
Query Selection Techniques for Efficient Crawling of Structured Web Sources

Ping Wu1
University of California

Santa Barbara
pingwu@cs.ucsb.edu

Ji-Rong Wen
Microsoft Research

Asia
jrwen@microsoft.com

Huan Liu
Arizona State

University
hliu@asu.edu

Wei-Ying Ma
Microsoft Research

Asia
wyma@microsoft.com

1 Work was done when the author was visiting Microsoft Research.

Abstract

The high quality, structured data from Web structured
sources is invaluable for many applications. Hidden Web
databases are not directly crawlable by Web search
engines and are only accessible through Web query forms
or via Web service interfaces. Recent research efforts
have been focusing on understanding these Web query
forms. A critical but still largely unresolved question is:
how to efficiently acquire the structured information
inside Web databases through iteratively issuing
meaningful queries? In this paper we focus on the central
issue of enabling efficient Web database crawling through
query selection, i.e. how to select good queries to rapidly
harvest data records from Web databases. We model each
structured Web database as a distinct attribute-value
graph. Under this theoretical framework, the database
crawling problem is transformed into a graph traversal
one that follows “relational” links. We show that finding
an optimal query selection plan is equivalent to finding a
Minimum Weighted Dominating Set of the corresponding
database graph, a well-known NP-Complete problem. We
propose a suite of query selection techniques aiming at
optimizing the query harvest rate. Extensive experimental
evaluations over real Web sources and simulations over
controlled database servers validate the effectiveness of
our techniques and provide insights for future efforts in
this direction

1. Introduction

Structured Web databases are becoming an increasingly
popular habitat for relational data. Since data residing in
Web databases is guarded by search interfaces and
inaccessible to conventional Web crawlers, this portion of
the Web is commonly referred to as "deep Web" or "hidden
Web" [7]. To enable a "one-stop" access for such a wealthy
amount of high quality data, there are two major kinds of
design choices among others. One is the data warehouse-
like approach [1,2], where the data is gathered from a large
number of Web data sources and can be searched and
mined in a centralized manner. The other is the
"MetaQuerier" approach [10] that abstracts different

"dialects" of Web databases by providing a mediated
schema to the users. In addition to many differences
between these two approaches, they have different goals in
offline data acquisition. For the data-warehouse-based
approach, integrating data from structured Web sources and
collecting them to a centralized repository is a critical first
step, since user queries are answered solely based on the
data stored in the centralized warehouse. In contrast,
MetaQuerier imposes fewer requirements on data
acquisition because several query probes will normally
suffice for query mapping and schema matching [24].

While it is still unclear whether the MetaQuerier
approach or the crawling-based warehousing approach is
more suitable to access the deep Web, data acquisition from
structured Web sources is a pressing research issue in its
own right. Many exciting applications can be developed
using the high quality, structured data crawled from the
hidden Web sources. For example, one can learn domain
knowledge by feeding the data to existing learning
techniques [20,23]. One can create Internet services such as
"comparison shopping" by integrating data from different,
potentially competing product providers. Hidden Web data
can also be used to assist structuring other less structured
documents. In fact, some major Web search engines are
beginning to provide product search services based on the
structured data gathered from a number of Web sources
[1,2].

In principle, there are two ways to acquire the data from
Web sources. The most efficient and effective way is to let
the data providers export their backend databases by
licensing their data so that their product information can be
directly indexed by the product search services.
Unfortunately, in an autonomous, uncooperative, and
competitive environment like the public Web, this approach
is difficult to scale up with the huge number of deep Web
sites and potentially requires significant amount of time and
extensive human efforts. The alternative approach, which is
the focus of our paper, relies on a hidden-Web crawler to
actively query the target product database and iteratively
"uncover" the database content. Queries are issued either
through the Web query forms or through the published Web
services' interfaces (e.g., Amazon Web Service). Unlike the
traditional crawling methods, query-based database

crawling can be characterized by a "query-harvest-
decompose" loop that incrementally uncovers a target Web
database. It starts with some seed queries prepared in the
form of attribute value pairs (e.g., "Actors, 'Hanks, Tom'",
"Brand, 'IBM'", etc.) Then, it automatically queries the
target data source by feeding the attribute values into
appropriate query boxes or Web service procedures. It
harvests the data records from the returned pages, which
may be in the form of HTML Web pages or as XML
documents. It populates the extracted records to its local
database and decomposes these records into attribute values,
which are stored as candidates for future query formulation.
This process is repeated until all the possible queries are
issued or some stopping criterion is met.

Previous efforts have primarily focused on the problem
of automating the above process. To this end, technical
challenges mainly lie in the "smart form filling" [22] and
structured data extraction (e.g., [5]). However, a critical but
largely unresolved problem is: how to select good queries to
issue so that satisfactory database coverage can be achieved
within affordable communication costs with the server?
Intuitively, while the ultimate database coverage (or the
coverage convergence) is predetermined by the seed values
and the target query interfaces, the communication costs
used to reach this coverage are greatly dependent on the
query selection method used. In practice, it is often
infeasible for a Web database crawler to query the target
database exhaustively. Hence, an efficient query selection
method is necessary that can achieve "good" database
coverage with reasonable communication costs. We show
that a sound solution to this problem is technically non-
trivial. We also demonstrate that to achieve the same
database coverage, a good query selection method can incur
considerably less overhead than a naive one.

As one of the initial efforts to address this problem, the
contribution of the paper is summarized as follows:

First, we identify this novel problem of query selection
for efficient Web database crawling. Contrary to the
traditional surface Web crawling that focuses on URLs’
ordering, we demonstrate that a central issue of efficient
deep Web crawling lies in query selection.

