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Abstract 
 

The high quality, structured data from Web structured 
sources is invaluable for many applications. Hidden Web 
databases are not directly crawlable by Web search 
engines and are only accessible through Web query forms 
or via Web service interfaces. Recent research efforts 
have been focusing on understanding these Web query 
forms. A critical but still largely unresolved question is: 
how to efficiently acquire the structured information 
inside Web databases through iteratively issuing 
meaningful queries? In this paper we focus on the central 
issue of enabling efficient Web database crawling through 
query selection, i.e. how to select good queries to rapidly 
harvest data records from Web databases. We model each 
structured Web database as a distinct attribute-value 
graph. Under this theoretical framework, the database 
crawling problem is transformed into a graph traversal 
one that follows “relational” links. We show that finding 
an optimal query selection plan is equivalent to finding a 
Minimum Weighted Dominating Set of the corresponding 
database graph, a well-known NP-Complete problem. We 
propose a suite of query selection techniques aiming at 
optimizing the query harvest rate. Extensive experimental 
evaluations over real Web sources and simulations over 
controlled database servers validate the effectiveness of 
our techniques and provide insights for future efforts in 
this direction 
 
1. Introduction 
 

Structured Web databases are becoming an increasingly 
popular habitat for relational data. Since data residing in 
Web databases is guarded by search interfaces and 
inaccessible to conventional Web crawlers, this portion of 
the Web is commonly referred to as "deep Web" or "hidden 
Web" [7]. To enable a "one-stop" access for such a wealthy 
amount of high quality data, there are two major kinds of 
design choices among others. One is the data warehouse-
like approach [1,2], where the data is gathered from a large 
number of Web data sources and can be searched and 
mined in a centralized manner. The other is the 
"MetaQuerier" approach [10] that abstracts different 

"dialects" of Web databases by providing a mediated 
schema to the users. In addition to many differences 
between these two approaches, they have different goals in 
offline data acquisition. For the data-warehouse-based 
approach, integrating data from structured Web sources and 
collecting them to a centralized repository is a critical first 
step, since user queries are answered solely based on the 
data stored in the centralized warehouse. In contrast, 
MetaQuerier imposes fewer requirements on data 
acquisition because several query probes will normally 
suffice for query mapping and schema matching [24].  

While it is still unclear whether the MetaQuerier 
approach or the crawling-based warehousing approach is 
more suitable to access the deep Web, data acquisition from 
structured Web sources is a pressing research issue in its 
own right. Many exciting applications can be developed 
using the high quality, structured data crawled from the 
hidden Web sources. For example, one can learn domain 
knowledge by feeding the data to existing learning 
techniques [20,23]. One can create Internet services such as 
"comparison shopping" by integrating data from different, 
potentially competing product providers. Hidden Web data 
can also be used to assist structuring other less structured 
documents. In fact, some major Web search engines are 
beginning to provide product search services based on the 
structured data gathered from a number of Web sources 
[1,2].  

In principle, there are two ways to acquire the data from 
Web sources. The most efficient and effective way is to let 
the data providers export their backend databases by 
licensing their data so that their product information can be 
directly indexed by the product search services. 
Unfortunately, in an autonomous, uncooperative, and 
competitive environment like the public Web, this approach 
is difficult to scale up with the huge number of deep Web 
sites and potentially requires significant amount of time and 
extensive human efforts. The alternative approach, which is 
the focus of our paper, relies on a hidden-Web crawler to 
actively query the target product database and iteratively 
"uncover" the database content. Queries are issued either 
through the Web query forms or through the published Web 
services' interfaces (e.g., Amazon Web Service).  Unlike the 
traditional crawling methods, query-based database 



crawling can be characterized by a "query-harvest-
decompose" loop that incrementally uncovers a target Web 
database. It starts with some seed queries prepared in the 
form of attribute value pairs (e.g., "Actors, 'Hanks, Tom'", 
"Brand, 'IBM'", etc.) Then, it automatically queries the 
target data source by feeding the attribute values into 
appropriate query boxes or Web service procedures. It 
harvests the data records from the returned pages, which 
may be in the form of HTML Web pages or as XML 
documents. It populates the extracted records to its local 
database and decomposes these records into attribute values, 
which are stored as candidates for future query formulation. 
This process is repeated until all the possible queries are 
issued or some stopping criterion is met.  

Previous efforts have primarily focused on the problem 
of automating the above process. To this end, technical 
challenges mainly lie in the "smart form filling" [22] and 
structured data extraction (e.g., [5]). However, a critical but 
largely unresolved problem is: how to select good queries to 
issue so that satisfactory database coverage can be achieved 
within affordable communication costs with the server? 
Intuitively, while the ultimate database coverage (or the 
coverage convergence) is predetermined by the seed values 
and the target query interfaces, the communication costs 
used to reach this coverage are greatly dependent on the 
query selection method used. In practice, it is often 
infeasible for a Web database crawler to query the target 
database exhaustively. Hence, an efficient query selection 
method is necessary that can achieve "good" database 
coverage with reasonable communication costs. We show 
that a sound solution to this problem is technically non-
trivial. We also demonstrate that to achieve the same 
database coverage, a good query selection method can incur 
considerably less overhead than a naive one.  

