Knowl Inf Syst (2006) Knowledge and
DOI 10.1007/510115-005-0230-9 Information Systems

REGULAR PAPER

K. Selcuk Candan - Jong Wook Kim -
Huan Liu - Reshma Suvarna

Discovering mappings in hierarchical data
from multiple sources using the inherent
structure

Received: 22 August 2004 / Revised: 24 January 2005 / Accepted: 26 March 2005 /
Published online: 30 January 2006
© Springer-Verlag 2006

Abstract Unprecedented amounts of media data are publicly accessible.
However, it is increasingly difficult to integrate relevant media from multiple
and diverse sources for effective applications. The functioning of a multimodal
integration system requires metadata, such as ontologies, that describe media
resources and media components. Such metadata are generally application-
dependent and this can cause difficulties when media needs to be shared across
application domains. There is a need for a mechanism that can relate the common
and uncommon terms and media components. In this paper, we develop an
algorithm to mine and automatically discover mappings in hierarchical media
data, metadata, and ontologies, using the structural information inherent in
these types of data. We evaluate the performance of this algorithm for various
parameters using both synthetic and real-world data collections and show that the
structure-based mining of relationships provides high degrees of precision.

Keywords Retrieval and mining of semantics - Extracting and mining semantics
from multimedia databases - Knowledge discovery in XML - Hierarchical
multimedia - Ontologies - Multimodal integration - Structure-based mining

1 Introduction

Universality, i.e., the need for accessing media, collected and indexed in-
dependently by various applications and organizations, necessitates uniform
organization schemes that would allow easy access and integration of media.
Instead, media is mostly available to users and applications in diverse structures

K. S. Candan () - J. W. Kim - H. Liu - R. Suvarna

Department of Computer Science and Engineering, Arizona State University, Tempe
AZ 82857, USA

E-mail: {candan, jong.wook.kim, huan.liu, reshma.suvarna}@asu.edu

K. S. Candan et al.

and formats. Furthermore, considering the multitude and diversity of these
applications, it is not viable to expect a global unifying scheme.

Semantic networks of media, wherein different applications can exchange
information and integrate multimodal data, require information about each me-
dia to be represented in a detailed and structured manner. To enable such in-
formation exchanges, various hierarchical metadata frameworks have been pro-
posed. For instance, Resource Description Framework (RDF) [3], supported by
the World Wide Web Consortium, aims at providing a means for the descrip-
tion of metadata, in an organized, informative, searchable, and accessible man-
ner. RDF schemas are implemented for representing multimedia data such as im-
age, audio, and video files. An example schema could consist of three different
parts:

— Dublin Core [13] schema is used for identifying the photograph and describing
properties such as creator, editor, and title.

— Technical schema is used for capturing technical data about the photo and the
camera such as the type of camera, type of film, scanner, and software used for
digitization.

— Content schema is used for categorizing the subject of the photo by means of a
controlled vocabulary. This schema allows photos to be retrieved based on such
characteristics as portrait, group portrait, landscape, architecture, sport, etc.

RDF and similar metadata description frameworks provide a common lan-
guage through which metadata, such as media and application ontologies, are ex-
changed. This enables software systems to create a uniform structure to represent
and organize data, which renders the integrated data manageable and retrievable.
Consequently, many multimedia standards define objects as a structured collection
of media objects.

The metadata (such as content descriptors and feature names), used to describe
resources in RDF and other metadata description languages, are defined by var-
ious communities. The metadata creators, depending on the specific application,
culture, use different terms for similar concepts. For the functioning of an auto-
mated multimodal media integration system, the semantics behind the metadata
terms used by various authors and communities should be mined and automat-
ically related. Hence, a mechanism to mine and relate semantically similar but
syntactically different metadata is required.

