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Abstract. Ensemble learning is a powerful learning approach that com-
bines multiple classifiers to improve prediction accuracy. An important
decision while using an ensemble of classifiers is to decide upon a way of
combining the prediction of its base classifiers. In this paper, we intro-
duce a novel grading-based algorithm for model combination, which uses
cost-sensitive learning in building a meta-learner. This method distin-
guishes between the grading error of classifying an incorrect prediction
as correct, and the other-way-round, and tries to assign appropriate costs
to the two types of error in order to improve performance. We study is-
sues in error-sensitive grading, and then with extensive experiments show
the empirically effectiveness of this new method in comparison with rep-
resentative meta-classification techniques.

1 Introduction

The accessibility and abundance of data in today’s information age and the
advent of multimedia and Internet have made machine learning an indispensable
tool for knowledge discovery. Ensemble learning is a powerful and widely used
technique which combine the decision of a set of classifiers to make the final
prediction, this not only help in reducing the variance of learning, but also
facilitates learning concepts (or hypothesis) from training data which are difficult
for a single classifier. In large datasets, where there may be multiple functions
defining the relationship between the predictor and response variables, ensemble
methods allow different classifiers to represent each function individually instead
of using one single overly complex function to approximate all the functions.

Building a good quality ensemble is a two steps process. During the first
step (model generation phase), the constituent (or base level) classifiers should
be selected such that they make independent or uncorrelated errors, or in other
words, ensemble should be as diverse as possible. One way of introducing di-
versity is by varying the bias of learning, i.e., by employing different learning
algorithms (results in heterogeneous ensemble); another technique is to keep the
learning algorithm same, but manipulate the training data, so that the classifiers
learn different functions in the hypothesis space (results in homogeneous ensem-
ble). After an ensemble of classifiers is obtained, the next important step is to
construct a meta classifier, which combines the predictions of the base classifiers
(or model combination phase). This is the main focus of this paper.
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Different model combination techniques, depending upon the methods used
by them can be partitioned into three categories i.e., voting, stacking and grad-
ing. The nomenclature for these categories was decided based on the most basic
methods which represent the underlying principle of the methods falling under
that category.

Voting. The techniques in this category are very simple, and widely used with
homogeneous ensembles. Majority voting is a naive voting technique, in which a
simple summation of the output probabilities (or 0, 1 values) of base classifiers is
done, and a normalized probability distribution is returned. Weighted Voting, is a
variation in which, a reliability weight or confidence value inversely proportional
to the validation-set error rate, is assigned to each classifier. The meta-classifier
then does a weighted sum to arrive at the final class probabilities. In one possible
variation, instead of assigning a single reliability weight to the base classifier, for
each class a separate reliability weight can be assigned.

Stacking. The stacking techniques are based on the idea of stacked general-
ization [I]. The distinguishing feature of the stacking techniques is that, the
meta-classifier tries to learn the pattern or relationship between the predictions
of the base classifiers and the actual class. Stacking with Multi-response Linear
Regression (MLR) [2], is a stacking technique in which the MLR algorithm is
used as the meta-classifier algorithm. Based on probability estimates given by
the base-classifiers, meta-training datasets are constructed for each class. Then
from these meta-training datasets linear regression models are built, the number
of linear regression models is same as the number of classes. Dzeroski [3] shows
that using Model Tree instead of Multi-response Linear Regression may yield
better result. StackingC [4] is a variation, in which while building the meta-
training datasets, instead of using class probabilities given by the base classifiers
for all the different classes; only class probabilities corresponding to the particu-
lar class for which regression model is being built, are used. This results in faster
model building time for the meta-classifier and also has the added benefit of the
giving more diverse models for each classifier.