As one of the initial efforts to address this problem, the 
contribution of the paper is summarized as follows: 

First, we identify this novel problem of query selection 
for efficient Web database crawling. Contrary to the 
traditional surface Web crawling that focuses on URLs’ 
ordering, we demonstrate that a central issue of efficient 
deep Web crawling lies in query selection.  

Second, we provide a theoretical framework that 
formally models query-based deep Web crawling as graph 
traversal. We show that the goal of query selection 
algorithms is to find a Weighted Minimum Dominating Set 
in the corresponding attribute-value graph.  

Third, we study the database graphs of real structured 
Web databases and observe that the degree distribution in 
such graphs closely resembles the power-law distribution. 
Motivated by this case study, we propose a greedy link-
based query selection method that rapidly traverses the 
database graph by following some "hub" nodes. In addition, 
we developed two optimization techniques to further 
optimize the greedy crawler. The effectiveness of these 

methods is demonstrated with experiments on 4 real world 
databases with 1 million records in total. 

Fourth, we present another family of query selection 
methods that leverages on domain knowledge to overcome 
the limitations associated with the greedy methods. Its 
effectiveness is evaluated by a real crawling experiment on 
the Amazon DVD databases with domain statistics tables 
built from the Internet Movie Database (IMDB). 

The rest of this paper is organized as follows: Section 2 
presents our theoretical framework for query-based 
database crawling. Section 3 describes a greedy query 
selection method and its variants. A domain knowledge-
based query selection algorithm is proposed in Section 4. 
We discuss our experimental findings in Section 5. Section 
6 reviews some related work. Section 7 concludes this paper. 
 
2. Modeling Query-based Database Crawling 
 
2.1. Attribute-Value-based Graph Model (AVG) 

We view a structured Web database as a single relational 
table DB with n data records {t1,t2,...,tn} over a set of m 
attributes AS={attr1,attr2,...,attrm}. The distinct attribute 
value set DAV consists of all distinct attribute values 
occurred in DB. 
DEFINITION 2.1.: An attribute-value graph (AVG), 
G(V,E), for DB is an undirected graph that can be 
constructed as follows: for each distinct attribute value avi

DAV there exists a unique vertex vi V. An undirected 
edge (vi,vj) E i.f.f. avi and avj coexist in one relational 
instance tk DB. Each edge in AVG stands for a relational 
link between avi and avj.  

According to the definition, attribute values from each 
relational instance form a clique. If two data records share 
the same attribute value, the corresponding vertex 
“bridges" the two cliques. Depending on the database 
structure, an AVG is not necessarily fully connected. 
Although we only discuss the relational data model, AVG 
can also model more flexible data models (e.g., XML) 
graphically with straightforward extension.  

By characterizing structured Web databases using 
AVG, a query-based crawling process is transformed into 
a graph traversal activity in which the database crawler 
starts with a set of seed vertices and at each step a 
previously seen vertex v is selected to visit (query 
formulation) and all the neighbors of v will be discovered 
(result extraction) and stored (decomposition) for future 
visit. 
Example 2.1.: Figure 1 shows a relational database 
(represented as a single table on the left) and its 
corresponding distinct attribute value graph.  Consider a 
database crawler starts with the attribute value a2 as its 
seed value. In the first round, it will query the database 
with a2. From the returned results, it will see c1,b2,c2,b3. 



In the second round, if c2 is selected and sent as query, a 
new record will be discovered with two new attribute 
values: a3,b4. In the final round, if c1 is selected, the one 
remaining record will be obtained.  

 
 

Figure 1. An example of attribute value graph 

In summary, the significance of AVG is that it 
conceptually transforms the query-based Web database 
crawling into a graph traversal problem, which is parallel 
to the traditional problem of crawling the surface Web 
following hyperlinks. 

2.2.  Query Model 
Structured Web databases can be queried via query 

forms or through Web service interfaces. We uniformly 
refer to both access methods as “query interfaces". 
Through query interfaces, data consumers (e.g. end users) 
are able to express their information needs by imposing 
selection conditions on certain attributes of interest. 
DEFINITION 2.2. The database crawler views a Web 
database as a single relational table DB with a set of 
queriable attributes Aq = {attrq1, attrq2,…,attrqn} (interface 
schema) and a set of result attributes Ar = {attrr1, 
attrr2,…,attrrm} (result schema) �[24]. Each attrqi Aq 
represents the queriable attribute through the query interface, 
while the result attribute attrrj Ar corresponds to the 
attributes displayed in the result pages. Each query 
operation can be modelled using SQL syntax as:  “SELECT 
attrr1, attrr2,…,attrrm FROM DB WHERE attrq1 = valq1, 
attrq2,=valq2 ,…,attrqn = valqn”,  where valqi  is the 
corresponding attribute value filled into the query form.  

In this paper, we focus on the simplest selection queries 
with only one equality predicate. The reason for this choice 
is twofold: (1) The single attribute-value query is sufficient 
for query-based crawling in many domains. For example, 
many on-line product providers have already been 
supporting keyword-based queries to search their 
transactional data repositories. (2) Many product domains 
with more structured query interfaces also allow for single 
attribute-value queries (e.g., users can query Amazon.com 
with book title only). Below we conduct a real world case 
study to illustrate the applicability of this simplified query 
model in practice. 