In this paper, we develop algorithms to automatically mine concept mappings
in hierarchical media data, metadata, and ontologies. We propose a solution which
mines such relationships using the inherently available structural information. We
use Multidimensional scaling (MDS) [13, 22, 23, 51] to map the nodes between
the two different but similar structures (multimedia hierarchies, ontologies, or
namespaces) such that the syntactically different but semantically similar com-
ponents map to each other.

In Sect. 2, we present our motivation. In Sect. 3, we define the problem for-
mally and in Sect. 4, we propose a solution and develop an efficient algorithm.
Then, in Sect. 5, we evaluate the performance of the algorithm for various param-
eters and show that it is very effective in addressing this challenge.

Discovering mappings in hierarchical data using structure

2 Motivations

In this section, we present two related motivations for this work. This first one,
integration of multimedia resources described in resource description framework,
requires mining of mapping of hierarchical namespaces (or ontologies). The sec-
ond application, XML multimedia document matching and integration, requires
mining and mapping of components (elements or attributes) in various multime-
dia objects.

2.1 Integration of RDF described media resources

If application and media content experts could easily associate metadata with each
resource they create, then this knowledge could be used by access and integration
engines to increase their efficiency and precision.

Within the context of web information integration, many proposals are made to
the World Wide Web Consortium (W3C) for representation of Web-related meta-
data. Initial solutions were based on the < M ET A > tag of the HTML. Currently,
many companies, such as Microsoft, IBM, Motorola, Netscape, Nokia, OCLC, are
actively participating in the field of metadata framework developments. In 1997,
Netscape submitted a proposal, titled “Meta Content Framework”, to W3C [19].
The two principles on which the meta content framework (MCF) is based are
(1) there is no distinction between the representation needs of data and meta-
data, and (2) for interoperability and efficiency, schemas for different applications
should share as much as possible in the form of data structure, syntax, and vo-
cabulary. The culmination of various frameworks was the resource description
framework [24]. RDF provides application developers with a foundation for the
description of metadata for the next generation of interoperable applications [3].

Ontologies, formalisms that define the relationships among terms in a given
application, describe the context in which metadata is applied. They are used to
link, compare, and differentiate information provided by various application re-
sources. RDF provides a data model where entities and relationships can be de-
scribed. The relationships in RDF framework are first class objects, which means
that relationships between objects may be arbitrarily created and be stored sepa-
rately from the two objects. This nature of RDF is very suitable for dynamically
changing, distributed, shared nature of the Web.

The metadata (property names) used to describe resources are generally
application-dependent and must be associated with RDF schema. This, however,
can cause difficulties when RDF descriptions need to be shared across appli-
cation domains. For example, Fig. 1 represents an RDF statement for resource
www.asu.edu. The property (metadata) used to define the resource University_1
are, Name and Location. However, the property Location can be defined in some
other application domain as Address. Although the semantics of both property
names are the same, syntactically they are different. In general a property name
may have a broader or narrower meaning depending upon the needs of particular
application domains. To prevent such conflicts and ambiguities, the terminology
used by each application domain must be clearly identified.

RDF uniquely identifies property names by using the Namespace mecha-
nism [41]. A namespace can be thought of as a context or an ontology that gives a

K. S. Candan et al.

Location

Arizona State University Tempe, AZ

Fig. 1 Example RDF statement

specific meaning to what might otherwise be a general term. It provides a method
for unambiguously identifying the semantics and conventions governing the par-
ticular use of property names by uniquely identifying the governing authority of
the vocabulary. Although with the help of namespaces, we can uniquely identify
and relate the metadata to a particular governing authority or a community, there
is no straightforward way to map and relate terms or properties among different
communities.

Consider the two hierarchical namespaces provided in Fig. 2 (the hierarchy
usually corresponds to the concept/class hierarchy) of the underlying domains. As
it is implied by the similar structures of these namespace hierarchies, the terms
Processor and CPU are semantically related. Therefore, if the user integrates two
data domains each using one of these two namespaces, whenever a query is issued
using the property name CPU, the content having the property name Processor
should also be retrieved.

