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Abstract

Most existing approaches for gene selection are based
on evaluating the statistical relevance. However, there
are remarkable discrepancies between statistical rel-
evance and biological relevance. It is important to
consider biological relevance for crucial genes identi-
fication. The task of detecting biological relevance
presents two major challenges: first, how to define dif-
ferent types of measures to evaluate the biological rel-
evance from multiple perspectives; and second, how to
effectively integrate these measures to achieve better
estimations. In this work, we propose to detect biologi-
cal relevance by applying dynamics analysis using both
biological networks and gene expression profiles from
different phenotypes, and develop an effective prob-
abilistic model to integrate various types of relevance
measures in a unified form. Experimental results show
the efficacy and potential of the proposed approach
with promising findings.

1 INTRODUCTION

Selecting genes that are critical to a particular bio-
logical process has been a major challenge in post-
array analysis. Also known as feature selection [18] in
machine learning research area, gene selection has at-
tracted intensive research interests and much progress
has been made over the last decade in developing ef-
fective gene selection algorithms [17, 23]. Given cDNA
Microarray data, most existing algorithms try to iden-
tify genes that are differentially expressed over the
samples via various types of statistical tests. Dis-
criminative genes help classifiers to achieve high ac-
curacy. However, does the better accuracy necessar-
ily indicate higher biological relevance of genes? We
applied a supervised gene selection algorithm, Infor-
mation Gain [11] and an unsupervised method, Gene
Variance, on the expression profiles of 81 glioblastomas
patients and 23 normal persons [28] to select genes that
may provide insight into the pathogenesis of glioblas-
tomas. Using the top 20 genes selected by Informa-

tion Gain, the knn classifier achieves an accuracy rate
of 0.97, with 5 and 0 selected genes being related to
cancer and glioblastoma, respectively, according to lit-
erature, respectively. And using the genes selected
by gene variance, knn achieves the accuracy of 0.89,
while 10 and 7 selected genes are related to cancer
and glioblastoma, respectively. The result shows that
a gene list of higher accuracy does not necessarily con-
tain more biologically relevant genes. A sensible expla-
nation is that a cDNA Microarray data usually con-
tains more than 10* genes but only fewer than 200
samples. A data set of this kind usually leads to the
small sample problem [22]. With so few samples many
genes that may not be biologically relevant can easily
gain statistical relevance due to sheer randomness [27].
Hence, selecting genes to achieve high accuracy should
not be the sole goal of biological discovery. Genes’ bi-
ological relevance refers to the relevance confirmed by
their involvement in the biological process of interest.
For instance, a gene can gain its biological relevance
due to its role of triggering cancer. How to systemati-
cally detect biological relevance in gene selection is an
important problem that need to be addressed.

Robustness is a property that can be observed in
most biological systems [13]. Functional robustness
allows systems to dynamically adapt to environmen-
tal changes or system failures. Various mechanisms,
including feedback, redundancy and modularization,
have been introduced by evolution to achieve system
robustness. However, “systems are evolved to be ro-
bust against general perturbations can be extremely
fragile against certain types of rare perturbations” [13].
For instance, biological networks usually have scale-
free structure [5]. The removal of the hub genes
from these networks may cause dramatic topological
changes and result in disasters. The defects of a few
cancer-related genes can reduce the robustness of the
system and trigger cancers [15], which indicates their
strong ability to cause fragility. These observations
inspire us to detect biological relevance by applying
dynamic analysis using both both biological networks



and gene expression profiles of different phenotypes.
The major contributions of the paper are: (1) defin-
ing three effective measures based on network dynamic
analysis to evaluate biological relevance from different
angles; (2) developing a novel probabilistic model to
integrate different relevance measures to achieve com-
prehensive evaluation.

