test our core beliefs. Essentially, we are more
likely to connect to others sharing certain similarity with us. This phenomenon
has been observed not only in the real world, but also in online environments. In
other words, similar people tend to become friends, leading to similar behavior
between connected egos in a social network. Take marketing as an example. If
our friends buy something, there is a better-than-average chance that we’ll buy
it too.

Since a social network provides valuable information concerning actor be-
haviors, one natural question is how we can utilize the behavior correlation
presented in a social network to predict collective behavior. In particular, the
collective behavior prediction problem can be stated as follows:

Given a social network with behavior information of some
actors, how can we infer the behavior outcome of the re-

2http://bits.blogs.nytimes.com/2009/06/12/dell-has-earned-3-million-from-twitter/
3http://www.nytimes.com/2008/12/14/business/media/14digi.html
4http://www.nytimes.com/2008/12/01/technology/internet/01facebook.html



Figure 1: Contacts of One User in Facebook

maining ones within the same network?

This problem assumes that the behaviors of some individuals are observed so
that social learning is attainable. This portion of information can be collected
in reality depending on tasks. For instance, if the behavior is about whether a
user clicks on an ad, this information can be collected when the ad is displayed
to the user. For another kind of behavior concerning voting for a presidential
candidate, some voluntary responses can be collected through sending out on-
line surveys. Given some behavior information, the collective behavior can be
unraveled by exploiting the network connectivity between actors.

Heterogeneous Relations in Social Networks

To understand collective behavior, one classical model well studied in social sci-
ence and behavioral study is the threshold model [1], in which an actor adopts
one action when the number of his friends taking an action exceeds a certain
threshold. Indeed, Schelling in his seminal work [7] used a variant of this thresh-
old model to show that a small preference for one’s neighbors to be of the same
color could lead to total race segregation. A similar idea, collective inference [2],
is adopted in machine learning community to make predictions about collective
behavior. It assumes that the behavior of one actor is dependent upon that of
his friends. For prediction, collective inference is required to find an equilibrium
status such that the inconsistency between connected actors is minimized. This
is normally done by iteratively updating the possible behavior output of one
actor while fixing the behavior output (or attributes) of his connected friends
in the network. It has been shown that considering this network connectivity
for behavior prediction outperforms those that do not.



However, connections in social media are often not homogeneous. The het-
erogeneity presented in network connectivities can hinder the success of collec-
tive inference. People can connect to their family, colleagues, college classmates,
or some buddies met online. Some of these relations are helpful in determining
the targeted behavior, but not necessarily always so. For instance, Figure 1
shows the contacts of the first author on Facebook. The densely-knit group
on the right side consists of mostly his college classmates at Fudan University,
while the upper left corner shows his connections in his graduate school (Arizona
State University). Meanwhile, at the bottom left are some of his high-school
friends in Sanzhong. While it seems reasonable to infer that his friends at ASU
is likely to participate in a football game, based on the fact that the user is
going to watch an ASU football game, it does not make sense to propagate this
preference to his high-school friends or college classmates. A social network can
consist of heterogeneous relations. Directly applying collective inference to this
kind of networks does not differentiate these connections, thus becoming risky
for prediction of collective behavior.

Moreover, online social networks tend to be more noisy than those in the
physical world, as it is much easier for users to get connected online. It is
not surprising that some users have thousands of online friends whereas this is
hardly true in reality. For instance, one user in Flickr connects to more than
19,000 contacts5. Among so many friends, it might be the case that only a small
portion of them can influence the actor’s behavior. In summary, people are
involved in different relations and it is helpful to differentiate these
relations for behavior prediction.

It is often a luxury to have detailed relation information, though some sites
like LinkedIn and Facebook do ask people how they know each other when
they become connected. Most of the time, people decline to share such detailed
information, resulting in a social network between users without explicit infor-
mation about pairwise relation type. Even if the pairwise relation information
is available, it is not necessarily relevant or refined enough to help determine
the behaviors of connected users. For example, knowing two actors are col-
lege classmates does not help much for the behavior prediction of voting for a
presidential candidate.

The above concerns pose the following two challenges to be addressed for
collective behavior prediction:

• Without information of relation type, is it possible to differen-
tiate relations based on network connectivity?

• If relations are differentiated, how can we determine whether a
relation can help behavior prediction?



Table 1: Social Dimension Representation
Actors ASU Fudan Sanzhong

Lei 1 1 1
Actor1 1 0 0

...
...

...
. . .