Automatic mapping of the semantically similar but syntactically different
terms from the different namespaces is one of the necessities for integration of
content from independently created data sources. An automated mechanism needs
to be devised that relate the common and uncommon terms of various metadata
communities.

2.2 Matching of XML specified media objects

Many multimedia standards define objects as structured collections of media data.
XML description of such multimedia objects and structures is very common.
Examples include virtual reality modeling languages (X3D), media content de-
scription frameworks (MPEG7 [50]), e-commerce web documents, and geo-
graphic information systems. Extensible markup language (XML) [15] defines a
generic syntax used to mark up data with simple, human readable tags. It provides

Fig. 2 Similar hierarchical namespaces

Discovering mappings in hierarchical data using structure

<IELEMENT A(C* D?,B* A*)>

N oo <IELEMENT B(E?,F?,L?)>

c D B A <IELEMENT C(#PCDATA)>
/\ <IELEMENT D(#ANY)>
‘ <IELEMENT E(#CDATA)>
E F B <IELEMENT F(#ANY)>

<IELEMENT L(#CDATA)>

L

Fig. 3 An example XML document and the corresponding DTD

Root
Translation
T~
Transform- 2 3 4 Transform 111
Color — 10 100 10 Color-2510
Shine — 0.75 Color—2010 10
Box— 222 Shine — 0.8

Circle — 2

Fig. 4 An example X3D document and the corresponding 3D world

a standard format for computer documents. As shown in Fig. 3, an XML document
is a tree-like structure, whose structure may be defined through a Document Type
Definition (DTD) or through an XML-schema. XML is very flexible; its attributes
and sub-elements can be either missing or repeated. DOM [12] and LORE [33]
are two well-known tree-based data models for XML documents. Each node of
the tree corresponds to an element or an attribute of an element in the XML doc-
ument. The root node contains the document’s root. A child node corresponds to
a subelement or an attribute of the parent node. For each child of a node, besides
the pointer to the child, there is a tag in the node that indicates the name of the
child node. If the child is a subelement, the name is its element tag. If the child is
an attribute, the name is the attribute name.

XML became the de facto standard for multimedia data representation. For
example, X3D [14], a file format and related access services for describing in-
teractive 3D objects and worlds, is based on XML. X3D nodes are expressed as
XML elements, i.e., tagged names (see Fig. 4 for an example X3D document).

K. S. Candan et al.

(@) (®)

Fig. 5 Two similar XML documents; the node labels F and X are likely to denote semantically
similar elements

XML tags can be used for describing the data in the form of a hierarchical
structure. This provides flexibility and expressive power to the data description
framework, but it also complicates the integration task as different domains could
have different sets of rules, tags, and properties to represent the same data. Al-
though, whenever they are available, DTDs and namespaces provide information
about the structure of the XML files, not all XML documents have associated
DTDs. In fact, one of the main reasons why XML is becoming a de facto infor-
mation exchange standard is that each XML document (even when it does not
have an associated DTD) is self-describing: the hierarchical structure and the tags
in this hierarchy gives information about the relationships between the tags, i.e.,
the data elements and their attributes. Consequently, given two similar multimedia
objects, where different tag names are used to denote similar concepts, it should
be possible to make the association between these tags using an analysis of the
hierarchical XML document structures. For example, in Fig. 5, nodes labeled F
and X are likely to correspond to each other.

3 Problem statement

The problem we address in this paper is to mine mappings between the nodes
of hierarchical media data, metadata, and ontologies. The main observation is that
the structural similarity between two given trees (hierarchical media objects, XML
documents, or name spaces) can provide clues about the semantic relationships
between their nodes.

