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Abstract

Feature selection is often applied to high-
dimensional data prior to classification learn-
ing. Using the same training dataset in
both selection and learning can result in so-
called feature subset selection bias. This
bias putatively can exacerbate data over-
fitting and negatively affect classification per-
formance. However, in current practice sepa-
rate datasets are seldom employed for selec-
tion and learning, because dividing the train-
ing data into two datasets for feature selec-
tion and classifier learning respectively re-
duces the amount of data that can be used in
either task. This work attempts to address
this dilemma. We formalize selection bias
for classification learning, analyze its statis-
tical properties, and study factors that affect
selection bias, as well as how the bias im-
pacts classification learning via various ex-
periments. This research endeavors to pro-
vide illustration and explanation why the
bias may not cause negative impact in classi-
fication as much as expected in regression.

1. Introduction

Feature selection is a widely used dimensionality re-
duction technique, which has been the focus of much
research in machine learning and data mining (Guyon
& Elisseeff, 2003; Liu & Yu, 2005) and found ap-
plications in text classification, Web mining, gene
expression micro-array analysis, combinatorial chem-
istry, image analysis, etc. It not only allows for faster
model building by reducing the number of features,
but also helps remove irrelevant, redundant and noisy
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features, thus in turn allows for building simpler and
more comprehensible classification models with good
classification performance.

A common practice of feature selection is to use the
training data D to select features, and then conduct
classification learning on the same D with selected fea-
tures. The use of the same training data for feature se-
lection and classification learning can eventuate some
bias in the estimates of the classifier parameters. This
bias known as ‘feature subset selection bias’ or ‘selec-
tion bias’ has been studied in the context of regression
in Statistics (Miller, 2002). Statisticians often recom-
mend (Miller, 2002; Zhang, 1992) that one should be
careful about its magnitude in selecting features (or
attributes) and then building the regression model. In
machine learning, (Jensen & Cohen, 2000) discuss dif-
ferent pathologies affecting induction algorithms and
how over-searching for the best model can result in bi-
ased estimates of the parameters, causing overfitting of
the resultant model with deterioration in performance.
This work studies whether the current common prac-
tice of using the same training data for feature selec-
tion and classification learning is proper or not.

We formally define feature subset selection bias in the
context of Bayesian learning, study in detail the sta-
tistical properties of selection bias and various factors
that affect the bias. We then discuss the relationship
between selection bias and classification learning. This
work provides theoretical explanations why selection
bias may not have deteriorating effects as severe as ex-
pected in regression. We use both synthetic and real-
world data to verify our hypotheses and findings, aim-
ing to better understand behaviors of selection bias.
We offer and evaluate some options to handle selec-
tion bias when the amount of training data is limited.
Section 2 discusses the related research. Section 3 in-
troduces and explains selection bias. Section 4 exam-
ines some of the factors that affect the bias. Section 5
experimentally investigates effects of selection bias on
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classification learning. Section 6 presents an empirical
study with text data. Section 7 concludes this work
with key findings.

2. Related Research

This section briefly reviews the related work on feature
subset selection bias in regression, and differentiates
this work from others studying related concepts.

Feature selection bias has been recognized as an im-
portant problem in the context of regression (Miller,
2002). The studied regression methods are generally
based upon the biased least squares regression coeffi-
cients. In (Lane & Dietrich, 1976), the authors carried
out simulation studies using 6 independent predictors,
all of which had non-zero real regression coeflicients.
They found that for a sample size of 20, two of the six
sample regression coefficients on average almost dou-
bled their true values when those were selected. An
important concern about feature selection bias in re-
gression is about the ability to make inference (Zhang,
1992; Chatfield, 1995) with feature selection bias in the
built models. This bias can make the relationship be-
tween the features and the output (class) look stronger
than it should be. Feature selection bias can also ad-
versely affect the prediction ability of the model. This
is because the model overfits the data in the presence of
selection bias and may not generalize well. The above
findings have motivated this work. As we know, regres-
sion analysis is employed to make quantitative predic-
tions, while classification is used to make qualitative
predictions. It is therefore inappropriate to directly
generalize the results from regression to classification.