Case study: The applicability of the simplified 
query model in practice 

Domain K.W. S.Q.M. 
Book 82% 100% 
Job 98% 96% 
Movie 63% 100% 
Car 14% 58% 
Music 65% 100%  

Domain K.W. S.Q.M. 
DVD 78% 96% 
Electronic 96% 96% 
Computer 100% 100% 
Games 91% 96% 
Appliance 100% 100% 
Jewellery 96% 100%  

Table 1. Case study from 480 Web sources using 
UIUC Repository (the left Table) and Bizrate.com 
(the right table) 

In this case study, we are interested in the percentage of 
structured Web sources that allow single attribute query. In 
addition, we are also interested to see how many Web 
product databases allow “keyword-based” search 
(structured sources with unstructured interfaces), which also 
naturally falls into the category of “single-attribute-
queriable” interface. We manually examine two sets of real 
Web sources consisting of 480 sites from 11 different 
domains. The first dataset contains 5 domains selected from 
the UIUC Web Repository �[3]. The second data set is from 
the Bizrate.com, a major online store that integrates data 
from hundreds of e-commerce sites in more than ten 
different domains. We investigate 6 major product domains 
in Bizrate.com, and for each domain, the top 25 stores 
(according to the customer ratings ranked by Bizrate.com) 
are selected for this case study.  

Table 1 shows that most product databases can be 
modelled by simplified query model (S.Q.M), but the 
acceptance percentage varies dramatically across different 
domains. For example, in many product domains such as 
DVD and Books, more than 95% sources can be queried 
by specifying only one attribute value. However, there 
exist some domains like airplane fare vendors and hotel 
reservation sites (which are not shown here) where most 
query forms are highly structured and restrictive in the 
sense that only multi-attribute queries are accepted. 
Another interesting finding is that contrary to the common 
belief that structured Web databases are usually guarded 
by structured query interfaces with “rich” query semantics, 
most e-commerce Web sites also support keyword based 
search (K.W.) over their transactional product databases. 
This trend of “fading schema” opens exciting 
opportunities for query-based database crawling. In the 
presence of keyword query interfaces, the crawler can 
then easily “throw” attribute values into target query box 
and safely rely on the end sites’ query processing 
mechanism to decide which “column” that value should 
actually match. In summary, our case study confirms that 
the simplified query model can model most e-commerce 
product sources. Thus, we argue that the research on 
query selection techniques can and should proceed 
without delay for more sophisticated query capability 
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models. We leave the issues relating to crawling multi-
attribute Web sources as our future work. 

2.3.   Cost Model 
We define the cost of crawling a Web database as the 

total number of communication rounds between the crawler 
and the Web server. In this paper, we are only interested in 
the transmission overhead that is typically a dominant 
component in Web database crawling. It is important to 
distinguish the total number of communication rounds with 
the total number of queries issued. This is because each 
result page can typically hold a fixed number k of matched 
records and thus every initiated connection retrieves at most 
k data records. For example, if there are 95 car records in 
the used car database matching the attribute value  “Brand, 
Toyota” and each result page displays the next 10 records, 
the total cost to retrieve the entire answer set will be 
� � 1010/95 =  communication rounds.  
DEFINITION 2.3. The crawling cost cost(qi,DB) of 
querying the database DB with query qi is defined as: 
cost(qi,DB)= � �kDBqi /),( num ,where ),( num DBqi stands for 
the number of all the records in DB matched by qi and k 
corresponds to the maximum number of records displayed 
in each result page from the target Web site.  

2.5.   Problem Formulation 
We now describe the context in which a query selection 

algorithm works. In general, a Web database crawler 
consists of three components: Query Selector, Database 
Prober and a Result Extractor. The Query Selector 
implements three internal data structures: Lto-query, Lqueried, 
and a statistics table.  Lqueried stores the attribute values 
queried previously. Lto-query contains the attribute values 
discovered so far but still yet to be probed. The statistics 
table maintains all the information needed for the Query 
Selector to make the selection decision. Once a query is 
chosen, the Database Prober module queries the target 
database DB and the Result Extractor extracts data 
records from the result pages and feeds them into DBlocal. 
This process is equivalent to “expand” a local database 
graph Glocal , a sub-graph of the complete graph G.  

We now present a theoretical framework to formalize 
the problem of optimal query selection. In the traversal of a 
database graph, one needs to determine which vertex to visit 
next, i.e. how the crawler chooses the attribute value for the 
next query formulation. Intuitively, there exists a subset of 
vertices V' (queries) that retrieves the entire reachable 
database content in DB, i.f.f. all other vertices in 
corresponding database graph are adjacent to at least one 
vertex in V'. The goal of the optimal query selection 
strategy is hence equivalent to finding the V' with minimum 
cardinality. Furthermore, according to our cost model, the 
query cost varies across different graph vertices. Thus we 

further generalize the crawler’s goal as to find a 
“dominating” vertex set V' with minimum total weight. 
Formally, we give the definition of the optimal query 
selection algorithm as follows:  
DEFINITION 2.4. (Optimal Query Selection Method) 
Given a database graph G(V,E) , seed vertex set Vseed ⊆ V 
and a weight function W:V (0,1) where G(V,E) and W are 
defined according to the graph model and cost model 
respectively, an optimal query-based database crawler finds 
a subset Voptimal of V s.t. 1) ∀ vi V-Voptimal, ∃vj Voptimal, s.t. 
(vi,vj) E; and 2) there does not exist another such subset 
V’ of  V  with less total weight than Voptimal.  

