
Mutual information formalism
As a theoretical basis of mRMR feature

selection, we consider a more general fea-
ture-selection criterion, maximum depen-
dency (MaxDep).1 In this case, we select
the feature set Sm = {f1, f2, …, fm}, of which
the joint statistical distribution is maximally
dependent on the distribution of the classifi-
cation variable c. A convenient way to mea-
sure this statistical dependency is mutual
information,

(8)

where p(.) is the probabilistic density func-
tion. The MaxDep criterion aims to select
features Sm to maximize equation 8. Unfortu-
nately, the multivariate density p(f1, …, fm)
and p(f1, …, fm, c) are difficult to estimate
accurately, developed when the number of
samples is limited, the usual circumstance
for many feature selection problems. How-
ever, using the standard multivariate mutual
information

(9)
we can factorize equation 8 as 

I(Sm; c) = J(Sm, c) � J(Sm). (10)

Equation 10 is similar to the mRMR fea-
ture selection criterion of equation 4: The
second term requires that features Sm are
maximally independent of each other (that is,
least redundant), while the first term requires
every feature to be maximally dependent
on c. In other words, the two key parts of
mRMR feature selection are contained in
MaxDep feature selection.

Experiments on gene
expression data

We’ve found that explicitly minimizing the
redundancy term leads to dramatically better
classification accuracy. For example, for the
lymphoma data in figure 2a, the commonly
used MaxRel features lead to 13 leave-one-out
cross-validation errors (about 86 percent accu-
racy) in the best case. Selecting more than 30
mRMR features results in only one LOOCV
error (or 99.0 percent accuracy). For the lung
cancer data in figure 2b, mRMR features lead
to approximately five LOOCV errors, while

maxRel features lead to approximately 10
errors when more than 30 features are
selected. We present more extension results
elsewhere.1,2 The performance of mRMR
features is good, especially considering that
the features are selected independently of
any prediction methods.

Extension
The mRMR feature-selection method is

independent of class-prediction methods.
One can combine it with a particular predic-
tion method.2 Because mRMR features offer
broad coverage of the characteristic feature
space, one can first use mRMR to narrow
down the search space and then apply the
more expensive wrapper feature selection
method at a significantly lower cost.
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Fostering Biological Relevance
in Feature Selection for
Microarray Data
Michael Berens, Translational Genomics
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Huan Liu, Lance Parsons, and Zheng Zhao,
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Lei Yu, State University of New York,
Binghamton

Microarray-based analysis techniques that
query thousands of genes in a single experi-
ment present unprecedented opportunities
and challenges for data mining.1 Gene filter-
ing is a necessary step that removes noisy
measurements and focuses further analysis
on gene sets that show a strong relationship
to phenotypes of interest. The problem
becomes particularly challenging because of
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Figure 3. Average leave-one-out cross-validation errors of three different classifiers—
Naïve Bayes, Support Vector Machine, and Linear Discriminant Analysis—on two 
multiclass data sets, lymphoma (a) and lung cancer (b), which contain microarray gene
expression profiles. Lymphoma: 4,026 genes and 96 samples for 9 subtypes of
lymphoma; Lung cancer: 918 genes and 73 samples for 7 lung cancer subtypes. More
information on these data sets is available elsewhere.1,2



the large number of features (approximately
30,000–40,000 genes) and the small number

of samples (about 100 experiments). So,
dimensionality reduction is necessary to
enable effective data mining such as classifi-
cation, clustering, or discriminant analysis.
Feature selection, a technique that selects a
subset of features from the original ones, is a
frequently used preprocessing technique in
data mining.2,3