Feature selection bias is different from ‘sample selec-
tion bias’. (Zadrozny, 2004) studies the sample selec-
tion bias which refers to the fact that the data sam-
ples collected for learning may not be randomly drawn
from a population. Sample selection bias is an im-
portant problem with data collected from surveys and
polls where due to the nature of sampling process, data
samples from some portions of the population may be
over-represented, while other portions may be under-
represented or hardly present. The selection bias dis-
cussed in this paper occurs due to the interaction be-
tween feature selection and classification learning.

In (Jensen & Neville, 2002), ‘feature selection bias’ is
used in the context of relational learning to denote
the property that some features may have an artificial
linkage with the class, causing them to be selected due
to the relational nature of the data. To our knowledge,
our work is the first to study feature subset selection
bias in classification learning using identical and inde-

pendently distributed samples in parallel to the similar
work associated with regression in (Miller, 2002).

3. Definition of Selection Bias

We now explain and define feature subset selection bias
in which ‘bias’ refers to an offset or the difference be-
tween the true expected value and the estimated ex-
pected value (Duda et al., 2000), that is,

bias = E[0] — £[0)]

3.1. Example

Consider the following thought experiment. We are
given two types of crops, A and B, each with a life
span of one month. We assume that the yields of
both crops are identical and each has a normal dis-
tribution ~ N(u,0). Our task is to select the best
crop in terms of mean yield! and estimate this value
based on n-month observations. (1) If we were to just
randomly select a crop and estimate its mean yield,
then the estimate of the mean yield will be a ran-
dom variable g with a probability density function
f() ~ N(p,o/+/n). (2) But instead of randomly
selecting the crop, if we pick the best one after the
n-month observation and then report its yield, then
in this case the estimate of the mean yield will follow
the distribution of a random variable of the second or-
der statistic? for a sample of size 2, i.e., distribution
2f(f)F(i1), where F(f1) is the cumulative distribution
function for f(j1). Let the expected value of this distri-
bution be p’. The difference between p’ and p is selec-
tion bias in the estimate of the yield of the crop. (3) If
one repeats this experiment just to estimate the yield
of the best crop without selection of the best crop,
then the average yield reported during that period will
again be an unbiased distribution f(1) ~ N(u,o/\/n)
as in (1).

Similarly, in feature selection we select features instead
of crops, and selecting features that will help improve
classification accuracy replaces searching for the crop
that maximizes the mean yield. Subsequently, when
the same dataset is used for estimating the classifier
parameters, the probability estimates tend to be bi-
ased.

1Other parameters can also be used to decide the best

crop, but for simplicity we use the mean.

2Given a sample of N variates X1,..., Xn, when they
are reordered as Y7 < Y2 < ... < Yn. Then Y; is called the
ith order statistic. (Bain & Engelhardt, 1991)
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3.2. Definition

We now formally define selection bias for Bayesian
learning. Let X = (X1, X2,..., Xp, Xpt1,...,X,) be
the set of features, where ¢ is the dimensionality, and
Y be the class variable. Also, the relationship between
the class Y and the features X be Bayesian,

P(Xi1,...,X,|Y)P(Y)

PYIX) = P(X1,...,X,)

A feature selection algorithm will select a subset of
features, without loss of generality we assume that the
following p features are selected.

Xa = (X1, Xo,...
XA CX

, Xp), and

For Bayesian classifiers to make posteriori probabil-
ity predictions, we estimate class-conditional proba-
bilities. So, if the class of interest is Y = w; and the
instance value for the feature subset X4 is

XAZVA

va = (v1,02,...,vy) where v; € Domain(X;)

We denote the class-conditional probability as

P(XA = VA|Y = wj)

The expected value of P(Xa = valY = w,) in the
original populations be

E[P(Xa =valY = wj)] (1)

A feature selection algorithm (FSA) selects a certain
subset of features that outperform other features based
upon certain selection criteria. Due to this, when the
same dataset is used for selecting the feature subset
A and for estimating the probability value P(Xa =
valY = wj), the estimated probability values tend to
get biased. This bias is conditioned upon the feature
subset A and the feature selection algorithm (FSA),
and hence the estimated conditional probability is rep-
resented as

E[P(Xa =valY = w;)|FSA selected subset A] (2)

The difference between the conditional expected value
in (2) and the unconditional expected value in the orig-
inal population (1) is selection bias.