In general, the nodes in the two trees can be divided into common and un-
common nodes. The common nodes are those shared by the two trees and can
either have the same labels or (in the case of multimedia data) they may have
application-dependent features that provide high degrees of similarity [7]. In this
paper, we do not focus on how common nodes are discovered. Our aim is to relate
the uncommon nodes of a two given hierarchical structures. Therefore, formally,
we can state the problem as follows.

Given

— two trees, TI(VI, EI) and T2(V2, E2), where V denotes the nodes in the tree
and E denotes the edges between the nodes,

— a partial mapping, M, between the nodes in V/ and V2, (we call those nodes in
VI and V2 that have a mapping, the common nodes) and

Discovering mappings in hierarchical data using structure

— two unmapped nodes v; in V/ and v; in V2,
compute the similarity between v; and v;.

For example, given the two trees in Fig. 5, the user or the content-integrator
might want to find which node in the first tree corresponds to the node labeled X
in the second tree. (In this example, purely based on the structures of the two trees,
we can conclude that X corresponds to F in the first tree.)

The use of structural information for mining of semantic relationships is not
new. We used structural information available on the web for mining web docu-
ment associations, summarizing web sites, and answering web queries [5, 6, 28].
[25, 43, 46, 47] have used the language taxonomies and IS-A hierarchies to define
the similarity and distance between terms in natural language. These mainly rely
on the observation that given a tree, T(V, E) and two nodes, a and b, on the tree,
we can compute a distance, d(a, b), between the nodes by considering the struc-
ture of the tree, for instance by counting the number of edges between them. The
main challenge we face in this paper for finding the similarity between two nodes
in two different trees, on the other hand, is that there is no common structure to
help compare these two nodes; since the two trees may have arbitrarily different
structures, finding a mapping between the nodes is not trivial.

4 Proposed approach

To match two nodes in two different trees, we need to find a mapping such that the
distance values in two trees between the common nodes are preserved as much as
possible. In this paper, we address this challenge by mapping the two trees into a
common space using the matching nodes and comparing the unmapped nodes in
this common space. The proposed solution can be broken down into four steps.

1. Map the nodes of 7/ and 72 into two multidimensional spaces, S/ and S2, both
with the same number of dimensions.

2. Identify transformations required to align the space S/ with the space S2 such
that the common nodes of the two trees are as close to each other as possible
in the resulting aligned space.

3. Use the same transformations to map the uncommon nodes in S1 onto S2.

4. Now that the nodes of the two trees are mapped into the same space, use clus-
tering and nearest-neighbor algorithms to find the related uncommon nodes in
the two trees.

4.1 Step I: Map both trees into multidimensional spaces

We map the trees based on the common nodes. For example, the common nodes
of two given namespaces might include the shared terms such as University and
College that are known to denote similar concepts.

Multidimensional scaling is a family of data analysis methods, all of which
portray the structure of the data in a spatial fashion [13, 22, 23, 51]. MDS is used
to discover the underlying spatial structure of a set of data items from the distance
information among them. MDS works as follows, it takes as inputs (1) a set of N
objects, (2) a matrix of N x N, containing pairwise distance values, and (3) the

K. S. Candan et al.

d,4) d(,2) diz4) d13) diz4a d23) D(1,3) D23 D34 D(1,2 D(14) D24
(a)

d(1.2) = D(1.2) d(1.3) = D(1.3) d(1,4) =~ D(1.4)
d(2.3) = D(2.3) di(2.4) = D(2.4) d(3.4) = D(3.4)

Fig. 6 MDS mapping of four data points onto a two-dimensional space

desired dimensionality k. Given these inputs, MDS tries to map each object into a
point in the k-dimensional space (the mapping process of documents, given their
distances with respect to one another, is shown in Fig. 6). The criterion for the
mapping is to minimize a stress value which is calculated as

d . —dj)?
stress = Z ”—2
Zz’ j

i,j iL,j

where d;; is the actual distance between two nodes vi and vj and di’ i is the distance
between the corresponding points pi and in the k-dimensional space. Thus if we
can maintain the distance between pi and pj the same as the distance between vi
and vj then the stress is 0.