A recent experiment on glioma cell line
data reveals the importance of feature selec-
tion in microarray analysis.4 By applying
hierarchical clustering, we can visualize the
discriminative power of various gene sets
emerging from the two phenotypes’ gene
expression profiles. Figure 1a shows the
dendrogram generated by hierarchical clus-
tering based on all of the genes. Core and
rim samples from the same specimen are
uniformly grouped together, indicating that
the core-to-rim variations are less signifi-
cant than specimen-to-specimen variations.
The two-sample t-test is commonly used to
identify genes showing differential expres-
sion and selects 22 genes with p-values <
0.01. Figure 1b shows the dendrogram pro-
duced using these 22 genes; the clusters in
red boxes still contain both core and rim
samples. After the application of supervised
feature selection,5 the core-to-rim variations
are far more pronounced and the samples
cluster neatly into a core cluster and a rim
cluster (see figure 1c). The clustering results
indicate that feature selection selects dis-
criminatory features better than statistical
criteria such as a t-test do.

Beyond statistical significance
in feature selection

Machine learning and statistical approaches
can effectively identify both statistically
relevant genes and those with redundant
information. However, many statistically
significant patterns found in datasets with a
huge feature space and few samples might
not be biologically relevant. Microarray
studies’ goal is often to determine which
genes and pathways determine a target
phenotype or clinical condition. In other
words, statistically significant patterns are
interesting, but it would be even better if
these patterns could help identify genes with
biological relevance.

A high-level goal of microarray analysis
is to elucidate the developmental model of
the phenotypes under study. Researchers
use microarray experiments to identify
genes and pathways for further study (for
example, to find potential drug targets).

Researchers might wish to develop diagnos-
tic or prognostic tools, which are practical
only when the number of genes is small and
the classification is robust across many sam-
ples and noise levels. Suitable genes and
pathways are those with not only statistical
significance in the data but also certain bio-
logical or molecular traits. The additional
downstream requirements necessitate the
evaluation of not only microarray data but
also factors such as the availability of anti-
bodies for a given protein or the ability to
interrupt a pathway with minimal harmful
side effects.

The complexities of biological informa-
tion can often mean that the class labels
might be unreliable or too coarse, suggest-
ing the use of unsupervised or semisuper-
vised techniques. For example, a class label
might be the histological categorization of
a cancer. While those categories are quite
useful, they often don’t tell the entire story.
Histologically similar cancers can, in fact,
be molecularly distinct, with different
underlying causes and clinical outcomes.

Fostering biological relevance
in feature selection

We define three types of biological rele-
vance:

• genes with known functions, which con-
tribute to learning efficiency,

• genes with unknown functions, which
present opportunities to contribute to
high-impact results, and 

• genes that are known to be good targets a
priori (for example, genes with readily
available antibodies or those suspected
owing to independent evidence).

We developed a tool, Reporter-Surrogate
Variable Program, which reduces the number
of selected genes while increasing the overall
discriminative power and helps biologists
select more biologically relevant genes for
subsequent biological and clinical
validation.4 Specifically, RSVP identifies a
small subset of reporter genes that are
mutually nonredundant and jointly provide a
profile for discriminating the two phenotypes
under study. In addition, for each reporter
gene, RSVP identifies and presents a set of
surrogate genes that are highly correlated to
the reporter gene. So, biologists can replace
reporter genes with genes from the surrogate
lists that provide greater biological relevance
without jeopardizing the overall discrimina-

30 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

(a)

GH4–Rim
GH4–Core
GH6–Rim
GH6–Core
GH3–Rim
GH3–Core
U8TEGFR–Rim
U8TEGFR–Core
U87–Rim
U87–Core
G112MS–Rim
G112MS–Core
SF 767–Rim
SF 767–Core
SF 763–Rim
SF 763–Core
T98G–Rim
T98G–Core
G120–Rim
G120–Core

(b)

GH6–Core
GH4–Core
GH3–Core
T98G–Core
G112MS–Core
U87–Core
U8TEGFR–Rim
U8TEGFR–Core
SF 763–Core
G120–Rim
G120–Core
G112MS–Rim
U87–Rim
GH6–Rim
GH4–Rim
GH3–Rim
SF763–Rim
T98G–Rim
SF767–Rim
SF767–Core