Definition (Selection Bias):

E[P(Xa =valY = w;)|FSA selected
subset A] — E[P(XA =valY = wj)]

Table 1. Properties of attributes: (a) Discrete dataset -
class conditional probabilities (b) Continuous dataset -
class conditional means and standard deviations

(a)

ATTRIBUTE VALUES + -
Hot 0.75 | 0.25
CoLD 0.25 | 0.75
(b)
_|_ -
MEAN pt =01 | p— =-0.1
STANDARD DEVIATION or =1 o_ =

Empirically, the unconditional expected value (1) or
the value without feature selection can be obtained
by averaging over all datasets containing indepen-
dent and identically distributed samples; and the con-
ditional expected value in (2) or the biased value can
be estimated by averaging over those datasets where
FSA selected feature set A. In other words, when we
use the same dataset for both feature selection and
training, we tend to measure the biased value instead
of the unconditional expected value.

4. Selection Bias and Related Issues

We create synthetic datasets with known distributions
to understand selection bias, as they allow for con-
trolled experiments and better understanding.

4.1. Synthetic Datasets

Two types of datasets with binary class were gener-
ated: one with discrete features, and the other with
continuous features. For the discrete data, each fea-
ture has two possible values {Hot, Cold}, and the
class conditional probabilities are shown in Table 1(a).
For the continuous data the class conditional distri-
bution of the attributes is normal and has values as
shown in Table 1(b). All features in each type of
dataset are independent and have identical properties.
By design the datasets are symmetric, i.e., in discrete
datasets, P(x = hot|+) = P(z = cold|—) = 0.75,
while P(x = cold|4+) = P(z = hot|—) = 0.25. We
created discrete and continuous datasets with 100 at-
tributes and 1000 instances (n = n_ = n4 = 500 from
each class).

4.2. Tllustrating Selection Bias

Using the synthetic dataset a Naive Bayes classifier
(WEKA-Simple Naive Bayes (Witten & Frank, 2005))
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Figure 1. Illustrating selection bias on the discrete data,
using the distribution of P(X|Y").

was built and parameters such as class-conditional
probabilities for the discrete attributes, and class con-
ditional attribute mean and standard deviation for the
continuous attributes were measured. Then, the top
10 attributes were selected using the SVM recursive
feature elimination algorithm (Guyon et al., 2002).
On the feature-reduced data, a Naive Bayes classi-
fier was once again built and the different parame-
ters were estimated. This experiment was repeated
500 times with different, randomly generated synthetic
datasets. Because of the symmetry of the original
datasets, the plots of distribution of P(x = cold|-)
and P(x = hot|+) are identical, and so we only show
the distribution of P(x = cold|—) before and after fea-
ture selection in Figure 1; also the distributions of the
P(z = hot|—) and P(x = cold|+) are mirror image of
this distribution and hence not shown. The before fea-
ture selection distribution implies the distribution of
the class conditional probability of the feature in the
datasets created from the original population. While
the after feature selection distribution implies the dis-
tribution of the class conditional probability of the fea-
ture in the datasets where the feature was selected.
For discrete feature the before feature selection distri-
bution forms a binomial distribution (approximated
by a normal distribution ~ N(p, \/p(1 — p)/n), where
p = P(X]Y)). Also by design, because the attributes
are independent and identical, for simplicity we only
show the probability estimate of one attribute, but
the result can be generalized to the entire set. Selec-
tion bias is the difference between the expected values
of the distributions of P(X|Y) before and after fea-
ture selection. For P(x = cold|—) the distribution of
P(X]Y) after feature selection is biased on the higher
side, resulting in a positive selection bias. Since the to-
tal sum of the class conditional probabilities for a given
class (in both biased and unbiased case) is 1, the total
selection bias of a class over all values of X is 0. This

means that, for binary attributes a positive selection
bias for P(x = cold|—) will result in a negative selec-
tion bias of equal magnitude for the P(x = hot|—).