Grading. The defining feature of methods in this Table 1. Grading meta-
category (also known as referee method [5l6]) is training dataset, for a dataset
that, instead of directly finding the relationship with m features and n
between the predictions of the base classifier and instances

the actual class (as in stacking); the meta-classifier
grades the base-classifiers, and selects either a sin-
gle or subset of base-classifier(s) which are likely

Attributes  Graded
Ay .... A, Class

to be correct for the given test instance. The in- 11 e Tm 1
tuition behind grading is that in large datasets Tz e T2m
where there may be multiple functions defining

Tpi o Tmm 0

the relationship between predictor and response
variables, it is important to choose the correct
function for any given test instance. In stacking the meta-classifier uses the
predictions of the base classifier to decide the way they (predictions) should be
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combined to make the final decision; but in grading the test instance is used to
decide which all base-classifiers, and with what reliability weight should they be
used to make the final prediction.

In Grading, the meta-classifier itself is an ensemble of grader classifiers. Cor-
responding to each base level classifier there is a grader classifier which tries
to learn its area of expertise or high predictive accuracies. For training the
grader, as shown in Table [Il the original attributes are also used as the at-
tributes for the grading dataset, but instead of using the original class attribute,
a new graded class attribute with two possible values 1 (correct prediction)
or 0 (incorrect prediction) is used. While making predictions the grader clas-
sifier assigns a weight to the base classifier’s likelihood of being correct. This
weight can be either absolute 1 or 0 score or it can also be a probability values.
Only predictions from base classifiers, with reliability weight above a certain
threshold or which are more likely to be correct than incorrect are taken; and
then these predictions are combined using weighted voting to make the final
prediction.

2 Error Sensitive Grading

We propose a new approach to doing Grading which combines cost-sensitive
learning in assigning different costs to meta-training instances, and tries to make
the graders conservative in assigning prediction tasks to the base classifiers. The
intuition behind this method is to increase the prediction accuracy of each base
classifier by using it only for instances for which it is very likely to be correct,
but an immediate side-effect of this is that the number of instances for which the
base classifier is used to make prediction decreases. In this work we study various
research issues related to error-sensitive grading, including a new tie-breaking
scheme designed for grading.

2.1 Cost-Sensitive Learning

In many machine learning domains, different misclassification incur different
penalties and hence misclassification costs are different, given a test instance,
cost-sensitive learning aims to predict the class that will lead to the lowest ex-
pected cost, where the expectation is computed using the conditional probabil-
ity of each class and the misclassification cost. The most common method of
achieving this objective is by re-balancing the training set given to the learning
algorithm, i.e., to change the proportion of positive and negative training exam-
ples in the training set by over-sampling or under-sampling. An alternative, if
the learning algorithm can use weights on training examples, is to set the weight
of each example depending upon the cost.

2.2 Type A vs. Type B Errors

While grading the base classifiers, there could be two types of mistakes: when a
base classifier predicts correctly, the grader says it is wrong (Type A); or when
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a base classifier predicts wrongly, the grader considers it right (Type B). The
issue is that if there are enough good classifiers then it doesn’t hurt to leave
one out. Yet, including a classifier when it is bad can really hurt performance.
So, it is important to differentiate the two types of errors: the cost of Type B
errors should be far higher than that of Type A errors. In other words, the cost
of classifying an incorrect prediction as a correct prediction should be higher
than the cost of classifying a correct prediction as incorrect. A base classifier
generally predicts a high percentage of validation instances as correct, and so
the majority of instances in the meta-training dataset for the graders are correct,
and as a result the grader assigns a lower cost to Type A errors compared to the
Type B error. This can lead to poor performance by graders, and hence by the
meta-classifier and the ensemble.

2.3 Error Sensitive Grading Algorithm

The balance between the different misclassification costs can be readjusted by
explicitly using cost-sensitivity. We call this modified version of grading as Error
Sensitive Grading (ESGrading). Assigning higher cost to wrong grading makes
the graders conservative in their decision making, i.e., the grader will predict a
base classifier to be correct only when it is extremely sure. But one immediate
drawback of making the graders conservative is that none of the base classifiers
may be selected to predict on a test instance, to avoid this limitation the en-
semble should have a large pool of diverse classifiers, so that the graders choose
at least one base classifier to make the prediction. While using error-sensitive
grading an important parameter which has to be chosen is, the different misclas-
sification costs, because it is this cost which determines how conservative the
grader should be. As graders have to deal with binary classification problem,
i.e., predict whether the base classifier is correct or incorrect, the misclassifica-
tion cost of two types can be combined into a single cost-ratio, which we define
below.