By the above definition, the query selection problem is 
strikingly similar to the Weighted Minimum Dominating Set 
problem (NP-Complete). Slightly different from the 
traditional problem setting, the database crawler is facing a 
more challenging problem as it lacks the “big picture” of the 
whole graph and can thus only make a decision of query 
selection based on its partial knowledge about the target 
database. Starting with a set of seed attribute values and 
little information about the global graph, a database crawler 
essentially expands the local database graph and more 
knowledge about the global picture is accumulated during 
this process. We borrow the concept of harvest rate from 
focused Web crawling �[9] and define a new metric called 
query harvest rate to capture the “productivity” of each 
candidate query. 
DEFINITION 2.5. (Query Harvest Rate) Given a target 
Web database and a local database containing 
the data records already crawled from DB the harvest rate 
of qi is defined as:  

HR(qi)= [num(qi ,DB)-num(qi ,DBlocal)]/cost(qi ,DB)    (2.1) 
where num(qi ,DB) and num(qi ,DBlocal) corresponds to the 
number data records matched by qi in DB and DBlocal , 
respectively; cost(qi ,DB) stands for the cost of obtaining all 
the result pages.  

The goal of a local optimal solution is to select the 
attribute value with maximum harvest rate as the next query. 
It is essentially a greedy approach. In our discussion so far, 
we by default consider the acquisition of the entire database. 
However, in reality, a more reasonable goal is to harvest a 
satisfying portion of records as quickly as possible, 
especially for big Web databases, i.e. to achieve a certain 
database coverage with the minimum cost. Now the key 
issue is to accurately estimate the harvest rate for a given 
candidate query.   

3. Relational Link-based Query Selection 
Methods 

3.1. Naïve Query Selection Methods 
We start with three straightforward approaches: breath-

first selection, depth-first selection and random selection.  



For the breath-first selection, Lto-query is organized as a queue. 
Newly discovered attribute values are added to the end of a 
queue. Each time the first query in the queue is selected to 
query DB. For the depth-first query selection, Lto-query is 
implemented as a stack. Each time the top element is 
popped out as the next query. Finally, the random query 
selector picks a random element from Lto-query to query DB. 

The naïve methods described above do not utilize any 
database information that has already been available to the 
crawler. The random approach simply assigns a uniform 
harvest rate to all candidate queries, the breath-first 
approach assigns higher harvest rates to earlier found 
attribute values, and the depth-first approach assigns higher 
harvest rates to newly found attribute values. 

3.2. Relational Link-based Query Selection 
Method 

As the crawler incrementally “uncovers” the target 
database DB, the local data repository DBlocal contains more 
and more records obtained so far. Hence its corresponding 
graph Glocal constitutes a sub-graph of the complete 
database graph G. Intuitively, Glocal reveals some properties 
of G, i.e. a node with greater degree in Glocal is also likely to 
be more popular in G. This assumption lies critically on the 
link distribution in the attribute value graph. Recently there 
has been a resurgence of interest in link analysis over 
database graphs for authority-based ranking �[14].  However, 
little is known about the actual degree distribution in 
database graphs. Do there exist some common distributions 
that are followed by a majority of structured Web sources? 
While this problem has been studied extensively in the 
context of surface Web�[8], little work exists on this problem 
for the deep Web. A similar problem was studied in �[4] for 
several text databases.  
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Figure  2. Case study: Relational Link Degree 

Distribution 
We study corresponding database graphs of three 

popular structured Web sources: ACM Digital Library 
(similar to DBLP and omitted here due to space limitation), 
DBLP, and Internet Movie Database (IMDB). Figure 2 
shows that in both the movie domain and the research 
publication domain, the degree distribution of the attribute 
value graph is very close to power-law distribution, i.e. a 
few attribute values are extremely popular, while “the 
massive many” are sparsely connected. This implies that in 

a database graph, there exists a small portion of “hub” 
attribute values that link to a significant portion of database 
content. Therefore these nodes can help the crawler rapidly 
“uncover” a considerable portion of the target source. Thus, 
we propose a greedy relational-link based database crawler. 
At each step it selects from Lto-query the next attribute value 
with greatest link number in Glocal for query formulation. In 
other words, the greedy link-based algorithm estimates 
HR(qi) as proportional to degree(qi,G local). 