For continuous datasets, the underlying distribution
was assumed to be Normal, and maximum likeli-
hood estimation was applied to estimate the class-
conditional attribute mean and standard deviation.
The distribution of values of unbiased negative (-
) class-conditional mean will be ~ N(u_,o_/v/n),
while the distribution of standard deviation will be
~ N(o_,+/2(n —1)o% /n). In our simulation results
shown in Figure 2(a), no bias is observed in the esti-
mate of the class-conditional standard deviations (o_)
before and after feature selection. The distribution of
o+ is similar. But, for a given attribute, there is a bias
in the class conditional attribute means (p4 and p_);
such that the distributions of p, and p_ are shifted
away from each other. Since there is no bias in the ex-
pected value of class-conditional standard deviations,
the selection bias for any feature value x is directly
proportional to the bias in the expected value of the
class-conditional attribute mean (see Figure 2(b) and
2(c)). Due to selection bias, there is an illusion that
an attribute does a better job of separating the differ-
ent classes than what it actually does in the original
population.

We also conducted experiments using multi-class syn-
thetic datasets and different feature selection algo-
rithms such as Information Gain Attribute evaluation
criteria, Relief-F, One-R, Chi-Squared Attribute eval-
uation available in (Witten & Frank, 2005). The de-
tailed results are not included here due to space con-
straint. In summary, regardless of feature selection al-
gorithms, bias was observed with varied magnitudes.
Irrespective of the number of classes, for discrete fea-
tures, the attribute conditional probabilities are biased
such that the different classes of instances are better
separated than they should be. Attribute values hav-
ing relatively high class-conditional probabilities tend
to get positive bias; while attribute values with rela-
tively low class-conditional probabilities are negatively
biased. Likewise, when a continuous feature is se-
lected, the attribute means for different classes shift
away from each other such that the attribute seems to
better isolate the different classes.

4.3. Factors Affecting Selection Bias

We now examine some factors affecting selection bias.

4.3.1. NUMBER OF INSTANCES

The first factor is the effect of number of data points or
instances on selection bias. We perform similar exper-
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Figure 2. Illustrating selection bias on the continuous data.
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Figure 3. Effect on 7i_ and P(x = cold|—), while varying
the number of instances in the dataset.

iments as mentioned earlier by varying the number of
instances (ny +mn_) (or data size) from 5,000 down to
100. For the discrete data, Figure 3(a) shows how se-
lection bias increases for P(x = cold|—) as the number
of instances decreases. This is because as the num-
ber of instances decreases, the variance of the distri-
bution of estimated P(X|Y") increases, resulting in an
increased bias. In simulation, we observe that small
datasets can cause acute selection bias - an almost
vertical spike near datasets with 100 instances. This
result is very important especially in the context of
microarray gene analysis datasets (Baxevanis & Ouel-
lette, 2005), or text classification where one needs to
select features with some hundreds of or fewer docu-
ments (Forman, 2003). Similar results are obtained for
the continuous dataset as depicted in Figure 3(b).

4.3.2. EFFECT OF ¢ FOR CONTINUOUS DATA

We also observe how changing the values of o and o_
in the continuous data affects selection bias. In this
experiment, ny = n_ = 500 remains constant, but o
and o_ are varied from 0.1 to 2.9 in an increment of
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Figure 5. Decision boundaries are almost the same when
o_ = o+ and there is an equal amount of selection bias.

0.2. As seen in Figure 4, when the value of o or o_
is big, the standard deviation of the distribution of p
or i is also big (unbiased pq ~ N(u,04/\/ny) and
unbiased p— ~ N(pu_,o0_/\/n")). A bigger attribute
standard deviation results in more selection bias. In
other words, such a feature is more likely selected as it
seemingly better separates the classes during feature
selection.

5. Selection Bias and Classification

Our discussions so far centered around the estimate of
selection bias of a feature-value given a class. Since it
is the decision boundary which matters most in clas-
sification learning, we now discuss how selection bias
affects the decision boundary. Based on the results in
Section 4, we evaluate two general cases.