Second, we provide a theoretical framework that
formally models query-based deep Web crawling as graph
traversal. We show that the goal of query selection
algorithms is to find a Weighted Minimum Dominating Set
in the corresponding attribute-value graph.

Third, we study the database graphs of real structured
Web databases and observe that the degree distribution in
such graphs closely resembles the power-law distribution.
Motivated by this case study, we propose a greedy link-
based query selection method that rapidly traverses the
database graph by following some "hub" nodes. In addition,
we developed two optimization techniques to further
optimize the greedy crawler. The effectiveness of these

methods is demonstrated with experiments on 4 real world
databases with 1 million records in total.

Fourth, we present another family of query selection
methods that leverages on domain knowledge to overcome
the limitations associated with the greedy methods. Its
effectiveness is evaluated by a real crawling experiment on
the Amazon DVD databases with domain statistics tables
built from the Internet Movie Database (IMDB).

The rest of this paper is organized as follows: Section 2
presents our theoretical framework for query-based
database crawling. Section 3 describes a greedy query
selection method and its variants. A domain knowledge-
based query selection algorithm is proposed in Section 4.
We discuss our experimental findings in Section 5. Section
6 reviews some related work. Section 7 concludes this paper.

2. Modeling Query-based Database Crawling

2.1. Attribute-Value-based Graph Model (AVG)

We view a structured Web database as a single relational
table DB with n data records {t1,t2,...,tn} over a set of m
attributes AS={attr1,attr2,...,attrm}. The distinct attribute
value set DAV consists of all distinct attribute values
occurred in DB.
DEFINITION 2.1.: An attribute-value graph (AVG),
G(V,E), for DB is an undirected graph that can be
constructed as follows: for each distinct attribute value avi

DAV there exists a unique vertex vi V. An undirected
edge (vi,vj) E i.f.f. avi and avj coexist in one relational
instance tk DB. Each edge in AVG stands for a relational
link between avi and avj.

According to the definition, attribute values from each
relational instance form a clique. If two data records share
the same attribute value, the corresponding vertex
“bridges" the two cliques. Depending on the database
structure, an AVG is not necessarily fully connected.
Although we only discuss the relational data model, AVG
can also model more flexible data models (e.g., XML)
graphically with straightforward extension.

By characterizing structured Web databases using
AVG, a query-based crawling process is transformed into
a graph traversal activity in which the database crawler
starts with a set of seed vertices and at each step a
previously seen vertex v is selected to visit (query
formulation) and all the neighbors of v will be discovered
(result extraction) and stored (decomposition) for future
visit.
Example 2.1.: Figure 1 shows a relational database
(represented as a single table on the left) and its
corresponding distinct attribute value graph. Consider a
database crawler starts with the attribute value a2 as its
seed value. In the first round, it will query the database
with a2. From the returned results, it will see c1,b2,c2,b3.

In the second round, if c2 is selected and sent as query, a
new record will be discovered with two new attribute
values: a3,b4. In the final round, if c1 is selected, the one
remaining record will be obtained.

Figure 1. An example of attribute value graph

In summary, the significance of AVG is that it
conceptually transforms the query-based Web database
crawling into a graph traversal problem, which is parallel
to the traditional problem of crawling the surface Web
following hyperlinks.

2.2. Query Model
Structured Web databases can be queried via query

forms or through Web service interfaces. We uniformly
refer to both access methods as “query interfaces".
Through query interfaces, data consumers (e.g. end users)
are able to express their information needs by imposing
selection conditions on certain attributes of interest.
DEFINITION 2.2. The database crawler views a Web
database as a single relational table DB with a set of
queriable attributes Aq = {attrq1, attrq2,…,attrqn} (interface
schema) and a set of result attributes Ar = {attrr1,
attrr2,…,attrrm} (result schema) �[24]. Each attrqi Aq
represents the queriable attribute through the query interface,
while the result attribute attrrj Ar corresponds to the
attributes displayed in the result pages. Each query
operation can be modelled using SQL syntax as: “SELECT
attrr1, attrr2,…,attrrm FROM DB WHERE attrq1 = valq1,
attrq2,=valq2 ,…,attrqn = valqn”, where valqi is the
corresponding attribute value filled into the query form.

In this paper, we focus on the simplest selection queries
with only one equality predicate. The reason for this choice
is twofold: (1) The single attribute-value query is sufficient
for query-based crawling in many domains. For example,
many on-line product providers have already been
supporting keyword-based queries to search their
transactional data repositories. (2) Many product domains
with more structured query interfaces also allow for single
attribute-value queries (e.g., users can query Amazon.com
with book title only). Below we conduct a real world case
study to illustrate the applicability of this simplified query
model in practice.

Case study: The applicability of the simplified
query model in practice

Domain K.W. S.Q.M.
Book 82% 100%
Job 98% 96%
Movie 63% 100%
Car 14% 58%
Music 65% 100%

Domain K.W. S.Q.M.
DVD 78% 96%
Electronic 96% 96%
Computer 100% 100%
Games 91% 96%
Appliance 100% 100%
Jewellery 96% 100%

Table 1. Case study from 480 Web sources using
UIUC Repository (the left Table) and Bizrate.com
(the right table)

In this case study, we are interested in the percentage of
structured Web sources that allow single attribute query. In
addition, we are also interested to see how many Web
product databases allow “keyword-based” search
(structured sources with unstructured interfaces), which also
naturally falls into the category of “single-attribute-
queriable” interface. We manually examine two sets of real
Web sources consisting of 480 sites from 11 different
domains. The first dataset contains 5 domains selected from
the UIUC Web Repository �[3]. The second data set is from
the Bizrate.com, a major online store that integrates data
from hundreds of e-commerce sites in more than ten
different domains. We investigate 6 major product domains
in Bizrate.com, and for each domain, the top 25 stores
(according to the customer ratings ranked by Bizrate.com)
are selected for this case study.