3.3.  Exploiting Attribute Value Dependency 

There is one fundamental limitation inherited in the 
above approach: the basic query selection criterion 
employed is the query’s popularity, rather than a query’s 
potential to discover new database content. The greedy 
linked-based strategy always favours popular nodes and 
does not take into consideration the dependency between 
the queries to issue and the queries already issued. 
However, in real world databases, the dependency 
between attribute values is very common. For example, 
many authors often publish paper together and thus after 
one of the authors are queried, the other author name may 
not be a good choice even if it is the most popular “node” 
in the Glocal.  Our experience indicates that in the 
beginning of the crawling process, the strategy of 
following dense link works well. However, after the 
database coverage reaches a certain percentage (e.g. 85%), 
the negative effects of query dependency catches up and 
finally outweighs the query popularity due to a large 
number of duplicate contents. We call this the “low 
marginal benefit” phenomena in Web database crawling.  

In order to effectively “squeeze” out the marginal 
content, it is important that we alleviate the negative effects 
caused by the query dependency. To this end, we propose a 
new “Min-Max Mutual Information-based Query selection 
Method”(MMMI) that employs the concept of mutual 
information to capture the correlation between two queries 
(attribute values): qi and qj by counting the number of 
records in DBlocal where they occur together. Specifically, 
each query qi in Lto-query will be assigned a score s(qi) that is 
proportional to its correlation with the queries in Lqueried and 
a sorting process will be invoked to sort Lto-query in 
ascending order. The dependency between qi and all the 
past queries in Lqueried is defined as follows: 
DEFINITION 3.1. Given the part of target database DBlocal 

that has already been discovered, the dependency s(qi, 
Lqueried [1…m]) between qi  and Lqueried[1…m] is:  
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for each  qj Lqueried [1…m] and HR (qi)  1/s(qi,DBlocal).  
Thus each query in Lto-query is rated by its maximum 
dependence among all the issued queries in Lqueried. By 



doing so, we penalize those candidate queries that 
demonstrate strong dependency on previously issued 
queries. While it is open to discussion whether max() is the 
best function to capture the correlation between qi and all 
the previous queries (e.g. the linear weighted function can 
be a good alternative), the reason for choosing max() is only 
to avoid “bad” decisions (similar to the “common wisdom” 
in query optimization) that brings back a lot of duplicate 
records and we believe that max() is sufficient for this goal. 

 In this paper, MMMI is used together with the greedy 
link-based approach to harvest the marginal database 
content. Specifically, the crawler starts with the strategy of 
favouring popular attribute values and MMMI is later 
invoked when the crawling process becomes saturated. The 
reason for this combination is two fold.  First, the greedy 
link-based approach usually performs remarkably well when 
crawling the first 85% portion of the target database. 
Second, when the DBlocal is small in the beginning, the query 
dependency calculated based on the limited information 
available is unlikely to be accurate and useful. Currently we 
apply a set of heuristics to determine the saturation point. 
Automatic saturation detection is left for future work.  

The main challenge of incorporating the attribute 
dependency is to control its computing cost. It is expensive 
to update the attribute dependencies every time when new 
records are discovered. Our current solution is to adopt a 
batch-mode operation, i.e. the dependency information is 
recomputed when a batch of queries has been issued.  

3.4.  Heuristic-based  Query Abortion 
There are several simple heuristics that can be applied to 

improve the crawling performance. First, most Web sources 
report the number of total query results in the first return 
page. Therefore, a crawler is able to accurately calculate the 
exact number of new records in the following pages and 
thus can abort a query if the harvest rate is below some 
threshold. Second, when such information is not available, 
one can still apply other heuristics to abort queries that 
retrieves significant number of duplicate records in the first 
several pages.  Our experiments show that these heuristics 
can greatly improve crawling performance. Due to the space 
limitation, we do not discuss these methods further in the 
paper and refer to a forth-coming journal version of this 
work. 

4. Leveraging Domain Knowledge in Query 
Selection 

So far, we have developed the greedy link-based query 
selection algorithm and optimization techniques to handle 
the “low marginal benefit” problem. While our 
experimental results in Section 6 show that link-based 
techniques can considerably outperform best naïve query 
selection methods, they have two fundamental limitations. 

Limitation 1. Query selection decision is made solely based 
on the statistical information available in DBlocal.  Without a 
bigger picture, any estimation about query harvest rate is 
doomed to be inaccurate. We call it “near-sighted 
estimation problem”.  
Limitation 2. Techniques introduced so far select queries 
only among the previously results returned from the target 
database, i.e. only those attribute values in DBlocal are 
eligible for future query formulation. This limited query 
candidate pool problem will lead to another two issues. 
First, since the current query is selected from the previous 
query results, it is hard to avoid the negative impact of the 
attribute value dependency completely. Second, in some 
real world sources, the underlying database graphs may not 
be fully connected. As a result, from a small number of seed 
attribute values, the convergence coverage may constitute 
only a small fraction of the target database (“data islands”).  

4.1.  Incorporating Domain Knowledge to Query 
Selection Framework 
Structured Web sources are often domain specific. 
Databases from the same domain are similar both in terms 
of their attribute values and their attribute value 
distributions. For instance, in product databases, the set of 
brand names is usually stable across different sellers and the 
frequency of each brand name is also likely to be similar 
within different databases. Furthermore, a common situation 
in practice is that before crawling a target product database, 
the crawler may have already acquired access to the 
structured content from some databases in the same domain. 
This situation is especially true when some online sellers are 
willing to share their product catalogue with major search 
engines. Consequently it is unwise to ignore this fact and 
treat domain-specific databases as though they were 
independent of each other. Leveraging on some sample 
databases from a particular domain, the database crawler 
not only acquires the categorical attribute values for query 
generation (addressing Limitation 2), but also obtains 
global statistical information to estimate the query harvest 
rate more accurately (addressing Limitation 1).  