2 RELEVANCE DETECTION

We propose to apply dynamic analysis using both bi-
ological networks and gene expression profiles to iden-
tify important biologically relevant genes. Network dy-
namic analysis is composed of two distinct lines of re-
search: “the dynamics on networks”, and “the dynam-
ics of networks” [10]. In the former, the topology of
the network remains static, and each node of the net-
work represents a dynamical system and can change
dynamically; in the latter, the topology of a network
itself is regarded as a dynamical system. We deal with
both types of dynamics in this work. Dynamic analysis
provides powerful tools for studying the robustness of
networks [1]. We propose three measures to evaluate
genes’ biological relevance: (1) the evidence of a gene’s
capability to influence other genes in terms of spread-
ing abnormal expression pattern, which corresponds
to the analysis of “the dynamics on networks”; (2) the
capability of a gene to cause fragility of the network,
which corresponds to the analysis of “the dynamics of
networks”; and (3) the abnormity of genes’ expression
in tumor tissues, which serves as the precondition for
a gene to be biologically relevant.

2.1 The Influence Measure

Feedback and redundancy are widely involved in bi-
ological networks to isolate the adverse effects of po-
tential individual gene perturbations to ensure system
robustness [13]. Earlier study shows that surprisingly
few genes (typically 10~20%) can affect the viability
of organisms when knocked off from the genome [15].
However, to cause instability and trigger cancers,
genes must take effect by influencing other genes in
their downstream biological processes. The fact sug-
gests that to ascertain the relevance of a gene, ab-
normal expression patterns should be observed on the
gene, as well as the genes in its neighborhood. As-
sume E is the expression of genes and G is the given
network. Let g; denote the ith gene with E (g;) be-
ing its expression, let p (g;, g;|G) be the probability of
reaching gene g; from gene g; on the network G, and
Sabn (E (gi) ,¢) be the score for measuring the abnor-
mity of the expression pattern of g; (will be discussed
in Section 2.3). Influence of a gene in terms of spread-

ing abnormity can be formulated as:

N

singt (9B, G) = Y p(9i,951G) sabm (E (i), ©)
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In the equation, N is the number of genes. With the
network G, a simple, yet effective way to estimate
P (9i, 9;/G) can be formulated as:

_ d?(g;,95)

p(9i,9i|G) =e" " o2 (2)

Here, d(gi, g;) denotes the length of the shortest path
between g; and g; on G! . In the equation, the neg-
ative exponential function emphasizes the neighbor-
hood of g;, and the size of the neighborhood is de-
termined by o. The modularization of biological net-
work suggests that genes’ influence should be mainly
extracted from their neighbors.

2.2 The Fragility Measure

The degree distributions of most biological networks
follow power law distribution [13, 5]. It is well known
that scale-free networks are very resilient to random
nodes failure, however, are extreme fragile on failures
of the hub nodes. It is theoretically shown that the
capability of a gene to cause the fragility of a network is
positively correlated to its contribution to the network
entropy, which measures the centrality of nodes in the
network [20]. Based on the observation, in this work,
we propose to use centrality to estimate the capability
of a node to cause fragility as follows:

Sfrg (g1, G) = centrality (¢;, G) . (3)

The concept of centrality has been intensively studied
in graph theory and network analysis [14]. A popu-
lar centrality measure is the betweeness centrality [9],
which is defined as:

centralityp (v) = Z L30) (4)
s, t#v;s#t st

In the equation, o4 is the number of shortest paths
from node s to node ¢, and oy (v) is the number of
shortest paths from s to ¢ that pass through the node
v2. Other typical centrality measures include Degree
centrality, Closeness centrality, and Eigenvector cen-
trality. We refer readers to literature for further study
on this topic [14].

1Using Johnson’s algorithm [12], for a sparse graph,
the time complexity of obtaining all pairs shortest path is
O (V2 logV—i—VM), where V' and M denote the number of
nodes and edges in the graph, respectively.

2Using Johnson’s algorithm [12], the time complexity of ob-
taining the centrality of all nodes is also O (V2 logV + VM).




2.3 The Abnormity Measure

Given a set of gene expression profiles of different phe-
notypes, the abnormally expressed genes can be iden-
tified by comparing their expression patterns in tumor
tissues with those in normal tissues. This is equiv-
alent to traditional gene selection via detecting gene
statistical relevance, where the abnormity of genes are
measured by its capability for distinguishing cancerous
from normal tissues. Let F (g;) denote the expression
of gene g; across all samples. Let ¢ denote the class la-
bel, which is used to encode different phenotypes. The
abnormity of a gene’s expression can be estimated by
measuring the consistency between FE (g;) and c:

savm (E(9:) ¢) = consistency (E (g) ) (5)

Various measures have been developed for consistency
estimation, including Information Gain, Kruskal-
Wallis test [11], and ReliefF [26], to name a few. Read-
ers can find comprehensive reviews on this topic [23].