Table 1 shows that most product databases can be
modelled by simplified query model (S.Q.M), but the
acceptance percentage varies dramatically across different
domains. For example, in many product domains such as
DVD and Books, more than 95% sources can be queried
by specifying only one attribute value. However, there
exist some domains like airplane fare vendors and hotel
reservation sites (which are not shown here) where most
query forms are highly structured and restrictive in the
sense that only multi-attribute queries are accepted.
Another interesting finding is that contrary to the common
belief that structured Web databases are usually guarded
by structured query interfaces with “rich” query semantics,
most e-commerce Web sites also support keyword based
search (K.W.) over their transactional product databases.
This trend of “fading schema” opens exciting
opportunities for query-based database crawling. In the
presence of keyword query interfaces, the crawler can
then easily “throw” attribute values into target query box
and safely rely on the end sites’ query processing
mechanism to decide which “column” that value should
actually match. In summary, our case study confirms that
the simplified query model can model most e-commerce
product sources. Thus, we argue that the research on
query selection techniques can and should proceed
without delay for more sophisticated query capability

1a 1b 1c

2a 2b 1c

2a 2b 2c

2a 3b 2c

3a 4b 2c

1a 2a

3a
2b

3b
1b

1c
2c

4b

models. We leave the issues relating to crawling multi-
attribute Web sources as our future work.

2.3. Cost Model
We define the cost of crawling a Web database as the

total number of communication rounds between the crawler
and the Web server. In this paper, we are only interested in
the transmission overhead that is typically a dominant
component in Web database crawling. It is important to
distinguish the total number of communication rounds with
the total number of queries issued. This is because each
result page can typically hold a fixed number k of matched
records and thus every initiated connection retrieves at most
k data records. For example, if there are 95 car records in
the used car database matching the attribute value “Brand,
Toyota” and each result page displays the next 10 records,
the total cost to retrieve the entire answer set will be
� � 1010/95 = communication rounds.
DEFINITION 2.3. The crawling cost cost(qi,DB) of
querying the database DB with query qi is defined as:
cost(qi,DB)= � �kDBqi /),(num ,where),(num DBqi stands for
the number of all the records in DB matched by qi and k
corresponds to the maximum number of records displayed
in each result page from the target Web site.

2.5. Problem Formulation
We now describe the context in which a query selection

algorithm works. In general, a Web database crawler
consists of three components: Query Selector, Database
Prober and a Result Extractor. The Query Selector
implements three internal data structures: Lto-query, Lqueried,
and a statistics table. Lqueried stores the attribute values
queried previously. Lto-query contains the attribute values
discovered so far but still yet to be probed. The statistics
table maintains all the information needed for the Query
Selector to make the selection decision. Once a query is
chosen, the Database Prober module queries the target
database DB and the Result Extractor extracts data
records from the result pages and feeds them into DBlocal.
This process is equivalent to “expand” a local database
graph Glocal , a sub-graph of the complete graph G.

We now present a theoretical framework to formalize
the problem of optimal query selection. In the traversal of a
database graph, one needs to determine which vertex to visit
next, i.e. how the crawler chooses the attribute value for the
next query formulation. Intuitively, there exists a subset of
vertices V' (queries) that retrieves the entire reachable
database content in DB, i.f.f. all other vertices in
corresponding database graph are adjacent to at least one
vertex in V'. The goal of the optimal query selection
strategy is hence equivalent to finding the V' with minimum
cardinality. Furthermore, according to our cost model, the
query cost varies across different graph vertices. Thus we

further generalize the crawler’s goal as to find a
“dominating” vertex set V' with minimum total weight.
Formally, we give the definition of the optimal query
selection algorithm as follows:
DEFINITION 2.4. (Optimal Query Selection Method)
Given a database graph G(V,E) , seed vertex set Vseed ⊆ V
and a weight function W:V (0,1) where G(V,E) and W are
defined according to the graph model and cost model
respectively, an optimal query-based database crawler finds
a subset Voptimal of V s.t. 1) ∀ vi V-Voptimal, ∃vj Voptimal, s.t.
(vi,vj) E; and 2) there does not exist another such subset
V’ of V with less total weight than Voptimal.

By the above definition, the query selection problem is
strikingly similar to the Weighted Minimum Dominating Set
problem (NP-Complete). Slightly different from the
traditional problem setting, the database crawler is facing a
more challenging problem as it lacks the “big picture” of the
whole graph and can thus only make a decision of query
selection based on its partial knowledge about the target
database. Starting with a set of seed attribute values and
little information about the global graph, a database crawler
essentially expands the local database graph and more
knowledge about the global picture is accumulated during
this process. We borrow the concept of harvest rate from
focused Web crawling �[9] and define a new metric called
query harvest rate to capture the “productivity” of each
candidate query.
DEFINITION 2.5. (Query Harvest Rate) Given a target
Web database and a local database containing
the data records already crawled from DB the harvest rate
of qi is defined as:

HR(qi)= [num(qi ,DB)-num(qi ,DBlocal)]/cost(qi ,DB) (2.1)
where num(qi ,DB) and num(qi ,DBlocal) corresponds to the
number data records matched by qi in DB and DBlocal ,
respectively; cost(qi ,DB) stands for the cost of obtaining all
the result pages.

The goal of a local optimal solution is to select the
attribute value with maximum harvest rate as the next query.
It is essentially a greedy approach. In our discussion so far,
we by default consider the acquisition of the entire database.
However, in reality, a more reasonable goal is to harvest a
satisfying portion of records as quickly as possible,
especially for big Web databases, i.e. to achieve a certain
database coverage with the minimum cost. Now the key
issue is to accurately estimate the harvest rate for a given
candidate query.