Social Dimensions

Differentiating pairwise relations based on network connectivity alone is by no
means an easy task. Alternatively, we can look at social dimensions [8] of
actors. Social dimensions are introduced to represent the relations associated
with actors, with each dimension denoting one relation. Suppose two actors ai

and aj are connected because of relationship R, both ai and aj should have
a non-zero entry in the social dimension which represents R. Let us revisit
the example in Figure 1. The relations between the user and his friends can
be characterized by three affiliations: Arizona State University (ASU), Fudan
University (Fudan), and a high school (Sanzhong). The corresponding social
dimensions of actors in Figure 1 are shown in Table 1. In the table, if one actor
belongs to one affiliation, then the corresponding entry is non-zero. Since Lei
is a student ASU, his social dimension includes a non-zero entry for the ASU
dimension to capture the relationship of his ASU friends and him.

Social dimensions capture prominent interaction patterns presented in a net-
work. Note that one actor is very likely to be involved in multiple different social
dimensions (e.g., Lei participates in 3 different relations in the table). This is
consistent with multi-facet nature of human social life that one is likely to be
involved in distinctive relations with different people.

SocioDim Framework

The social dimensions shown in Table 1 are constructed based on the explicit
information of relations. In reality, without knowing true relationship, how can
we extract latent social dimensions? One key observation is that actors of the
same relation tend to connect to each other as well. For instance, as shown in
Figure 1, the friends of Lei at ASU tend to interact with each other as well.
Hence, to infer a latent social dimension, we need to find out a group of people
who interact with each other more frequently than random. This boils down
to a classical community detection problem. A requirement is that one actor is
allowed to be assigned to multiple communities.

After we extract the social dimensions, we consider them as normal fea-
tures and combine them with the behavioral information to conduct supervised
learning. Different tasks might represent the user behavior in different ways.
In certain cases, we can represent the behavior output by labels. For instance,

5http://www.flickr.com/people/22711787@N00
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Figure 2: Underlying Collective Behavior Model for SocioDim framework

whether a user joins a group, whether he likes a product, whether he votes for a
presidential candidate. In some other cases, it might be true that the behavior
output is represented more properly using continuous numbers, like the proba-
bility that a user clicks on an ad and the frequency that a user visits an interest
group. Depending on the behavior representation (discrete or continuous val-
ues), a classifier or a regression learner can be used. This supervised learning is
critical as it will determine which dimensions are relevant to the target behavior
and assign proper weights to different social dimensions.

In summary, a social-dimension based learning framework SocioDim [8] can
be applied to handle the network heterogeneity. It consists of two steps, with
each addressing one challenge sketched in the previous section:

• Extract meaningful social dimensions based on network connectivity via
community detection.

• Determine relevant social dimensions through supervised learning.

Prediction is straightforward once a learned model is ready, since the social
dimensions have been calculated for all actors. Applying the constructed model
to the social dimensions of the actors without behavior information, we obtain
the behavior predictions.

This SocioDim framework basically assumes the affiliation membership of
actors determines one’s behavior. This can be visualized more clearly in an ex-
ample in Figure 2. The circles in orange denote individuals, the green rectangles
affiliations and the red blocks at the bottom behaviors. Individuals are associ-
ated with different affiliations in varying degrees (with line thickness indicating
the degree of association) and distinctive affiliations regulate the member be-
havior differently. For instance, Catholic Church opposes smoking and abortion
while Democratic Party supports abortion. Note that some affiliations might
have no influence over certain behavior such as Democratic Party and Repub-
lican Party over smoking. The final behavior output of individuals depends on
the affiliation regularization and individual associations. The first step of our
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Figure 3: A Toy Example
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Figure 4: Edge Clusters

proposed SocioDim framework essentially finds out the individual associations
and the second step learns the affiliation regularization by assigning weights to
different affiliations.

Social Dimension Extraction

SocioDim framework is proposed to address the relation heterogeneity presented
in social networks. Thus, a sensible method for social dimension extraction be-
comes critical to its success. Briefly, existing methods to extract social dimen-
sions can be categorized into node-view and edge-view.

• Node-view methods concentrate on clustering nodes of a network into
communities. As we have mentioned, the extraction of social dimensions
boils down to a community detection task. The requirement is that one
actor should be allowed to be assigned to multiple affiliations. Many
existent community detection methods, with the aim of partitioning the
nodes of a network into disjoint sets, do not satisfy this requirement.
Instead, a soft clustering scheme is preferred. Hence, variants of spectral
clustering, modularity maximization, non-negative matrix factorization or
block models can be applied.