MDS starts with an initial configuration of points. In this work, we assume
MDS uses a random configuration. It then applies the some form of steepest de-
scent iteratively to minimize the stress.

In a tree-structured data, for example in a namespace, similar or related nodes
are closer to each other and have less number of edges between them than the
dissimilar nodes. The closer the nodes the shorter the distance between them in
distance matrix [25, 43, 46, 47], hence similar or related nodes are mapped closer
to each other in a multidimensional space. In other words, MDS maps the similar-
ity between points: similar nodes are mapped closer to each other and dissimilar
ones are mapped far off from each other.

4.2 Step II: Find a transformations required to map the common nodes of the two
trees closer to each other in the space

Once both trees are mapped onto two separate k-dimensional spaces, we need
to relate the common nodes of the two trees. To achieve this, we identify

Discovering mappings in hierarchical data using structure

transformations required to map the common nodes from both trees to each other
as close as possible in a shared space. To match the common nodes, we use the
Procrustes alignment algorithm [18, 20]. Given two sets of points, the Procrustes
algorithm uses linear transformations to map one set of points on the other set of
points. The general Procrustes algorithm seeks the isotropic dilation and the rigid
translation, reflection and rotation needed to best match one configuration to an-
other [18]. In our case, the inputs to the algorithm are the nodes (terms) common
to T1 and T2.

Note that this step uses an initial partial mapping between a subset of the nodes
in the two input trees, and the structural information inherently available, to dis-
cover the required transformation. In this paper, as in many works [11, 37, 42], we
assume that the matching between the two input trees relates each one element of
one schema to only one elements of the other; thus, the initial partial mapping is
1:1. Furthermore, we assume that the input mapping is also non-fuzzy (i.e., a given
node perfectly maps to the other one or does not map to that node at all). These
assumptions are valid especially when the two tree structures represent metadata,
such as schemas, where the mapping is naturally 1:1 and binary. However, when
the two input trees being compared are media trees (such as MPEG7 [50] or
X3D [14]), two complications that may arise. First of all, the mapping between
the nodes may be 1:n or n:n, i.e., a given node may correspond to multiple nodes
in the other tree. Second, the correspondence between the object nodes may be
less than perfect, i.e., fuzzy. Hence, this second step of the proposed algorithm,
where we identify transformations required to align the two input spaces such that
the common nodes of the two trees are as close to each other, we need to consider
the many-to-many and fuzzy nature of the common nodes. The intuitive solution
to this problem, which we use in this paper, is to eliminate the many-to-many and
fuzzy nature of the mappings by (1) not considering the mappings below a certain
quality of match, (2) for each node in one of the trees, selecting the best mapping
node as the corresponding peer, and (3) eliminating the rest of the low ranking
mappings from further consideration. An alternative approach would be to use,
instead of Procrustes, an alignment algorithm which takes the many-to-many and
Jfuzzy nature of the mappings while identifying the appropriate linear transforma-
tions to map one set of points on the other set of points. In this paper, we do not
investigate this second approach.

4.3 Step III: Use the same transformations to map the uncommon nodes

The previous step returns the transformations required to modify the given spaces
such that the common nodes of both trees conform to each other as much as pos-
sible. This matching between the common nodes of both trees can, then, be used
to define the similarity between the uncommon nodes. Using the transformations
identified in the previous step, the uncommon nodes in two trees are mapped into
the space in terms of their distances from the common nodes in respective trees.
The uncommon nodes of both trees that are approximately at the same distance
or at the same distance range from the common nodes in their respective trees
are likely to be similar and will be mapped close to each other in the shared
k-dimensional space.

K. S. Candan et al.

4.4 Step IV: Use clustering to find the related uncommon nodes from the two trees

At this point, we have two trees whose nodes are mapped onto a shared k-
dimensional space such that the common nodes are close to each other in the
space. Hence, we can use clustering and nearest-neighbor approaches to identify
related uncommon nodes.