3. Relational Link-based Query Selection
Methods

3.1. Naïve Query Selection Methods
We start with three straightforward approaches: breath-

first selection, depth-first selection and random selection.

For the breath-first selection, Lto-query is organized as a queue.
Newly discovered attribute values are added to the end of a
queue. Each time the first query in the queue is selected to
query DB. For the depth-first query selection, Lto-query is
implemented as a stack. Each time the top element is
popped out as the next query. Finally, the random query
selector picks a random element from Lto-query to query DB.

The naïve methods described above do not utilize any
database information that has already been available to the
crawler. The random approach simply assigns a uniform
harvest rate to all candidate queries, the breath-first
approach assigns higher harvest rates to earlier found
attribute values, and the depth-first approach assigns higher
harvest rates to newly found attribute values.

3.2. Relational Link-based Query Selection
Method

As the crawler incrementally “uncovers” the target
database DB, the local data repository DBlocal contains more
and more records obtained so far. Hence its corresponding
graph Glocal constitutes a sub-graph of the complete
database graph G. Intuitively, Glocal reveals some properties
of G, i.e. a node with greater degree in Glocal is also likely to
be more popular in G. This assumption lies critically on the
link distribution in the attribute value graph. Recently there
has been a resurgence of interest in link analysis over
database graphs for authority-based ranking �[14]. However,
little is known about the actual degree distribution in
database graphs. Do there exist some common distributions
that are followed by a majority of structured Web sources?
While this problem has been studied extensively in the
context of surface Web�[8], little work exists on this problem
for the deep Web. A similar problem was studied in �[4] for
several text databases.

DBLP

0

1

2

3

4

5

0 1 2 3 4 5

log(degree)

lo
g(

fr
eq

ue
nc

e)

IMDB

0

1

2

3

4

5

0 1 2 3 4 5

log(degree)

lo
g(

fr
eq

ue
nc

e)

Figure 2. Case study: Relational Link Degree

Distribution
We study corresponding database graphs of three

popular structured Web sources: ACM Digital Library
(similar to DBLP and omitted here due to space limitation),
DBLP, and Internet Movie Database (IMDB). Figure 2
shows that in both the movie domain and the research
publication domain, the degree distribution of the attribute
value graph is very close to power-law distribution, i.e. a
few attribute values are extremely popular, while “the
massive many” are sparsely connected. This implies that in

a database graph, there exists a small portion of “hub”
attribute values that link to a significant portion of database
content. Therefore these nodes can help the crawler rapidly
“uncover” a considerable portion of the target source. Thus,
we propose a greedy relational-link based database crawler.
At each step it selects from Lto-query the next attribute value
with greatest link number in Glocal for query formulation. In
other words, the greedy link-based algorithm estimates
HR(qi) as proportional to degree(qi,G local).

3.3. Exploiting Attribute Value Dependency

There is one fundamental limitation inherited in the
above approach: the basic query selection criterion
employed is the query’s popularity, rather than a query’s
potential to discover new database content. The greedy
linked-based strategy always favours popular nodes and
does not take into consideration the dependency between
the queries to issue and the queries already issued.
However, in real world databases, the dependency
between attribute values is very common. For example,
many authors often publish paper together and thus after
one of the authors are queried, the other author name may
not be a good choice even if it is the most popular “node”
in the Glocal. Our experience indicates that in the
beginning of the crawling process, the strategy of
following dense link works well. However, after the
database coverage reaches a certain percentage (e.g. 85%),
the negative effects of query dependency catches up and
finally outweighs the query popularity due to a large
number of duplicate contents. We call this the “low
marginal benefit” phenomena in Web database crawling.

In order to effectively “squeeze” out the marginal
content, it is important that we alleviate the negative effects
caused by the query dependency. To this end, we propose a
new “Min-Max Mutual Information-based Query selection
Method”(MMMI) that employs the concept of mutual
information to capture the correlation between two queries
(attribute values): qi and qj by counting the number of
records in DBlocal where they occur together. Specifically,
each query qi in Lto-query will be assigned a score s(qi) that is
proportional to its correlation with the queries in Lqueried and
a sorting process will be invoked to sort Lto-query in
ascending order. The dependency between qi and all the
past queries in Lqueried is defined as follows:
DEFINITION 3.1. Given the part of target database DBlocal

that has already been discovered, the dependency s(qi,
Lqueried [1…m]) between qi and Lqueried[1…m] is:

�
�

�

�

�
�

�

�
=…

)|()|(

)|,(
 ln)m][1,(

localjlocali

localji
queriedi DqPDqP

DqqP
MAXLqs ,

for each qj Lqueried [1…m] and HR (qi) 1/s(qi,DBlocal).
Thus each query in Lto-query is rated by its maximum
dependence among all the issued queries in Lqueried. By

doing so, we penalize those candidate queries that
demonstrate strong dependency on previously issued
queries. While it is open to discussion whether max() is the
best function to capture the correlation between qi and all
the previous queries (e.g. the linear weighted function can
be a good alternative), the reason for choosing max() is only
to avoid “bad” decisions (similar to the “common wisdom”
in query optimization) that brings back a lot of duplicate
records and we believe that max() is sufficient for this goal.

 In this paper, MMMI is used together with the greedy
link-based approach to harvest the marginal database
content. Specifically, the crawler starts with the strategy of
favouring popular attribute values and MMMI is later
invoked when the crawling process becomes saturated. The
reason for this combination is two fold. First, the greedy
link-based approach usually performs remarkably well when
crawling the first 85% portion of the target database.
Second, when the DBlocal is small in the beginning, the query
dependency calculated based on the limited information
available is unlikely to be accurate and useful. Currently we
apply a set of heuristics to determine the saturation point.
Automatic saturation detection is left for future work.