Now the remaining question is how we can effectively 
integrate the domain knowledge into our existing query 
selection framework. For example, if we already have some 
DBLP data at hand, how can the database crawler utilize 
this piece of prior knowledge when crawling the ACM 
Digital Library? Similarly, if we have already obtained the 
data from the Internet Movie Database, how can this 
knowledge enhance the crawling performance of the 
Amazon DVD product database? Before presenting our 
solution to these questions, we first discuss how the domain 
statistics are represented.  
DEFINITION 4.1. The domain statistics table DT of domain 
DM consists of a collection of entries in the form of 



<qi ,P(qi ,DM )>, where qi stands for a candidate query and 
P(qi, DM) is the domain probability that  qi occurs in DM.  
With the domain statistics table being incorporated, the 
database crawler now faces a larger candidate pool to select 
query from, which can be classified into two groups QDB and 
QDT. QDB consists of the queries whose corresponding 
attribute values have been discovered in the target database 
DB from the previous results; QDT corresponds to the 
queries in the domain table DT but not yet seen from DB. In 
the following two subsections, we derive two estimators for 
harvest rates of these two types of queries.  

4.2. Harvest Rate Estimation for  qi QDB 

Using the domain statistics to estimate the harvest rate 
for qi QDB, we rewrite HR(qi) from Definition 2.5 as 
follows:        
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where num(qi, DBlocal) is the number of matched records 
of query qi in DBlocal, num(qi , DB) is the total number of 
matched results in the target database DB, which is 
unknown before qi is executed and k corresponds to the 
number of records contained in each result page. Below 
we show how to estimate the only unknown factor num(qi, 
DB). Our assumption is based on the observation 
discussed: the probability that query qi occurs in the 
database DB equals to its domain probability P(qi,,DM).  
This simplified assumption is similar to the statistical 
language model employed in the Information Retrieval 
(IR) literature, i.e. we basically assume that databases 
from the same domain are generated by a similar “hidden” 
model. According to this assumption, all queries in Lqueried 

[1…m] (queries that have already been issued) have the 
same occurrences probability belonging to DB as its 
domain probability. Omitting the derivation, we estimate 
the value of num(qi,DB) using the following estimator: 
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So far we assume a comprehensive domain table and do 
not take into consideration the situation where candidate 
query qi does not appear in the domain statistics table DT. 
In order to handle the situations where DT misses qi, we add 
a “smoothing” factor in the calculation of P(qi ,DM):  
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In the above equation, DM  is the set of newly discovered 
records from DB containing at least one attribute value that 
is not in DM; num(qi, DM) and num(qi,DM) stand for the 
number of records matched by qi in DM and DM, 
respectively.  

4.3. Harvest Rate Estimation for qi QDT 

We now show how we estimate the harvest rate of a 
query qi  in the domain table DT while its corresponding 
attribute value has not been discovered from the target 
database DB. Since we have not seen qi in the previous 
query results, all the records matched by qi in DB, if any, 
must be new, i.e. HR(qi)=1.  However, qi may not exist in 
DB in the first place. In this case, simply no record will be 
returned, i.e. HR(qi)=0. Therefore, the expected value of 
HR(qi) of qi QDT  can be written as the weighted sum of the 
above two possible conditions and we get HR(qi)= P(qi

DB| qi DM). With a simplified assumption that P(qi DB) 
equals to P(qi DM), we obtain the following: HR(qi)= 
P(qi DB| qi DM) = P(qi DM| qi DB) , where P(qi DM| 
qi DB) can be easily evaluated as DM’s “hit rate” of the 
previously returned results in the crawling history.  

4.4. Optimization Issues 
We briefly discuss two optimization choices that are 

employed to accelerate the query selection process. First, 
we adopt the notion of lazy harvest rate evaluation in 
calculating the harvest rate for qi QDB. The basic idea is to 
postpone as much as possible the real calculation of HR(qi). 
We internally organize a separate queue for all the queries 
that belong to QDB. All the queries in QDB are compared via 
an intermediate harvest rate value, since HR(qi)  
P(qi ,DM)/num(qi,DB) . Consequently, each time we only 
need to calculate the exact value of only one query from 
QDB. Second, P(Lqueried[1…m] ,DM) changes after the latest 
issued query being added to Lqueried . Recalculating 
P(Lqueried[1…m] ,DM) from scratch at each query selection 
step can be very time consuming. We incrementally 
maintain this value by rewriting P(Lqueried[1…m] ,DM) as 
follows:  
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where S(Lqueried[1…m-1], DM) stands for the set of record 
IDs in the sample databases DM matched by any query from 
Lqueried[1…m-1]. And S(Lqueried[m], DM) represents the set of 
record IDs that are matched by the latest issued query 
Lqueried[m]. We keep S(Lqueried[1…m-1], DM) as a sorted list, 
the union between the two sets can be efficiently 
implemented as merging of two sorted lists with duplicate 
elimination. The resulting list is a new sorted list 
S(Lqueried[1…m], DM) to be used by the same procedure in 
the next round.  