One representative example of node-view methods is modularity maxi-
mization [6]. The top eigenvectors of a modularity matrix are used as
the social dimensions in [8]. Suppose we are given a toy network as in
Figure 3, of which there are 9 actors, with each circle representing one
affiliation. For k affiliations, typically at least k − 1 social dimensions are
required. The top social dimension based on modularity maximization of
the toy example is shown in Table 2. The actors of negative values be-
long to one affiliation, and actor 1 and those actors with positive values
belonging to the other affiliation. Note that actor 1 is involved in both
affiliations. Hence, actor 1’s value is in between (close to 0). This social
dimension does not state explicitly about the association, but presents
degree of associations for all actors.

• Edge-view methods concentrate on clustering edges of a network into
communities. One representative edge-view method is proposed in [9].
The critical observation is that an edge resides in only one affiliation,
though a node can be involved in multiple affiliations. For instance, in



Actors Node-Centric Edge-Centric
Clustering Clustering

1 -0.1185 1 1
2 -0.4043 1 0
3 -0.4473 1 0
4 -0.4473 1 0
5 0.3093 0 1
6 0.2628 0 1
7 0.1690 0 1
8 0.3241 0 1
9 0.3522 0 1

Table 2: Social Dimensions of the Toy Example

Figure 3, actor 1 participates in both affiliations, but his connections are
well separated, either in the red affiliation or in the green one. Hence,
instead of directly clustering the nodes of a network into some commu-
nities, we can take an edge-centric view, i.e., partitioning the edges into
disjoint sets such that each set represents one latent affiliation (as shown
in Figure 4). In the figure, the red edges represent one affiliation and the
green ones denote the other. We can convert the resultant edge partition
into social dimension representation as shown in Table 2. An actor is
involved in one affiliation as long as any of his connections are involved
in that affiliation. For instance, actor 1 has connections engaged in both
affiliations: connection (1,7) is in the red set, and connection (1,4) in the
green one. Thus, actor 1 has non-zero entries for both affiliations as shown
in the table. Actor 4, on the contrary, with all its connections residing
in the green set, has only one non-zero entry in its corresponding social
dimension. This naturally leads to sparse social dimensions as shown in
Table 2. By contrast, a node-view method like modularity maximization
yields non-zero values for all the entries, resulting in dense representation.

In addition, the social dimensions based on edge-view methods are guar-
anteed to be sparse. One consequence of this edge partition is that the
number of affiliations is bounded by the number of connections one actor
has. If one actor has d connections, his affiliations are no more than d.
In the extreme case, if one actor has only one connection, this actor can
engage in only one affiliation. Owning to the power law distribution [5]
presented in large-scale networks, a large portion of nodes in a network
would bear a low degree. Hence, the resultant social dimensions would be
sparse. To give a concrete example, we examine a YouTube network [9]
with more than 1 million actors and verify the upperbound of the den-
sity. The YouTube network has 1, 128, 499 nodes and 2, 990, 443 edges.
Suppose we want to extract 1, 000 dimensions from the network. Since
232 nodes have degrees larger than 1000, and the remaining nodes have
degrees totaling 5, 472, 909, the density of extracted social dimensions is



Table 3: Difference between Node-View and Edge-View Methods
Objects under focus Community Assignment

Node-View Methods Nodes multi-assignment
Edge-View Methods Edges single-assignment

upperbounded by (5, 472, 909+232×1, 000)/(1, 128, 499×1, 000) = 0.51%.
Based on our proposed edge clustering method in [9], the true density of
the extracted social dimensions is 0.23% < 0.51%.

Both node-view and edge-view methods can be applied to extract social
dimensions. Table 3 lists their key differences. It is not obvious that one is better
than the other. It depends on the network data, applications, and approaches
being used. Next, we will show some empirical results to demonstrate the
potential of the SocioDim framework.

Comparative Study

The SocioDim framework has many advantages over collective inference. Below
we show some empirical results by studying behaviors on three representative
social media sites. In particular, we crawl social networks in BlogCatalog6,
Flickr7, and YouTube8, respectively. BlogCatalog is a blog directory, Flickr is
a popular photo sharing site and YouTube is well known as a video sharing
platform. User interests or subscribed interest groups are deemed as behavior
labels. F1, the harmonic mean of precision and recall9, is employed to evaluate
predictions. The average performance over a multitude of behaviors are reported
at each site.

• Reusable. SocioDim is composed of two parts: community detection
and supervised learning. Both are well-studied. Many algorithms have
been developed and numerous existing software packages can be plugged
in instantaneously, enabling code reuse and saving many human efforts for
practical deployment.