The main challenge of incorporating the attribute
dependency is to control its computing cost. It is expensive
to update the attribute dependencies every time when new
records are discovered. Our current solution is to adopt a
batch-mode operation, i.e. the dependency information is
recomputed when a batch of queries has been issued.

3.4. Heuristic-based Query Abortion
There are several simple heuristics that can be applied to

improve the crawling performance. First, most Web sources
report the number of total query results in the first return
page. Therefore, a crawler is able to accurately calculate the
exact number of new records in the following pages and
thus can abort a query if the harvest rate is below some
threshold. Second, when such information is not available,
one can still apply other heuristics to abort queries that
retrieves significant number of duplicate records in the first
several pages. Our experiments show that these heuristics
can greatly improve crawling performance. Due to the space
limitation, we do not discuss these methods further in the
paper and refer to a forth-coming journal version of this
work.

4. Leveraging Domain Knowledge in Query
Selection

So far, we have developed the greedy link-based query
selection algorithm and optimization techniques to handle
the “low marginal benefit” problem. While our
experimental results in Section 6 show that link-based
techniques can considerably outperform best naïve query
selection methods, they have two fundamental limitations.

Limitation 1. Query selection decision is made solely based
on the statistical information available in DBlocal. Without a
bigger picture, any estimation about query harvest rate is
doomed to be inaccurate. We call it “near-sighted
estimation problem”.
Limitation 2. Techniques introduced so far select queries
only among the previously results returned from the target
database, i.e. only those attribute values in DBlocal are
eligible for future query formulation. This limited query
candidate pool problem will lead to another two issues.
First, since the current query is selected from the previous
query results, it is hard to avoid the negative impact of the
attribute value dependency completely. Second, in some
real world sources, the underlying database graphs may not
be fully connected. As a result, from a small number of seed
attribute values, the convergence coverage may constitute
only a small fraction of the target database (“data islands”).

4.1. Incorporating Domain Knowledge to Query
Selection Framework
Structured Web sources are often domain specific.
Databases from the same domain are similar both in terms
of their attribute values and their attribute value
distributions. For instance, in product databases, the set of
brand names is usually stable across different sellers and the
frequency of each brand name is also likely to be similar
within different databases. Furthermore, a common situation
in practice is that before crawling a target product database,
the crawler may have already acquired access to the
structured content from some databases in the same domain.
This situation is especially true when some online sellers are
willing to share their product catalogue with major search
engines. Consequently it is unwise to ignore this fact and
treat domain-specific databases as though they were
independent of each other. Leveraging on some sample
databases from a particular domain, the database crawler
not only acquires the categorical attribute values for query
generation (addressing Limitation 2), but also obtains
global statistical information to estimate the query harvest
rate more accurately (addressing Limitation 1).

Now the remaining question is how we can effectively
integrate the domain knowledge into our existing query
selection framework. For example, if we already have some
DBLP data at hand, how can the database crawler utilize
this piece of prior knowledge when crawling the ACM
Digital Library? Similarly, if we have already obtained the
data from the Internet Movie Database, how can this
knowledge enhance the crawling performance of the
Amazon DVD product database? Before presenting our
solution to these questions, we first discuss how the domain
statistics are represented.
DEFINITION 4.1. The domain statistics table DT of domain
DM consists of a collection of entries in the form of

<qi ,P(qi ,DM)>, where qi stands for a candidate query and
P(qi, DM) is the domain probability that qi occurs in DM.
With the domain statistics table being incorporated, the
database crawler now faces a larger candidate pool to select
query from, which can be classified into two groups QDB and
QDT. QDB consists of the queries whose corresponding
attribute values have been discovered in the target database
DB from the previous results; QDT corresponds to the
queries in the domain table DT but not yet seen from DB. In
the following two subsections, we derive two estimators for
harvest rates of these two types of queries.

4.2. Harvest Rate Estimation for qi QDB

Using the domain statistics to estimate the harvest rate
for qi QDB, we rewrite HR(qi) from Definition 2.5 as
follows:

	

�
�
�

�
−∗=

),(
),(

1)HR(
DBqnum

DBqnum
kq

i

locali
i

 (4.1)

where num(qi, DBlocal) is the number of matched records
of query qi in DBlocal, num(qi , DB) is the total number of
matched results in the target database DB, which is
unknown before qi is executed and k corresponds to the
number of records contained in each result page. Below
we show how to estimate the only unknown factor num(qi,
DB). Our assumption is based on the observation
discussed: the probability that query qi occurs in the
database DB equals to its domain probability P(qi,,DM).
This simplified assumption is similar to the statistical
language model employed in the Information Retrieval
(IR) literature, i.e. we basically assume that databases
from the same domain are generated by a similar “hidden”
model. According to this assumption, all queries in Lqueried

[1…m] (queries that have already been issued) have the
same occurrences probability belonging to DB as its
domain probability. Omitting the derivation, we estimate
the value of num(qi,DB) using the following estimator:

),(
),(*||

),(
]...1[DMLP

DMqPDB
DBqnum

mqueried

ilocal
i = (4.2)

So far we assume a comprehensive domain table and do
not take into consideration the situation where candidate
query qi does not appear in the domain statistics table DT.
In order to handle the situations where DT misses qi, we add
a “smoothing” factor in the calculation of P(qi ,DM):

||||

),(),(
),(

DMDM
DMqnumDMqnum

DMqP ii
i +∆

+∆= (4.3)

In the above equation, DM is the set of newly discovered
records from DB containing at least one attribute value that
is not in DM; num(qi, DM) and num(qi,DM) stand for the
number of records matched by qi in DM and DM,
respectively.