5. Experimental Evaluation 

Our experiment consists of two groups: controlled 
simulation on local database servers and real crawling of the 
Amazon DVD product database. 



For the controlled crawling simulation, the crawler and 
the database server are located on two separate machines 
interconnected with high speed LAN. The database is 
hosted by a Dual 3.06G HZ Windows Server with 3.87 GB 
of RAM running Microsoft SQL Server 2000 RDBMS. We 
simulate the crawling process by implementing server 
programs that mimic Web server behaviour on top of the 
database server. Real data from 4 structured Web databases 
is used in this controlled simulation. Specifically, the eBay 
Auction database consists of 20,000 auction items crawled 
in 2001 by Wisconsin database group. The ACM Digital 
Library database contains 150,000 research article records. 
We crawled the library and populate our local database with 
the structured data extracted from the page crawled. Both 
DBLP and the Internet Movie Database (IMDB) are freely 
available on the Web. DBLP contains 500,000 paper 
records and IMDB has information about 400,000 movies 
records. For each database, we join all the information into 
one single universal table. For those attributes that may 
contain variable number of attribute values among different 
records (e.g. consider the "Authors" attribute in research 
paper databases), we concatenate and combine all the 
attribute values into one single column and make the 
column full-text searchable. The query interfaces 
implemented in our experiments and the corresponding 
number of distinct attribute values is shown in Table 2.  

Given the above query interfaces, all the four controlled 
databases are "well connected": 99% of all the records are 
connected in the sense that starting from any of these 
records, a database crawler can obtain 99% database 
records within a finite number of queries. Each query 
selection algorithm is evaluated four times with different 
seed values (starting points) to avoid the possible noise due 
to individual seed, and the average result is reported. 

 
 Queriable Attributes Attribute Value # 

eBay Categories, Seller, Location, Price 22950 

ACM Title, Conference, Journal, Author, 
Subject keywords 

 
370,416 

DBLP Title, Conference, Journal, Author, 
Volume 

860,293 

 
IMDB 

Actor, Actress, Director, Editor, 
Producer, Costumer, Composer, 

Photographer, Language, 
Company, Release Location 

 
1,225,895 

Table 2.  Database Query Interface Schemas 

We also conduct experiments on some real Web sources. 
The Amazon DVD product database is used to evaluate our 
domain knowledge-based query selection algorithm. 
Amazon.com provides developers with direct access to its 
product data repository via a set of well-defined Web 
service interfaces. The returned query results are in the 
format of XML documents, which eliminates the possible 
accuracy problems of extracting structured records from 
Web pages. Since we do not have the size information, 
“overlap analysis” is used �[18] to obtain an estimation of 

approximate size. Specifically, we conducted 6 independent 
crawls starting from 6 randomly selected seed values. Each 
crawl terminates after 5000 interactions with the server. 
Then we calculate the overlap size of every two result sets 
and based on which, we obtain in total 152

6 =C size 
estimation about the Amazon DVD database. Finally, 
statistical hypothesis testing is applied (t-testing in our case) 
on these 15 size estimations. Our results show that with 
90% confidence, the Amazon DVD product database 
contains less than 37,000 data records. 

5.1 Performance of Link-based Query Selection 
Algorithm 

In Figure 3, we compare the crawling performance of 
the greedy link-based query selection method with three 
naïve ones in terms of communication overhead incurred to 
achieve the same database record coverage. In particular, x-
axis represents the database coverage and y-axis plots the 
number of result pages requested by the database crawler. 
All the experiments here are performed over controlled 
database servers. In these experiments, the maximum target 
database coverage is 90%, which is a fairly ambitious goal 
in practice. By default, each result page contains at most ten 
data records from the backend database.         
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Figure 3.  Performance comparison between the 
greedy and naïve methods on four controlled 
database servers. 

As expected, the greedy link-based query selection 
method (GL) consistently achieves the best coverage with 
the least communication cost. This confirms that the 
presence of hub nodes in the database graph indeed enables 
GL to quickly retrieve the “dense portion” of a target 



structured Web database. Moreover, on every dataset, the 
cost of all methods increases dramatically when the 
coverage exceeds 80%. This shows that after the coverage 
reaches a certain level, most returned records overlap with 
the previous results. This is what we called the “low 
marginal benefit” phenomena in query-based database 
crawling.  

5.2 Effectiveness of Incorportating Attribute 
Value Dependency 

Figure 4 illustrates the effects of using attribute value 
dependency in obtaining the “marginal database content” on 
the eBay auction dataset. The greedy crawler will invoke 
mutual information-based ordering and switch to a new 
policy when the database coverage reaches 85%. As is 
shown in Figure 4, MMMI achieves the same coverage with 
about 1200 communication rounds less than the original 
greedy crawler. This shows that by assigning higher priority 
to the queries with less correlation with the previously 
issued queries, MMMI speeds up the process of obtaining 
the “marginal database content”. 