Definition 1 (Cost-ratio). It is the ratio of cost of Type A error over cost of
Type B error.

A lower value of the cost-ratio means that there is a heavy penalty for predicting
an incorrect base classifier as correct. A value of cost-ratio equal to 1 means that
the cost of grader misclassifying a base-classifier, whether the base-classifier is
correct or incorrect is equal (the method is then equivalent to normal Grading).
A value of cost-ratio equal to 0 on the other hand, indicates that the base
classifier should never misclassify an incorrect base-classifier as correct, that is
the base-classifier should never be trusted. To prove our hypothesis we did an
experiment of varying the cost-ratio and observing the error rate of Grading
method (Figure[I]). In this experiment we used 10 bagged decision trees (Weka
J4.8, a JAVA port to C4.5 Release 8 [7]) classifiers at the base level and decision
trees again as the grader. The figure confirms to intuition and shows how when
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Algorithm 1. Error-Sensitive Grading algorithm

procedure ESGRADING (baseClassifiers,validSet)
costRatio «+— FindCostRatio(baseClassifiers, validSet)
for all classifier € baseClassifiers do
Grader «— BuildGrader(classifier, costRatio, validSet)
Add Grader to the meta-classifiers
end for
end procedure

procedure FINDC0OsT(baseClassifiers,validSet)
for costRatio < 0.0 to 1.0 Step 6 do
Find cross validation error on validation set using costRatio and the base classifiers
end for
return costRatio with minimum cross validation error
end procedure

the cost is close to 0, the graders will be conservative and none of the base-
classifiers will be predicted to be correct, and this results in a higher error, as
the default majority-voting tie-breaking will be used. As the cost is increased
the error rate decreases till it reaches a low-point after which it again begins to
increase as the graders becomes lax in their grading and more base-classifiers
are predicted to be correct.

One way to determine this cost-
ratio is using cross-validation. It helps
dynamically adjust the cost depend-
ing upon the number and diversity of
base classifiers in an ensemble. When
there are a large number of diverse
base classifiers, then the graders can S
afford to be more conservative in pick-
ing base classifiers for making pre- r
diction, as the probability that at @
least one correct base classifier will
be picked is high. On the other hand,
when the number of base classifiers is
small, the graders should be compara-
tively lenient to avoid the possible sce-
narios in which no base classifiers is picked for model combination. Using cross
validation to determine the cost helps in striking the balance between making
the graders conservative or lenient.

Algorithm Il shows how to create an Error Sensitive Grading meta-classifier.
The first step is to call the procedure FindCostRatio to decide the cost-ratio
which should be used. The variable validSet is used to denote the validation
set for building the meta-learner. The procedure FindCostRatio evaluates var-
ious cost-ratios and then uses cross validation to build graders via cost-sensitive
learning and finally determines the error rate. The cost-ratio associated with the
least error rate is returned and then used to build the final graders with the
entire validation dataset.

Audiology

Error Rate(%)

0 o1 02 03 04 05 06 07 08 09 1
Cost

Fig. 1. Error rate of Error Sensitive Grad-
ing vs. the cost ratio
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2.4 Tie Breaking for Grading

In the Grading method as proposed by [6], when there is a tie in the likelihood of
an instance belonging to different classes, the meta-classifier checks which of the
class has higher prior probability and accordingly makes a decision. We suggest
an alternative scheme in which instead of completely ignoring the predictions of
some of the base classifiers (the classifiers with higher probability of being wrong
than correct), the grader should assign a delta (close to zero) probability to all
such classifiers being correct. This will ensure that under normal circumstances
the meta-classifier only uses the prediction of the graders which are correct, but
when there is a tie, majority voting is used.