4.3. Harvest Rate Estimation for qi QDT

We now show how we estimate the harvest rate of a
query qi in the domain table DT while its corresponding
attribute value has not been discovered from the target
database DB. Since we have not seen qi in the previous
query results, all the records matched by qi in DB, if any,
must be new, i.e. HR(qi)=1. However, qi may not exist in
DB in the first place. In this case, simply no record will be
returned, i.e. HR(qi)=0. Therefore, the expected value of
HR(qi) of qi QDT can be written as the weighted sum of the
above two possible conditions and we get HR(qi)= P(qi

DB| qi DM). With a simplified assumption that P(qi DB)
equals to P(qi DM), we obtain the following: HR(qi)=
P(qi DB| qi DM) = P(qi DM| qi DB) , where P(qi DM|
qi DB) can be easily evaluated as DM’s “hit rate” of the
previously returned results in the crawling history.

4.4. Optimization Issues
We briefly discuss two optimization choices that are

employed to accelerate the query selection process. First,
we adopt the notion of lazy harvest rate evaluation in
calculating the harvest rate for qi QDB. The basic idea is to
postpone as much as possible the real calculation of HR(qi).
We internally organize a separate queue for all the queries
that belong to QDB. All the queries in QDB are compared via
an intermediate harvest rate value, since HR(qi)
P(qi ,DM)/num(qi,DB) . Consequently, each time we only
need to calculate the exact value of only one query from
QDB. Second, P(Lqueried[1…m] ,DM) changes after the latest
issued query being added to Lqueried . Recalculating
P(Lqueried[1…m] ,DM) from scratch at each query selection
step can be very time consuming. We incrementally
maintain this value by rewriting P(Lqueried[1…m] ,DM) as
follows:

||

|)],[()],1....1[(|
)],...1[(

DM

DMmLSDMmLS
DMmLP queriedqueried

queried

∪−
=

where S(Lqueried[1…m-1], DM) stands for the set of record
IDs in the sample databases DM matched by any query from
Lqueried[1…m-1]. And S(Lqueried[m], DM) represents the set of
record IDs that are matched by the latest issued query
Lqueried[m]. We keep S(Lqueried[1…m-1], DM) as a sorted list,
the union between the two sets can be efficiently
implemented as merging of two sorted lists with duplicate
elimination. The resulting list is a new sorted list
S(Lqueried[1…m], DM) to be used by the same procedure in
the next round.

5. Experimental Evaluation

Our experiment consists of two groups: controlled
simulation on local database servers and real crawling of the
Amazon DVD product database.

For the controlled crawling simulation, the crawler and
the database server are located on two separate machines
interconnected with high speed LAN. The database is
hosted by a Dual 3.06G HZ Windows Server with 3.87 GB
of RAM running Microsoft SQL Server 2000 RDBMS. We
simulate the crawling process by implementing server
programs that mimic Web server behaviour on top of the
database server. Real data from 4 structured Web databases
is used in this controlled simulation. Specifically, the eBay
Auction database consists of 20,000 auction items crawled
in 2001 by Wisconsin database group. The ACM Digital
Library database contains 150,000 research article records.
We crawled the library and populate our local database with
the structured data extracted from the page crawled. Both
DBLP and the Internet Movie Database (IMDB) are freely
available on the Web. DBLP contains 500,000 paper
records and IMDB has information about 400,000 movies
records. For each database, we join all the information into
one single universal table. For those attributes that may
contain variable number of attribute values among different
records (e.g. consider the "Authors" attribute in research
paper databases), we concatenate and combine all the
attribute values into one single column and make the
column full-text searchable. The query interfaces
implemented in our experiments and the corresponding
number of distinct attribute values is shown in Table 2.

Given the above query interfaces, all the four controlled
databases are "well connected": 99% of all the records are
connected in the sense that starting from any of these
records, a database crawler can obtain 99% database
records within a finite number of queries. Each query
selection algorithm is evaluated four times with different
seed values (starting points) to avoid the possible noise due
to individual seed, and the average result is reported.

 Queriable Attributes Attribute Value #

eBay Categories, Seller, Location, Price 22950

ACM Title, Conference, Journal, Author,
Subject keywords

370,416

DBLP Title, Conference, Journal, Author,
Volume

860,293

IMDB

Actor, Actress, Director, Editor,
Producer, Costumer, Composer,

Photographer, Language,
Company, Release Location

1,225,895

Table 2. Database Query Interface Schemas

We also conduct experiments on some real Web sources.
The Amazon DVD product database is used to evaluate our
domain knowledge-based query selection algorithm.
Amazon.com provides developers with direct access to its
product data repository via a set of well-defined Web
service interfaces. The returned query results are in the
format of XML documents, which eliminates the possible
accuracy problems of extracting structured records from
Web pages. Since we do not have the size information,
“overlap analysis” is used �[18] to obtain an estimation of

approximate size. Specifically, we conducted 6 independent
crawls starting from 6 randomly selected seed values. Each
crawl terminates after 5000 interactions with the server.
Then we calculate the overlap size of every two result sets
and based on which, we obtain in total 152

6 =C size
estimation about the Amazon DVD database. Finally,
statistical hypothesis testing is applied (t-testing in our case)
on these 15 size estimations. Our results show that with
90% confidence, the Amazon DVD product database
contains less than 37,000 data records.