5.1. Case 1: 0_ =04

When the class-conditional standard deviation in both
classes is the same, it is likely that there is an equal

09 : Fa
N\ ——Before Feature Selection
gk p \\ ----- Afer Feature Selection | |

07k ! \ ]

Figure 6. Decision boundaries when o_ # o.

amount of selection bias in the attributes of both the
classes, and hence the decision boundary will remain
at its original position, resulting in no change in classi-
fication error rate. We set o = o4 = 0.5, pu— = —0.5,
and p4+ = 0.5. Using these parameters, we create
a dataset of 200 instances with 200 continuous at-
tributes. We then select the top 5 attributes using
SVM recursive feature elimination and record their
averaged estimates of y and o. The simulation is re-
peated 100 times, the averaged results are depicted
in Figure 5. It shows that (1) the distributions have
moved away from their original positions in the oppo-
site direction after feature selection; and (2) the two
decision boundaries are almost the same.

5.2. Case 2: 0_ # 04

Without loss of generality we assume that o > o.
We also assume that the bias in the estimate of p is
directly proportional to the value of o. Hence, there
is a bigger bias in the estimate of p_ than that of u .
Weset o =1,04 =0.5, u_ = —0.75, and p4 = 0.25.
Following the same procedure in Case 1, we obtain the
plots in Figure 6. The decision boundary after feature
selection has a more obvious shift than in Case 1 away
from the decision boundary before feature selection,
although the difference is still small in absolute value.
This is because when the o is high, there needs to be a
larger change in the p to shift the decision boundary.

In sum, selection bias has limited impact on the change
of decision boundary in classification.

6. Empirical Study with Text Data

The experimental results in the previous two sections
indicate that (1) the increase of the number of in-
stances usually decreases the selection bias; (2) bigger
attribute variance leads to bigger selection bias; and
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(3) selection bias has different impacts on classification
and on regression. This section focuses on experiments
with benchmark text data in (Forman, 2003) contain-
ing 19 datasets. For each dataset, we divide it equally
into 3 parts (A, B, and C). Parts A and B are used for
feature selection and learning. Part C is used for test.

For the first set of experiments, we investigate if using
separate datasets for feature selection and classifica-
tion learning will make a difference. Hence, we com-
pare two models: a biased model (M1) that uses one
part of data (say Part B) for both feature selection
and learning; and an unbiased model (M2) that uses
one part of data (say Part A) for feature selection and
the other part of data (say Part B) for classification
learning. The same process is repeated with the roles
of Part A and Part B swapped and the test results on
Part C are averaged. The experiment is repeated 25
times, and the results are averaged. Clearly, if there
is any difference between the two models, it should be
solely due to the selection bias. The test results on
Part C are measured using the error rates, the micro
and macro F-measures® (Witten & Frank, 2005), as
the latter two are commonly used criteria for evaluat-
ing learning algorithms on text data (Forman, 2003).
The macro-averaged F-measure is the arithmetic mean
of the F-measure computed for each class, while micro-
averaged F-measure is an average weighted by the class
distribution. To compare the performance of the bi-
ased and unbiased models, we employ the ‘corrected
resampling t-test’ (Nadeau & Bengio, 2003), instead of
the ‘paired t-test with resampling’ which can have un-
acceptably high Type I error (Dietterich, 1998). Out
of the 19 datasets, only 5 datasets were observed to
have statistically significant differences at o = 0.05.
The results are summarized in Table 2. The values af-
ter the + sign are the standard deviations. This first
set of experiments confirms that selection bias exists
but has limited impact on classification learning con-
trasting its effect in regression (Miller, 2002).

The above experiments inspired us to ask the follow-
ing: (1) when the training data is limited, should we
use all of it for both feature selection and classification
learning? and (2) if we need to stick to the principle
that separate data should be used for feature selection
and classification learning, do we have an alternative?