5.3 Effectiveness of  leveraging domain statistical 
information 

In Figure 5, we conduct a head-to-head comparison 
between the domain knowledge-based approach and the 
greedy link-based algorithm (GL). We use the Amazon 
DVD product database as the target source. The IMDB 
dataset is used for the domain table construction (since 
IMDB and Amazon DVD are from the same Movie 
domain). In addition, we also investigate the effect of the 
sample database size on DM’s performance. We construct 
two domain tables (DT) from two distinct subsets of IMDB. 
DM(I) constructs the DT from a larger subset containing all 
the movie records released after year 1960 (270,000 records)  
in IMDB. In contrast, DM(II) only contains movies after 
year 1980 (190,000 records). In Figure 5, x-axis depicts the 
total number of page requests sent by the crawler and y-axis 
represents the estimated database coverage. All methods are 
allowed to retrieve 10,000 result pages from the Amazon 
Web Service and we take snapshots of the database 
coverage between every 1,000 requests. As is shown in 

Figure 5, both DM-based crawlers outperform GL. In 
particular, after ten thousand communications with the 
Amazon Web service, DM(I) acquires around 95% of the 
estimated database records, while the final coverage of the 
greedy approach is less than 70%. Furthermore, with 5,500 
communication rounds, DM(I) has already retrieved 
approximately 80% DVD database records, which is pretty 
good in practice.    

By comparing DM (I) with DM (II), we observe that a 
smaller domain data set results in a slight performance 
degradation. With a more comprehensive domain table, 
DM(I) benefits from more accurate query probability 
estimation as well as a larger candidate query pool. Note 
that in this experiment, Amazon sets a limit of 3200 on its 
result size for any query, i.e. for each incoming query, 
Amazon Web service returns at most 3200 matched records. 
This value is quite “generous” compared to most other Web 
sources.  

5.4  Crawling performance with limited result set 
size 

Our experiments on controlled database servers assume 
that all the matched result records can be retrieved.  
However, in reality, most Web databases set an upper 
bound on the number of results that can be accessed to save 
the server resource. For example, Yahoo! Automobile 
Finder may claim that it has 5000 cars records matching 
with a certain query and the user may not be able to access 
the records beyond the first 20 pages.  

In Figure 6, we are interested in the crawling 
performance with much tighter limits on the result size. We 
still use the Amazon DVD database as target source and the 
movie records after 1960 (270,000 records) from IMDB is 
used to construct the domain table. For both the DM 
crawler and GL crawler, we run two crawls with the limit 
size set to 10 and 50. Figure 6 shows that with tighter limits 
on the result size, both methods experience degradation in 
productivity. Compared to their performance in Figure 6 
with a limit of 3200 (the original limit imposed by Amazon), 
the performance of both methods drops by about 50% and 
20% under limit=10 and 50 respectively. Intuitively, the 
result limit reduces the connectivity of the target database, 
and thus delays the discovery of the “hub” nodes.   
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6. Related Work 
Raghavan and Molina first introduced the problem of 

“hidden Web crawling”. A prototype deep Web crawler, 
HiWe, was presented to automatically extract and analyse 
the interface elements and submits queries through these 
query interfaces. In �[6], Barbosa et. al. experimentally 
investigate the construction of keyword queries to obtain 
documents from large Web text collections. We also notice 
that another independent effort by Ntoulas et. al. �[21] 
proposes similar keyword query selection techniques for 
downloading the textual content from Web repositories.  

Another important related area is Web information 
extraction. Lots of proposals have been made. For example, 
�[5] studies the problem of fully automatic data extraction by 
exploring the repeated patterns from multiple template-
generated result pages. �[19] utilizes the information on the 
“detailed” record pages pointed by the current result page to 
identify and extract data records. Note that Web data 
extraction is orthogonal to the query selection problem 
investigated in this paper. Breakthroughs in that frontier will 
certainly increase the potential impact of this work.  

There has been an active research interest in 
understanding the semantics of the query interfaces of the 
structured Web databases �[16],�[24],�[25],�[15]. For example, 
�[16] introduces WISE-integrator that employs 
comprehensive meta-data, such as element labels and 
default value of the elements to automatically identify 
matching attributes. �[24] proposes an instance-based 
schema matching scheme that uses domain specific query 
probes to discover the attribute mappings. �[15] uses 
statistical models to find the hidden domain-specific schema 
by analysing co-appearance of attribute names. 

7. Conclusion 
The high quality data from structured Web sources is in 

high demand from many applications. Parallel to URL 
ordering in surface Web crawling �[12], the central issue of 
efficient data acquisition from the deep Web is query 
selection. In this paper, we modeled the query-based 
database crawling, conducted two case studies to investigate 
real Web sources’ properties, proposed two suites of query 
selection methods and experimented our methods 
extensively on both controlled local servers and a real Web 
structured source with more than 1 million data records in 
total. The results motivate the need for sophisticated query 
selection mechanism, validate the effectiveness of our 
approaches and provide insights for future efforts. The 
domain-knowledge based database crawler shows the 
greatest promise among all methods. We believe that a 
practical solution for real world applications is to combine 
the domain-knowledge-based query selection with a set of 
fine-tuned heuristics, which is a part of our future work. Our 

future work also includes the implementation and 
deployment of a real world product database crawler. 
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