5.1 Performance of Link-based Query Selection
Algorithm

In Figure 3, we compare the crawling performance of
the greedy link-based query selection method with three
naïve ones in terms of communication overhead incurred to
achieve the same database record coverage. In particular, x-
axis represents the database coverage and y-axis plots the
number of result pages requested by the database crawler.
All the experiments here are performed over controlled
database servers. In these experiments, the maximum target
database coverage is 90%, which is a fairly ambitious goal
in practice. By default, each result page contains at most ten
data records from the backend database.

eBay

0

1

2

3

10% 30% 50% 70% 90%

x104

of

 C
om

m
un

ic
at

io
n

R
ou

nd
s

IMDB

0

5

10

15

20

10% 30% 50% 70% 90%

x105

of

 C
om

m
un

ic
at

io
n

R
ou

nd
s

DBLP

0

2

4

6

8

10

10% 30% 50% 70% 90%

x105

of

 C
om

m
un

ic
at

io
n

R
ou

nd
s

ACM Digital Library

0

2

4

6

8

10

10% 30% 50% 70% 90%

x105

of

 C
om

m
un

ic
at

io
n

R
ou

nd
s

Figure 3. Performance comparison between the
greedy and naïve methods on four controlled
database servers.

As expected, the greedy link-based query selection
method (GL) consistently achieves the best coverage with
the least communication cost. This confirms that the
presence of hub nodes in the database graph indeed enables
GL to quickly retrieve the “dense portion” of a target

structured Web database. Moreover, on every dataset, the
cost of all methods increases dramatically when the
coverage exceeds 80%. This shows that after the coverage
reaches a certain level, most returned records overlap with
the previous results. This is what we called the “low
marginal benefit” phenomena in query-based database
crawling.

5.2 Effectiveness of Incorportating Attribute
Value Dependency

Figure 4 illustrates the effects of using attribute value
dependency in obtaining the “marginal database content” on
the eBay auction dataset. The greedy crawler will invoke
mutual information-based ordering and switch to a new
policy when the database coverage reaches 85%. As is
shown in Figure 4, MMMI achieves the same coverage with
about 1200 communication rounds less than the original
greedy crawler. This shows that by assigning higher priority
to the queries with less correlation with the previously
issued queries, MMMI speeds up the process of obtaining
the “marginal database content”.

5.3 Effectiveness of leveraging domain statistical
information

In Figure 5, we conduct a head-to-head comparison
between the domain knowledge-based approach and the
greedy link-based algorithm (GL). We use the Amazon
DVD product database as the target source. The IMDB
dataset is used for the domain table construction (since
IMDB and Amazon DVD are from the same Movie
domain). In addition, we also investigate the effect of the
sample database size on DM’s performance. We construct
two domain tables (DT) from two distinct subsets of IMDB.
DM(I) constructs the DT from a larger subset containing all
the movie records released after year 1960 (270,000 records)
in IMDB. In contrast, DM(II) only contains movies after
year 1980 (190,000 records). In Figure 5, x-axis depicts the
total number of page requests sent by the crawler and y-axis
represents the estimated database coverage. All methods are
allowed to retrieve 10,000 result pages from the Amazon
Web Service and we take snapshots of the database
coverage between every 1,000 requests. As is shown in

Figure 5, both DM-based crawlers outperform GL. In
particular, after ten thousand communications with the
Amazon Web service, DM(I) acquires around 95% of the
estimated database records, while the final coverage of the
greedy approach is less than 70%. Furthermore, with 5,500
communication rounds, DM(I) has already retrieved
approximately 80% DVD database records, which is pretty
good in practice.

By comparing DM (I) with DM (II), we observe that a
smaller domain data set results in a slight performance
degradation. With a more comprehensive domain table,
DM(I) benefits from more accurate query probability
estimation as well as a larger candidate query pool. Note
that in this experiment, Amazon sets a limit of 3200 on its
result size for any query, i.e. for each incoming query,
Amazon Web service returns at most 3200 matched records.
This value is quite “generous” compared to most other Web
sources.

5.4 Crawling performance with limited result set
size

Our experiments on controlled database servers assume
that all the matched result records can be retrieved.
However, in reality, most Web databases set an upper
bound on the number of results that can be accessed to save
the server resource. For example, Yahoo! Automobile
Finder may claim that it has 5000 cars records matching
with a certain query and the user may not be able to access
the records beyond the first 20 pages.

In Figure 6, we are interested in the crawling
performance with much tighter limits on the result size. We
still use the Amazon DVD database as target source and the
movie records after 1960 (270,000 records) from IMDB is
used to construct the domain table. For both the DM
crawler and GL crawler, we run two crawls with the limit
size set to 10 and 50. Figure 6 shows that with tighter limits
on the result size, both methods experience degradation in
productivity. Compared to their performance in Figure 6
with a limit of 3200 (the original limit imposed by Amazon),
the performance of both methods drops by about 50% and
20% under limit=10 and 50 respectively. Intuitively, the
result limit reduces the connectivity of the target database,
and thus delays the discovery of the “hub” nodes.

Effects of Mutual-Information-based

Ordering

0.6

0.8

1

1.2

85% 90% 95% 100%

x104

 Coverage

C
om

m
un

ic
at

io
no Greedy Link + MMMI

Greedy Link

Study of Domain Knowledge-based Q uery
Selection (Amazon DVD)

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10

x103Communication #

C
ov

er
ag

e

Greedy Link

DM (I)

DM (II)

Effects of Limited Result Size (Amazon DVD)

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10

x103
Communication #

C
ov

er
ag

e

GL(limit 10) GL (limit 50)

DM (limit 10) DM (limit 50)

Figure 4. Effects of Attribute
Value Dependency

Figure 5. Comparison Domain
Statistics v.s. Greedy Link

Figure 6. Effects of Limited
Result Size

6. Related Work
Raghavan and Molina first introduced the problem of

“hidden Web crawling”. A prototype deep Web crawler,
HiWe, was presented to automatically extract and analyse
the interface elements and submits queries through these
query interfaces. In �[6], Barbosa et. al. experimentally
investigate the construction of keyword queries to obtain
documents from large Web text collections. We also notice
that another independent effort by Ntoulas et. al. �[21]
proposes similar keyword query selection techniques for
downloading the textual content from Web repositories.