3 CRITERIA INTEGRATION VIA RANK
AGGRADATION

After developing multiple biological relevance criteria,
our next challenge is to integrate these criteria to com-
prehensively evaluate genes’ relevance from different
perspectives. Using different types of biological rele-
vance criteria, we can obtain multiple lists that rank
genes in different orders. In this work, we propose a
probabilistic model for rank aggregation. Aggregating
rankings into a joint one has been studied in both ma-
chine learning and information retrieval. Most exist-
ing rank aggregation algorithms [4, 25] treat different
rank lists equally in the combination, while the pro-
posed method is able to automatically learn a set of
combination coefficients according to the importance
of different rank lists. This is achieved by maximizing
the likelihood of genes’ relevance in a specific given
gene set, providing a supervised way for rank aggre-
gation. Supervised rank aggregation is also studied
in [19], but it requires to provide the supervision in-
formation via partial orders among entry pairs, which
is not intuitive in our application. Let g; denote gene
i, 1 <1 < M, and its rank in rank list [ be r;;, we
define the probability of g; to be relevant according to
its rank in the rank list [ as:

P(r;) = %el‘p <nl) , B= Zjil exp (;) (6)

B is the normalization factor for the distribution.
Given L rank lists Ry, ..., Ry, let the prior probability
of picking the [th rank list, R;, to rank genes be 7,

with m 4+ ...+ 7y = 1. 7 reflects the reliability of
R;. To construct a mixture model [3], we introduce
an L dimensional latent variable z; = {z;1,...,2; 1}
for each gene g;, indicating using which rank list we
rank g;, that is if g;’s rank is taken from its rank in R,
then z;; = 1 and all other elements in z; are set to 0.
Based on these definitions, we can formulate the joint
likelihood of the relevance of S = {g1,...,9x} as:

p(gla"'ngaz|R17"' aRL’G)

K L
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Here, Z is the set of latent variables Z = (z;;)kxL
=(z1,...,%ZK), and the prior w = {my,..., 71} can be
obtained by maximizing the joint likelihood specified
in Equation (7) with an EM algorithm.

Proposition 1 For Computing w™ using EM algo-
rithm, in the E step, F (z;;) is updated by:

7TlP (7’1’1‘)

Yig = E(2i0) = —
> miP (1)
j=1

(8)

And in M step, 7 is updated by:

1K
=2 ) i 9)
K
i=1

We omit the proof of the proposition due to space con-
straint. After obtaining =, the probability of g; to be
relevant can be calculated by marginalizing the joint
probability P (g;, R;) as:

L

L
> P(gi,Ri)=>_ P (gi|R) P(R)
=1

=1

P(gi)

I
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The final gene rank list can be obtained by ranking
the obtained relevance probabilities in descend order.

4 EXPERIMENTAL RESULTS

We empirically evaluate the proposed approach for
gene selection. As it does Gene Selection based on
Network Dynamic analysis, we named it GSND.

4.1 Data Sets and Experiment Setup

To ¢cDNA Microarray data is used: (1) Metastatic
Prostate data, the data is extracted from the Gene



Expression Omnibus (GEO) - GSE25453. The data
contains the expression profiles of 12,651 genes from
18 normal prostate tissues and 25 metastatic prostate
tumor tissues. (2) Glioblastomas data, the data is
extracted from the GEO - GSE1962. The data con-
tains the expression profiles of 54,163 genes from 23
normal brain tissues and 81 glioblastoma tumor tis-
sues. Omne biological network data is used: (3) Bio-
Carta network data, the data is retrieved from NCI
Pathway Interaction Database [24], which contains
12,223 nodes and 15,094 edges. The data is obtained
by combining 254 human signaling pathways.