(c)

G120–Core
GH4–Core
U87–Core
U8TEGFR–Core
T98G–Core
GH6–Core
GH3–Core
SF 767–Core
G112MS–Core
SF 763–Core
T98G–Rim
GH6–Rim
SF 763–Rim
GH4–Rim
GH3–Rim
SF 767–Rim
G112MS–Rim
U87–Rim
G120–Rim
U8TEGFR–Rim

Figure 4. Hierarchical clustering of core
and rim samples from 10 glioma cell lines.
(a) clustering using all genes (features),
(b) clustering using 22 genes selected by
2-sample t-test, and (c) after supervised
feature selection, core and rim samples
are clustered together, respectively.



tive power. RSVP aims to produce results
that are both statistically significant and bio-
logically relevant.

RSVP identified 23 reporter genes and
their corresponding surrogate genes from the
306 genes selected by the 2-sample t-test (p <
0.1). Figure 2a shows the clustering dendro-
gram and a heatmap based on the 23 reporter
genes’expression values. In the heatmap, log
ratios of 0 are black, and increasingly positive
or negative log ratios are increasingly red or
green, respectively. The 20-sample dendro-
gram forms two distinct clusters correspond-
ing to the two phenotypes. Simply removing
the reporter genes with unknown functions or
replacing them with randomly selected genes
resulted in reduced discriminative power.
However, simultaneously replacing the three
unknown reporter genes (NM_014486,
THC1422993, NM_030802, marked by
arrows) with their surrogate genes with known
functions produced very similar cluster results,
as figure 2b shows. Coexpression of genes in
the reporter gene set and surrogate lists might
also help reveal the functions of many genes

for which such information is currently
unavailable.

Feature selection with clinical
impact

Enriching statistically significant gene
lists with biologically relevant genes can
help expedite biological discovery and
downstream analysis. Despite public knowl-
edge bases’ increasing accessibility, the
process remains largely manual, with little
consistency among researchers or labs. By
incorporating additional biological knowl-
edge directly into feature selection, we can
automate much of the process and improve
researchers’ ability to leverage the increas-
ing amounts of publicly available research
data. Interdisciplinary researchers could
limit results to those targets for which anti-
bodies are readily available to enable further
study. Researchers can also more easily tar-
get drug research to particular locations in
the cell. As microarray techniques advance
into DNA and protein research, the number
of features is increasing to millions. Sophis-

ticated feature selection techniques that can
leverage existing domain knowledge will
become even more important.
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Figure 5. Hierarchical clustering results based on genes selected by the Reporter-Surrogate Variable Program tool: (a) a dendogram
with an expression heatmap from the 23 reporter genes, and (b) a similar result from 20 reporter genes and three surrogate genes
of biological relevance, replacing three reporter genes.
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Feature Selection: We’ve
Barely Scratched the Surface
George Forman, Hewlett-Packard Labs

Selecting which inputs to feed into a
learning algorithm is important but often
underappreciated. People usually talk about
“the” clusters in a data set as if there were
one set of them. But if you were to cluster,
for example, the vehicles in a parking lot
into groups, your answer would depend
completely on the features you considered:
color? model? license plate? Without prior
knowledge of which sorts of clusters are
desired, no right or wrong choice exists.
However, if someone paid you to generate a
predictive model for gas mileage, you would
consider vehicle weight and ignore color.
These examples are meant to be obvious, but
real-world data sets tend to involve large and
often complex feature selection choices,
whether or not they’re made deliberately.

If feature selection is done poorly, no
clever learning algorithm can compensate—
for example, predicting gas mileage from
color and trim. If done well, the computa-
tional and memory demands of both the
inducer and the predictor can be reduced,
and usually more important, the prediction
accuracy improved. The performance of
naïve Bayes—ever popular for its ease of
programming—is highly sensitive to fea-
ture selection; even relatively insensitive
algorithms, such as support vector machines,
can benefit substantially. In some circum-
stances, such as biochemistry wet labs,
eliminating all but the essential features
can reduce the cost of obtaining measure-
ments. Finally, feature selection by itself
has useful applications, such as the statisti-
cally improbable phrases now appearing at
www.amazon.com to help end-users char-
acterize books.