Another important related area is Web information
extraction. Lots of proposals have been made. For example,
�[5] studies the problem of fully automatic data extraction by
exploring the repeated patterns from multiple template-
generated result pages. �[19] utilizes the information on the
“detailed” record pages pointed by the current result page to
identify and extract data records. Note that Web data
extraction is orthogonal to the query selection problem
investigated in this paper. Breakthroughs in that frontier will
certainly increase the potential impact of this work.

There has been an active research interest in
understanding the semantics of the query interfaces of the
structured Web databases �[16],�[24],�[25],�[15]. For example,
�[16] introduces WISE-integrator that employs
comprehensive meta-data, such as element labels and
default value of the elements to automatically identify
matching attributes. �[24] proposes an instance-based
schema matching scheme that uses domain specific query
probes to discover the attribute mappings. �[15] uses
statistical models to find the hidden domain-specific schema
by analysing co-appearance of attribute names.

7. Conclusion
The high quality data from structured Web sources is in

high demand from many applications. Parallel to URL
ordering in surface Web crawling �[12], the central issue of
efficient data acquisition from the deep Web is query
selection. In this paper, we modeled the query-based
database crawling, conducted two case studies to investigate
real Web sources’ properties, proposed two suites of query
selection methods and experimented our methods
extensively on both controlled local servers and a real Web
structured source with more than 1 million data records in
total. The results motivate the need for sophisticated query
selection mechanism, validate the effectiveness of our
approaches and provide insights for future efforts. The
domain-knowledge based database crawler shows the
greatest promise among all methods. We believe that a
practical solution for real world applications is to combine
the domain-knowledge-based query selection with a set of
fine-tuned heuristics, which is a part of our future work. Our

future work also includes the implementation and
deployment of a real world product database crawler.

References
[1] MSN Shopping. http://shopping.msn.com/.
[2] Google Shopping. http://froogle.google.com/.
[3] UIUC Repository. http://metaquerier.cs.uiuc.edu/repository 2003.
[4] E.Agichtein, P.Ipeirotis, and L.Gravano. Modelling query-based

access to text databases. In WebDB, 2003.
[5] A. Arasu, and H. Garcia-Molina. Extracting structured data from

Web pages. In SIGMOD, 2003.
[6] L.Barbosa and J.Freire. Siphoning hidden-Web data through

keyword-based interfaces. In SBBD, 2004.
[7] M.K.Bergman. The deep Web: Surfacing hidden value,

http://www.press.umich.edu/jep/07-01/bergman.html.
[8] A.Broder,R.Kumar,F.Maghoul,P.Raghavan,S.Rajagopalan,

R.Stata, A. Tomkins, J.Wiener. Graph structure in the Web. In
WWW 1999.

[9] S.Chakrabarti, M. Berg and B. Dom. Focused Crawling: A New
Approach to Topic-Specific Web Resource Discovery. In
WWW,1998.

[10] K. C.-C. Chang, B. He, and Z. Zhang. Toward Large Scale
Integration: Building a MetaQuerier over Databases on the Web. In
CIDR 2005.

[11] W.B. Croft and J.Laffery, Language Modelling and Information
Retrieval. Kluwer Academic Publisher, 2003.

[12] J. Cho, H. Garcia-Molina, and L. Page. Efficient crawling through
URL ordering. In WWW, 1998.

[13] L. Gravano, P. Ipeirotis, and M. Sahami. Query- vs. Crawling-
based Classification of Searchable Web Databases. In IEEE Data
Engineering Bulletin, 2002.

[14] F. Greets, H. Mannila, and E. Terzi. Relational link-based ranking.
In VLDB, 2004.

[15] B. He, and K. C. Chang. Statistical Schema Matching across Web
Query Interfaces. In SIGMOD, 2003.

[16] H. He, W. Meng, C, Yu and Z. Wu. WISE-Integrator: an
automatic integrator of Web search interfaces for E-commerce. In
VLDB, 2003.

[17] P. Ipeirotis, L. Gravano, and M. Sahami. Probe, Count, and
Classify: Categorizing Hidden-Web Databases. In SIGMOD, 2001.

[18] S. Lawrence and C. L. Giles, Searching the World Wide Web. In
Science.1998.

[19] K. Lerman, L.Getoor, S. Minton and C. Knoblock. Using the
structure of Web sites for automatic segmentation of tables. In
SIGMOD, 2004.

[20] A. Maedche and S.Stabb: Ontology learning for the semantic
Web. In IEEE Intelligent System, 2001.

[21] A. Ntoulas, P.Zerfos and J. Cho. Downloading textual hidden
Web content through keyword queries. In JCDL, 2005.

[22] S. Raghavan, and H .Garcia-Molina. Crawling the hidden Web.
In VLDB, 2001

[23] S. Sizov, M.Biwer, J.Graupmann, S.Siersdorfer, M.Theobald,
G.Weikum and P.Zimmer. The BINGO! System for information
portal generation and expert Web search. In CIDR, 2003.

[24] J. Wang, J. Wen, F. H. Lochovsky, and Wei-ying Ma. Instance-
based Schema Matching for Web Databases by Domain-specific
Query Probing. In VLDB, 2004.

[25] Z. Zhang, B. He, and K. C. Chang. Understanding Web Query
Interfaces: Best-Effort Parsing with Hidden Syntax. In SIGMOD,
2004.