In the experiment, we use the measure defined in
Equation 1 and 2 to evaluate genes’ influence; use
betweens centrality defined in Equation 3 and 4 to
evaluate genes’ capability to cause fragility; and use
Information Gain to detect the abnormal expression
patterns of genes. The three relevance criteria are in-
tegrated in two ways: GSNDgorda and GSNDpobgyp
which correspond to using the Borda count [7] and the
probabilistic model proposed in Section 3 (using only
cancer related genes to learn combination coefficients)
in GSND, respectively. Borda count is a representa-
tive rank aggregation algorithm based on majority vot-
ing, which is used as a baseline for comparison in the
experiment. We also included Information Gain and
Kruskal-Wallis test [11] in the experiment as baseline
methods. They correspond to using the traditional
supervised gene selection on Microarray data to select
genes based on their statistical relevance. To evalu-
ate the performance of different methods, we use two
types of criteria. They are: (1) Accuracy: accuracy
of 1-nearest-neighbor (INN) classifier achieved on the
top ranked genes provided by different methods. (2)
Hit ratio: HITx, HIT and HIT p, correspond to the
hit counts of known cancer related, Glioblastoma re-
lated and Prostate cancer related genes in the 35 top
ranked genes, respectively. The gene-disease associa-
tion information is obtained from Cancer Gene Index
database*. The two criteria are used together to eval-
uate the biological relevance of genes.

4.2 Empirical Findings

Tables 1 and 7?7 contain the experimental results
obtained from ranking genes using different criteria.
Based on the results, we report the following ob-
servations. Comparing in terms of accuracy, the 2
baseline algorithms: Information Gain and Kruskal-
Wallis test, achieve high accuracy on both data sets
(accuracy>90%). High accuracy indicates that the top
ranked genes in their lists are statistically relevant,

Shttp://www.ncbi.nlm.nih.gov/geo
4https://cabig.nci.nih.gov/inventory/data-resources/cancer-
gene-index

since they can separate samples from different cate-
gories. The result practically verified their capability
on detecting statistical relevance. For the methods de-
rived from GSND, we observed that they also result in
high accuracy. The results indicate that the genes se-
lected by the methods derived from the GSND have
high statistical relevance. We also noticed that com-
paring with GSNDgorda, GSNDpyobg,p achieve higher
accuracy on both data sets, which tells that it is able to
detect genes bearing more statistical relevance. Com-
paring with other criteria, using genes selected by the
influence measure and the fragility measure provide
lower accuracy. This is reasonable, since the two mea-
sures do not directly use expression profiles of genes®.

Comparing in terms of the hit ratio, the influence
measure and the fragility measure achieve good per-
formance (HIT¢ >30, HITp and HITg >15), which
indicates their capability on selecting cancer related
genes, and suggests that the hypothesis used to design
the two measures are effective. According to hit ra-
tio, Information Gain and Kruskal-Wallis test do not
perform well, suggests that many top ranked genes in
their rank lists may not be cancer related. For the
methods derived from GSND, we observed that they
all achieve good performance. While comparing with
GSNDgorda, GSNDprobgyp achieves higher hit ratios.

On both accuracy and hit ratio, the methods de-
rived from GSND achieve good performance. The two
performance measures together suggest that GSND is
effective on detecting biological relevance. We also no-
ticed that comparing with GSNDporda; GSNDprobsyp
always performs better, which clearly suggests that the
supervision information used in GSNDpyohgp is very
helpful in improving performance.

4.3 Study on Biological Relevance

Table 2 contains the top 35 genes selected by
GSNDp,obgyp On the Metastatic Prostate Cancer data
and the Glioblastomas data. There are 8 oncogenes or
tumor suppressors detected on the Metastatic Prostate
Cancer data, including TP53, HRAS, JUND, AKT1,
LYN, RALA, FOS and RAF1. On Glioblastomas data,
there are also 8 oncogenes or oncoprotein homologs
or tumor suppressor selected, including JUN, MYC,
HRAS, STMN1, AKT1, FYN, RELA and BTG1. Be-
sides these oncogenes, there are also genes responsible
for cell division and chromosome alternation regula-
tion, such as CDC2, CDK4, PAK1, F2R, and RCC1
from Glioblastomas data; and genes related to reg-
ulation of target genes transcription and translation,
such as STAT6, EIF1AX, EEF1A1 and PABPCI1 from

5To evaluate a gene, the influence measure uses the expres-
sion profiles of its neighbors, but not its own.