While several good feature-selection tech-
niques exist, I contend that feature selection
is still in its infancy and major opportunities
await. (For a survey on feature selection,
refer to the 2003 special issue on variable
and feature selection in the online Journal of
Machine Learning Research (http://jmlr.
csail.mit.edu/papers/special/feature03.html)
or to the recent survey by Huan Liu and Lei
Yu.1)

Low-hanging fruit
A first avenue is simply to bring known

successful techniques into mainstream usage.
Too often an available data set is used as-is
with all its features, no matter how they
came to be. People generally give much
more thought to the induction algorithms
than to the features. Part of the solution lies
in just streamlining user interfaces to make
automated feature selection part of the nat-
ural process.

Of course, people don’t want to be both-
ered with more knobs to tune. Just as you
can use cross-validation to select which of
several learning models performs best for a
given training set, so too can it automate
decisions about feature selection. (Cross-
validation involves breaking a data set into,
say, 10 pieces, and on each piece testing
the performance of a predictor trained from

the remaining 90 percent of the data. In this
way, you can estimate how well each of
several learning algorithms performs on the
available data and then choose the best
method to apply to all of the training data.)
But this has its limits. Cross-validation on
large data sets can exceed the user’s patience
budget, and cross-validation on small train-
ing sets is more likely to produce overfit
models than true improvements in general-
ization accuracy. You can combat this with
knowledge about which combinations of
feature selection and learning algorithms
perform well for different kinds of data.
This is an open opportunity for metalearn-
ing research.

Accuracy vs. robustness
While a great deal of machine learning

research seeks to improve accuracy, it
sometimes comes at a cost in brittleness.

To enable more widespread use of feature
selection, there’s a valuable vein of research
in developing robust techniques. We at
Hewlett-Packard have faced industrial
data sets where most feature selection tech-
niques fail spectacularly. For example, in a
multiclass task for document classification
where one class is very easy to predict—for
example, German documents—most fea-
ture-selection methods will focus on the
many strongly predictive foreign-word fea-
tures for the easy class, leaving the other
classes hard to distinguish.2 Although we
devised a solution for this specific type of
problem, certainly more research into robust
methods is necessary. I urge practitioners
to share the failures they encounter on real
data sets; most public benchmark data sets
don’t expose these issues.

Trends
I predict several trends will increase the

demand for feature selection. One is obvi-
ously the growing size of data sets, requir-
ing either random subsampling of rows or
purposeful feature selection of columns.
The former is easier, but the latter may be
more beneficial. Feature selection might be
the only reasonable choice for reducing
wide data sets with many more columns
than rows (for example, often more than
100,000 features in genomics or document
classification).

And data sets are generally widening,
with the increasing ability to link to addi-
tional databases and join with other tables.
In my car example, you could link each
vehicle to external databases with pollution
ratings, sales figures, and review articles,
potentially adding thousands of features.
Today such linking requires human thought
and effort, but tomorrow it could be auto-
mated.3 This increases the pressure on
automated feature selection to efficiently
determine which widening is useful. The
demand for this research will come primar-
ily from practitioners who seek optimal
prediction for economically valuable tasks,
not from pure machine-learning researchers
who care about optimizing performance on
fixed, self-contained benchmark data sets
for comparable, publishable results.

Rich data types
The trend toward richer data types is

pushing feature selection in both scale and
complexity. Natural language text features
and image features are becoming common-
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Several trends will increase the

demand for feature selection. One

is obviously the growing size of

data sets, requiring either random

subsampling of rows or purposeful

feature selection of columns.