In our experiments (not shown here due to space limitation), we observed
that in general the ties are so rare that this tie-breaking scheme does not make
any difference for the normal Grading algorithm. But in Error Sensitive Grading
when the number of base classifiers is small, and the cost-ratio is close to 0, the
graders may assign higher probability to all the base classifiers of being wrong
than correct, and then none of the base classifiers will be selected to make the
final prediction. In such, a scenario the above tie-breaking scheme is a better
alternative (than the current prior probability method of breaking ties), because
it makes use of majority voting to break the ties.

2.5 Time Complexity of Error-Sensitive Grading

The time complexity of Error-Sensitive Grading algorithm depends upon the
method used for setting the cost-ratio. When c-fold cross-validation is used to
determine cost-ratio, and t different cost-ratios are tried, then the time com-
plexity is O(c * t * G) where G is the time complexity of the Grading method.
Grading is a time-consuming algorithm, but because learning is done offline,
generally time is not a big issue for building classifiers.

3 Experiments and Discussion

For empirical evaluation we chose nineteen datasets from the UCI Machine
Learning Repository [§]. Following the research done in [9], for all the experi-
ments the reported results are obtained by ten ten-fold stratified cross-validations
and t-test is done with calibrated degrees of freedom equal to 10. The reported
estimates are the average of the 100 runs and the values after the £ sign is the
average standard deviation. Superscripts denote significance levels for the dif-
ference in accuracy between the Error Sensitive Grading and the corresponding
algorithm, using a one-tailed paired ¢ test: 1 is 0.01, 2 is 0.025, 3 is 0.05, 4 is 0.1
and 5 is above 0.1.

We decided to use bagging [10] to study the effect of error sensitive grad-
ing as it is a widely used ensemble method and easily allows us to adjust the
number of base classifiers. We implemented the Error Sensitive Grading method
within WEKA [I1]. All other algorithms are available within WEKA, but we
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Table 2. Error rate for Bagging with different model combination techniques

Dataset Maj. Voting Stacking MT  StackingC Grading E. S. Grading
AUDIOLOGY 19.59 4 6.73% 20.40 &+ 6.911 17.53 + 5.92% 19.36 & 6.66% 18.36 + 6.26
AUTOS 16.97 + 5.812  17.1746.03*  15.954+5.68°  17.41+5.90% 16.144+5.51
CREDIT-A 13.78+ 4.62° 14.85 &+ 5.10 > 14.75 £ 5.00° 13.69 + 4.59% 13.91 + 4.66
CREDIT-G 26.73 + 8.95° 28.86 + 9.65° 28.06 £9.41' 26.84 + 8.99°  26.74+8.93
GLASS 26.32 + 8.94% 2823 +£9.84* 27.08 4+ 9.23% 26.61 + 9.09* 26.88 + 9.22
HEART-C 21.22 + 7.17% 22,58 + 7.79° 22.4247.61° 21.76 + 7.40° 22.08 + 7.51
HEPATITIS 18.25 £6.13% 21.02 £7.15'  18.80+6.38°  19.434+6.67° 18.97+6.63
HYPO 0.45 + 0.16° 7.64 £2.56 '  0.43 + 0.15>  0.46 +0.162 0.43 4+ 0.15
KR 0.6340.22°  0.56 &+ 0.22°  0.57 £+ 0.23°  0.64 + 0.23*  0.60 £+ 0.22
LABOR 16.03 £ 5.95 % 15.77+ 6.00* 14.23 + 5.11° 13.8 + 4.99°  14.2 + 5.26
PRIMARY-TUMOR 56.49 + 18.90" 58.59 + 19.572 58.94 + 19.68' 57.58 & 19.24 ® 57.55 & 19.24
SEGMENT 2.55+ 0.88% 2.80+0.991 2.44+40.87° 2.5140.84% 2.4540.83
SICK 1.16 £0.391 1.0740.39° 1.0740.38° 1.11 + 0.382 1.09 £0.38
SONAR 21.78 + 7.50° 25.76 + 9.09% 22.43 £7.92%2 21.30 + 7.37° 21.24 + 7.33
SOYBEAN 7.44 + 2.56°  7.01 £2.43° 6.87+2.45° 7.6142.642 7.1942.48
SPLICE 5.68 £1.90°  6.27 +2.10" 5.79+1.93% 5.87 £1.96% 5.69 £1.90
VEHICLE 25.594+ 8.57 ° 25.48 + 8.58% 25.30 4+ 8.47° 25.4848.55°  25.36+8.50
VOTE 3.56+1.22% 3.67+£1.51° 3.81+£1.37° 3.63 4+ 1.2° 3.67 +£1.29
VOWEL 10.06 £ 3.39% 13.90 4+ 4.72'  10.1543.43'  10.47 4+ 3.60'  9.25 + 3.17
Loss/Tie/Win 3/10/6 0/10/9 0/13/6 2/10/7 -