• Accurate. By handling heterogeneity, SocioDim is suitable to be applied
to online networks collected from social media to predict collective behav-
ior. It has been shown to outperform collective inference considerably,
especially when the social network is quite sparse and the behavior infor-
mation of users is little [8]. For instance, Figure 5 shows the performance

6http://www.blogcatalog.com/
7http://www.flickr.com/
8http://www.youtube.com/
9Let y, ŷ ∈ {0, 1}n denote the true labels and the predictions, respectively. Precision (P),

Recall (R) and F1-measure (F1) are defined as P =

∑n

i=1
yiŷi∑n

i=1
ŷi

, R =

∑n

i=1
yiŷi∑n

i=1
yi

, F1 = 2PR
P+R

.



Figure 5: Performance on BlogCatalog network with 10, 312 actors [9]. Node
View and Edge View denote SocioDim with modularity maximization [8] and
proposed edge-centric clustering in [9], respectively for social dimension extrac-
tion. Collective Inference represents the wvRN method recommended in [2].

Table 4: Computation Time of SocioDim with Node-View Social Dimension
Extraction versus Collective Inference on Flickr network of 80,513 actors, mea-
sured by seconds on Core2Duo 3G CPU. Collective inference does not show up
in Pre-processing and Training as the method works like a lazy learner, which
does not require training.

Percentage of Actors
with Behavior Information 2% 4% 6% 8% 10%

Pre-processing SocioDim 2857
Training Time SocioDim 46.5 91.5 134.1 162.6 211.2

Test Time SocioDim 2.4 2.4 2.3 2.3 2.3
CollectiveInf 1387 1084 740 588 470

of representative methods of node-view, edge-view and collective infer-
ence, respectively. SocioDim framework, with social dimension extraction
either in node view or in edge view, outperforms collective inference sub-
stantially, indicating that differentiating connections between actors does
help for behavior prediction.

• Efficient. A key difference of SocioDim framework from collective in-
ference is that it is very efficient for prediction by trading off more time
in network pre-processing and training as shown in Table 4. Collective
inference typically requires many scans of the whole network for predic-
tion while SocioDim accomplishes the task in one shot. SocioDim is more
suitable for online applications as a majority of them emphasize more on
prompt response for predictions.



Table 5: Scalability comparison of different methods for social dimension ex-
traction [9]. Memory footprint is the size of the extracted social dimensions,
and computation time refers to the time to compute social dimensions.

500 Social Dimensions
Flickr YouTube

Extraction 80K actors 1.1M actors
Methods 6M links 3M links

Memory Footprint Node-View 322.1MB 4.6GB
Edge-View 44.8MB 39.9MB

Computation Time Node-View 40 mins —
Edge-View 3.6 hours 10mins

• Scalable. With a proper method to extract social dimensions, scalable
instantiation of the framework can be developed in terms of both time and
space complexity. For instance, with a normal PC, SocioDim with social
dimension extraction in edge view, is able to handle a YouTube network
of more than 1 million users in approximately 10 minutes and keep the
extracted social dimensions extremely sparse, occupying only 40 megabyte
memory space as shown in Table 5.

On the other hand, when there is no memory constraint, node-view meth-
ods costs less time. This is observable on the Flickr data. The computation
time of edge-view method on YouTube network is much smaller than on
Flickr, because Flickr, though with fewer nodes, has more edges in the net-
work. The node-view method, which involves an eigenvector computation
problem, is proportional to the number of nodes, whereas the edge-view
method is proportional to the number of edges.

• Generalizable. The SocioDim framework essentially converts a network
into features, offering a simple mechanism to seamlessly integrate two
seemingly orthogonal information: social networks and actor features. It
might be the case that some actor features (e.g., user profiles, blog content)
are also available. These features can be combined with the extracted
social dimensions before subsequent supervised learning. This kind of
integration has been shown to boost the performance of relying on either
type of information alone as shown in Figure 6.

Challenges and Future Work

In the previous sections, we have introduced the problem of collective behav-
ior prediction, covered a social learning framework based on social dimensions,
discussed two categories of methods for social dimension extraction and showed
some potential advantages of the framework. However, many challenges are still
there and need further research. Below, we elaborate some interesting directions.