Table 1: Performance comparison. ACCyy, ACCyy and ACCg35 correspond to the accuracy achieved by 1NN classifier
using the top 10, 20 and 35 genes, respectively. And ACC 4y g corresponds to the averaged accuracy. The upper and
lower parts of the table corresponds to on the Metastatic Prostate and the Glioblastomas data respectively.

Methods ACCqo ACCy ACC3ss ACCave HITc HITp
InfoGain 1.00 1.00 1.00 1.00 17 4
KrWallis 0.95 0.95 0.98 0.96 25 14
Centrality 0.82 0.72 0.86 0.80 31 26
Influnce 0.84 0.86 0.89 0.86 31 20
GSNDgorda 0.89 0.93 0.93 0.92 32 17
GSNDProbSUP 1.00 1.00 1.00 1.00 33 25
InfoGain 0.99 0.97 0.98 0.98 11 0
KrWallis 0.94 0.97 0.97 0.96 12 1
Centrality 0.86 0.88 0.90 0.88 35 22
Influnce 0.87 0.85 0.88 0.86 35 17
GSNDgBorda 0.94 0.95 0.94 0.95 33 14
GSNDProbSUp 0.95 1.00 0.94 0.97 32 15

prostate data, and EIF4E, EIF4EBP1 from Glioblas-
tomas data. The genes are all related to tumorigenesis.

For Metastatic Prostate Cancer data,two biomark-
ers for prostate cancer is detected, EEF1A and
GSTP1. PTI-1, encodes a truncated and mutated
human EEF1A, gene expression may provide an ex-
tremely sensitive indicator for prostate carcinoma pro-
gression as reflected by the presence of prostate carci-
noma cells in a patients’ bloodstream [29]. GSTPI,
as a single hypermethylated marker, is informative
in 80%~90% of prostate cancer [8]. For Glioblas-
tomas data, PRKCZ is detected, which is known to
be critical for proliferation in human glioblastoma
cell lines [6]. Interestingly, we observed some com-
mon genes in both lists, indicating their importance
and relevance to tumoriogenesis of different cancers.
For example, two oncogenes, AKT1 and HRAS: these
genes have high centrality and influence values, in-
dicating they might be the fragile cores of the bio-
logical network. MAP2K1: it is a member of the
dual specificity protein kinase family, which acts as
a mitogen-activated protein (MAP) kinase. The four
mitogen-activated protein kinases (MAPK1, MAPKS3,
MAPKS8, MAPK14): their protein products have been
implicated in diverse cellular processes including cell
growth, proliferation, differentiation, and survival.

The pilot study on the two gene lists shows
that many of the top ranked genes provided by
GSNDpyobgyp have strong correlation to tumorigen-
esis. Several genes in the list are the key compo-
nents of some important cancer related pathways, such
as the MAPK pathway. The results indicate the
high potential of the proposed approach on identify-
ing new genes-disease or pathway-disease associations
to achieve novel biological discoveries.

5 DISCUSSIONS AND CONCLUSION

The authors in [16] try to select genes that can distin-
guish samples of different phenotypes, and have con-
sistent expression patterns in its neighborhood. In the
approach, genes with different topological importance
to the network are treated equality, which is counter
intuitive. Recent study also showed that the approach
may not work well in practice [2].

In this work, we proposed a general framework,
GSND, to address the novel problem of biological rele-
vance detection, via network dynamic analysis. Exper-
imental results showed that the methods derived from
GSND can select genes bearing significant biological
relevance. To the best of our knowledge, this work is
the first explicit attempt to systematically apply net-
work dynamic analysis in gene selection for biological
relevance detection. The developed GSND framework
forms our preliminary work for knowledge oriented
gene selection. Our ongoing work includes: (1) de-
signing other criteria to comprehensively evaluate bio-
logical relevance from multiple perspectives; (2) under-
standing the roles of different types of knowledge [21]
in gene selection, and including them in GSND, and
(3) developing a user friendly toolbox.
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