adapted them to be used with bagging. During the experiments, it was ensured
that the meta-classifiers, do not rebuild the base level decision trees built dur-
ing model generation phase, as it goes against the spirit of meta-classifier as
a model-combination method. Moreover, this ensures that the comparison of
strengths of different model combination techniques can be done with a lower
Type I error, as all the techniques are being used to combine the same set of
classifiers.

3.1 Against Different Model Combination Methods

In this experiment we compared Error-Sensitive Grading against different model-
combination techniques such as Majority Voting, Stacking with Model Trees,
StackingC with MLR, and Grading on the chosen datasets. We used 10 bagged
decision trees as the base-classifiers, and for the two grading methods we used
decision tree as the grader too. Table [2] shows the results of the experiment.
The loss/tie/win row in the table summarizes the number of datasets in which
error sensitive grading performed worse, at par, or better than other meth-
ods. This loss, tie and win was determined using significance levels of 1, 2,
and 3. We can clearly observe from this comparison that Error-Sensitive Grad-
ing performs well in comparison with representative methods of model
combination.

The reason for the robustness of Error-Sensitive Grading is that it uses cross
validation to determine the cost such that in the worst case it will perform
similar to Grading or Majority Voting. Depending upon the base classifiers cross
validation attempts to adjust the cost such that the graders are selective in
picking the base classifiers for predicting the class for a new instance. The reader
might observe that Error Sensitive Grading has two losses compared to Grading,
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the reason for this is that as the same data is used during model generation and
then during the meta-classifier creation process, the resultant model sometimes
over fits the data and hence does worse.

3.2 Performance with Different Base Classifiers

In this experiment (Table Bl) we decided to observe the benefit of Error Sen-
sitive Grading against traditional Grading and Majority Voting when different
algorithms (decision tree, naive bayes and support vector machines) are used
for building the base classifiers. The Grading meta-learner used for all these
experiments was the same i.e., decision tree.

Again, the loss/tie/win was determined by us- Table 3. Loss/Tie/Win for ES-
ing significance levels of 1, 2, and 3 with t-test Grading vs. Maj. Voting and nor-
using the method described earlier. The re- mal Grading when different algo-
sults for decision tree are from the Table [l rithms used for base learner.
From the table it is quite clear that Error- Algorithm  Maj. Voting Grading
Sensitive Grading outperforms both Majority =~ Decision Tree  3/10/6  2/10/7
Voting, and Grading, across all kinds of base SUﬁ:IOf; %g;SOR 2;%}; gﬁ?;j
learners. This table shows the robustness and

stability of the Error Sensitive Grading method when different types of base
classifiers are used.

4 Conclusion and Further Work

In this paper, we proposed a new grading-based method for model combination
called Error-Sensitive Grading which applies cost-sensitive learning to grading
base classifiers, such that the grader classifiers are made conservative in selec-
tive base classifiers for making predictions. We also studied issues about Error-
Sensitive Grading such as cost assignment via cross validation, and introduced a
new tie-breaking scheme for grading. The experimental results show that Error-
Sensitive Grading is very competitive against all types of model combination
methods. Using cross-validation to determine the cost is just one possible way,
in our future research we plan to study other alternatives to determine the cost.
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