Extraction of actor information: In social learning, the structural infor-
mation of social networks alone is a weak indicator of user behavior. In all our
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Figure 6: Averaged performance of network information with actor features on
BlogCatalog data [8]. The social network is the blogger friendship network,
and the actors features are the content of 5 most recent blog posts of bloggers.
SocioDim framework provides a simple mechanism to combine social networks
with actor features, leading to a substantial improvement over the performance
of relying on either type of information alone [8].

experiment results, it is noticed that based on network information alone, the
collective behavior prediction performance is far from satisfactory (with 20-30%
F1-measure). But when combined with some other actors features like blog
contents, the performance can be improved. Thus, a reliable collective behavior
prediction system should include more information concerning actors. What
kind of information can we collect to help behavior prediction? For instance,
in Flickr and YouTube, users are allowed to upload tags and comments con-
cerning shared resources. In Twitter, the tweets can be informative of potential
user behavior. In certain cases, users are involved in 3-mode interactions like
user-tag-resource. How can we extend the SocioDim framework to handle this
kind of higher-order interactions? Is there any more effective method other than
simple juxtaposition to integrate social dimensions and actor features?

Hybrid approach to social dimension extraction: In edge view meth-
ods, one fundamental assumption is that each edge belongs to only one affilia-
tion. But it is well known that some weak ties are likely to bridge two different
communities. We expect that a hybrid approach of node-view and edge-view
methods might help locate those cross-community nodes and edges, so that a
more meaningful social dimension representation can be extracted from a net-
work. When a network becomes more and more heterogeneous, it becomes
difficult to learn a clean social dimension representation from the network. Fil-
tering out those irrelevant dimensions to the target behavior during extraction
can also be important.



Efficient dynamic update: Networks in social media are evolving inces-
santly, with new members joining a network, and new connections established
between existing members each day. This dynamic nature of networks entails
efficient update of the model for collective behavior prediction. It is also quite
intriguing to consider temporal fluctuation into the problem of collective behav-
ior prediction.

Scalability: We have shown that the edge-view method can handle mega-
scale networks, but it is still memory-based. That is, everything is loaded into
memory so the social dimension extraction can be finished efficiently. In reality,
the network size could be so large that the network data cannot even be held in
memory. It remains a challenging task to develop disk-based method to handle
networks of extreme scale.

Model selection: The SocioDim framework requires users to specify the
number of social dimensions to extract from a network. Our empirical experience
indicated that the optimal dimensionality depends on the network size, network
density, as well as number of users with known behavior. It would be practically
useful to develop an automatic process such that the framework can determine
the optimal number of social dimensions.

In this article, we examine how we can predict the online behavior of users
in social media, given the behavior information of some actors in the network.
Many social media tasks can be connected to the problem of collective behavior
prediction. Since the connections in a social network represent various kinds of
relations, a framework based on social dimensions is introduced. This frame-
work suggests to extract social dimensions that represent the latent affiliations
associated with actors, and then apply supervised learning to determine which
dimensions are informative for behavior prediction. It demonstrates many po-
tential amenities, and is especially suitable to be applied to large-scale networks,
paving the way for collective behavior study in many real-world applications.
We expect that along with this direction, more research work would emerge to
address the many aforementioned challenges in the near future.

Related Work

The problem of collective behavior prediction is relevant to within-network clas-
sification [2], a classification problem when data instances are presented in a
network format. In this case of social learning, the data instances are not in-
dependently identically distributed (i.i.d.) as in conventional data mining. To
capture the correlation between labels of neighboring data instances, typically
a Markov dependency assumption is assumed. That is, the label of one node
depends on the labels (or attributes) of its neighbors. Normally, a relational
classifier is constructed based on the relational features of labeled data, and
then an iterative process is required to determine the class labels for the unla-
beled data. The class label or the class membership is updated for each node
while the labels of its neighbors are fixed. This process is repeated until the
label inconsistency between neighboring nodes is minimized. It is shown in [2]



that a simple weighted vote relational neighborhood classifier works reasonably
well on some benchmark relational data and is recommended as a baseline for
comparison.

Most relational classifiers, following the Markov assumption, capture the lo-
cal dependency only. To handle the long-distance correlation, the latent group
model [4], and the nonparametric infinite hidden relational model [10] assume
Bayesian generative models such that the link (and actor attributes) are gener-
ated based on the actors’ latent cluster membership. These models and social
dimensions [8] pursue the same fundamental goal to capture the latent affil-
iations of actors. But the model intricacy and high computational cost for
inference associated with the aforementioned models hinder their application to
large-scale networks. Hence, Neville and Jensen [4] propose to use clustering
algorithm to find the hard cluster membership of each actor first, and then fix
the latent group variables for later inference. As each actor is assigned to only
one latent affiliation, it does not capture the multitude of affiliation association
required in social learning.
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