One solution achieving some separation between data
for feature selection and learning is using one boot-
strap sample from the entire dataset for feature se-
lection and another bootstrap sample for classification
learning. To verify the efficacy of this bootstrap-based

3F-measure is the harmonic mean of precision and re-
call.

—— Unbiased distribution
0.035 Biased distribution
-+ Bootstrap distribution

Probability

0.75
Class Conditional Probability

Figure 7. Illustrating the effect of bootstrap in reducing
selection bias.

approach, we conducted a simulation experiment with
discrete data as the one in Section 4.2 adding the boot-
strap model. Figure 7 shows the slight reduction of se-
lection bias. The bootstrap distribution has its mean
shifted slightly to the left of the mean of the biased dis-
tribution (with bigger variance), resulting in a lower
expected value. Hence, it slightly reduces selection
bias. We then design the second set of experiments
on the 5 datasets that exhibit the effect of selection
bias using two additional models. One is the bootstrap
model (M3), which uses one bootstrap sample from
combined Parts A and B for feature selection, and an-
other bootstrap sample for classification learning. The
other model is called the biased complete model (M4)
that uses Parts A and B as one part for both feature se-
lection and learning. The experiment is also repeated
for 25 times and averaged test results on Part C are
reported and summarized in Table 3. In sum, the av-
eraged values of M4 are consistently better, but the
two models are not statistically significantly different
based on the corrected resampling t-test (o = 0.05).
Both M3 and M4 are consistently better than the un-
biased model (M2) (in Table 2). Combining the results
in the two sets of experiments, we obtain the following:
(1) selection bias indeed exists; and (2) under normal
circumstances, one does not need to use separate data
for feature selection and learning as recommended in
the Statistics literature.

7. Conclusions

This work is motivated by the research on selection
bias in regression. We observe selection bias in the
context of classification. However, we arrive at the
different conclusion: selection bias has less negative
effect in classification than that in regression due to
the disparate functions of the two. We formally define
the feature subset selection bias, and design experi-
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Table 2. The results of the 5 datasets in which the unbiased model is significantly better than the biased model. Boldfaced

entries indicate those with significant difference at a = .05.

DATASET Biased Model (M1) Unbiased Model (M2)
ERROR-RATE MICRO MACRO ERROR-RATE MICRO MACRO
LAl 19.95+4.59 74.74+£15.42 79.23£16.30 18.59+4.23 76.38+15.70 | 80.60+16.54
LA2 18.97+4.26 76.01£15.63 | 80.57+16.52 18.04+4.03 77.14+15.85 81.50+16.70
TR12 38.11+£8.58 52.51+£11.46 | 61.09412.97 33.30+7.58 56.40+11.94 | 66.34+13.90
TR31 15.63+3.73 60.85+12.90 | 84.08+17.29 14.34+3.54 62.07£13.19 85.63+17.61
WAP 28.20£5.97 46.984+9.69 69.46+14.26 27.62+5.89 47.854+9.89 70.10+14.39

Table 3. The bootstrap model vs. the biased complete model. No significant difference between the two at o = .05.

DATASET Bootsrap Model (M3) Biased Complete Model (M4)
ERROR-RATE MICRO MACRO ERROR-RATE MICRO MACRO
LAl 17.53+4.04 78.36+16.16 | 82.09+16.84 16.6243.60 79.28+£16.25 82.90£16.96
LA2 16.07+3.68 80.01£16.46 | 84.00%+17.20 15.84+3.51 80.32£16.48 | 84.00%+17.20
TR12 29.96+£8.91 61.93+14.15 69.68+£15.60 28.38+7.36 65.36£13.96 | 71.484+15.19
TR31 11.3443.47 73.18+15.44 | 89.30£18.46 10.4242.61 74.75+£15.39 | 90.30£18.49
WAP 22.85+5.03 55.70£11.66 | 72.264+15.48 22.08+4.86 56.39+£11.75 75.97+£15.62

ments to study its statistical properties using synthetic
datasets and benchmark datasets. This work provides
evidence that the current practice of using the same
dataset for feature selection and learning is not inap-
propriate, and provides illustrations why selection bias
does not degrade the classification performance as it
does in regression.
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