To retrieve the related points from the multidimensional space, we use a k-
means [31] based clustering algorithm, which requires centroids to be given to
form clusters around. We use the nodes of one tree, as the centroids for the clus-
tering and we use the distances in the Euclidean space to achieve clustering. As a
result, returned clusters contain the node in one tree specified as the centroid and
one or more nodes from the other tree that are closest in the shared space. Thus,
in the form of a cluster, we have pairs of nodes from two different trees that are
similar to each other.

5 Experimental evaluation

In this section, we provide an experimental evaluation of the proposed approach
for mining mappings between the nodes of hierarchical media data, metadata, and
ontologies. To evaluate the proposed approach and to observe the effects of various
data parameters (like the number of nodes in the two trees and their degrees or
fanouts), we needed a large number of trees. Furthermore, we needed to be able
to vary these parameters in a controlled manner to observe the performance under
different conditions. Therefore, we systematically generated a large number of
tree-structured data (i.e., the ground truth) with varying parameters and use these
trees in our initial experimental evaluation. After observing the effectiveness of
our algorithm using this ground truth, we also used a real collection of data and
verified our results.

5.1 Generating ground truth

The challenge addressed in this paper is to relate nodes of two trees that can differ
from each other in terms of the number and density of nodes, or simply the node
labels. Therefore, to generate two related but different trees, we

1. picked an original tree, and then
2. distorted the original tree by relabeling existing nodes, deleting nodes existing
nodes in, and adding new nodes to the original tree (Fig. 7).

Thus, the original and the distorted trees act as two similar trees, different
in terms of the number of nodes and the labels of some of the nodes. The two
trees have some nodes that are common (undistorted) and some nodes that are
uncommon.

5.1.1 Synthetic tree generation for controlled experiments

For the first set of experiments, where input data trees are generated in a controlled
manner, we developed a tree generation program which creates a tree randomly

Discovering mappings in hierarchical data using structure

a. Original tree b. Distorted tree

Fig. 7 Tree distortion process

based on two parameters: number of nodes and maximum fanout (degree). For
our experiments, we have generated original trees with the configuration shown
in Table 1. We generated (4 x 5 =)20 sets of trees with a distinct combination of
number of nodes and the fanout value. In our experiments, we used five different
seed values for each combination; therefore, we have a total of 100 original trees
for experiments. We report these results in Sects. 5.3, 5.4, and 5.5.

5.1.2 Experiments with real trees

In addition to synthetics trees, we also run our experiments with the TreeBank
dataset [52], which has a deep recursive structure (whereas our synthetic trees
were mostly balanced). We report these results in Sect. 5.6.

5.2 Terminology

Following are the terms used in discussing and explaining the experiment results.

— Number of nodes: The total number of nodes in the original tree.

— Number of nodes that are mapped: Number of nodes in the original tree + the
number of nodes in the distorted tree.

— Correct mapping: When a given query node of a given tree does map to the
corresponding node of the other tree, then the mapping is said to be correct
mapping.

— Erroneous mapping: When a given query node of a given tree does not map
to the corresponding node of the other tree, then the mapping is said to be an
erroneous mapping. The types of erroneous mappings are

Table 1 Parameters for tree generation

Number of nodes in the tree 25, 50, 100, and 200
Fanout (degree) 1,2,4,8, and 16

K. S. Candan et al.

e mapping to a sibling of the correct node,

e mapping to the parent node of the correct node (the correct node does not
have a sibling),

e mapping to the parent node of the correct node (the correct node has at least
one sibling),

e mapping to the sibling of the parent,

e mapping to a distant node, and

e N0 mapping

— Error percentage: This is the ratio of the erroneous mappings in the number of
mappings returned. Note that, at most one of the mapped nodes can be a correct
map:

#erroneous mappings
x 100
of nodes mapped

— Precision: The precision is measured as

mp+my+---+my
k

where £ is the number of nodes returned and m; is the degree of matching of
node 7; in the result:

_ 1
o 1+ err;

mj

Note that a node with a lower degree of error (err) contributes more to the
precision. The degree of error is defined as follows for different types of
erroneous mappings:

e mapping to a sibling of the correct node or [err=1],

e mapping to the parent node of the correct node (the correct node does not
have a sibling) [err=1],

e mapping to the parent node of the correct node (the correct node has at least
one sibling) [err=2],

e mapping to the sibling of the parent [err=3], and

e mapping to a distant node [err=4].

If the algorithm does not return any matches, the corresponding precision is
defined as 0.

5.3 Experiment I: Label differences

In the first set of experiments, we aimed to see the performance of the proposed
algorithm when the structures of the trees are identical, but some of the nodes are
labeled differently.

For every original synthetic tree, we have generated four distorted trees us-
ing the node rename operation. The level of distortions experimented with are 5,

Discovering mappings in hierarchical data using structure

Nodes =25 Nodes = 50
50,00 50
T
‘GE; 40,00 8 40 =}
g 30,00 M as 5 30 m2s
Qo |25 (% - 045
.o_ 20,00 o45 ‘6 20 Oes
= | Oes =
0,00 0 T
! 2 4 8 1 1 2 4 8 16
Fan out Fan Out
Nodes = 100 Nodes = 200
= 50 = 50
S 40 g 40 as
2 30 as 5 30 w25
3 il -1
» 20 045 5 o4s
2 10—4{’4] os| £ 10 d oss
I.IJ 0 . . . m 0 T T T L
1 2 4 8 16 1 2 4 8 16
Fan out Fan out
Fig. 8 Percentage mapping error in Experiment I
Nodes = 100 Nodes = 100
50 2 50
- distortion
5 40 § 40
w30 S5 30
2 2L
- -]
£ 8
? 10 —’ﬂ_l 2
0 ' ' ' ' E o ' —
1 2 4 8 1 2 4
Fan-out Fan-out
Nodes = 100 Nodes = 100
. 50 50
H
S -
) 0 3 0
2z Z w0
5 £
g 20 u 20
= § o
-2- = 10 o 10
i [0 o
1 2 4 8 16 1 2 4 8 16
Fan-out Fan-out
Nodes = 100
s 50
g2 a0
2
3 30
°E
g5 20
ca
K 10
H
§ 0
& 1 2 4 8 16

Fan-out

Fig. 9 Types of the errors (sibling match, parent match, parent/child match, empty set, sibling
of parent match) for Experiment I

25, 45, and 65%. Therefore, we have a total of (100 x 4 =)400 test cases. For
every query node, the implementation returns the matching nodes from the other
tree. For every original tree we run four tests. Figures 8—10 provide the following
observations.

K. S. Candan et al.

25 Nodes 200 Nodes

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0.9 ¢
0.8
0.7 4
0.6
0.5
0.4 4
0.3
0.2
0.1

o 5%
m25%
045%
065%

@ 5%
W25%
045%
065%

Weighted Precisio
[T T T T TTTT
[T T T T TTTT
Weighted Precisio
[T T T T T TTI
[T T T T T TTI
[T T T T T TTI

Fan-out Fan-out

Fig. 10 Weighted precision in Experiment I

— As the distortion increases the error also increases. Most common errors are
due to nodes that are mapped to a sibling of the correct node.

— The error pattern observed is similar in case of trees with a total number of
nodes 25, 50, 100, and 200.

— As the fanout increases, the error also increases. For trees with fanout 1 or 2,
no errors are observed.

— The precision is close to perfect (1.0) for low renaming distortions. For heavy
renaming (65%), the weighted precision can drop slightly for trees with large
fanouts.

5.3.1 The effect of distortion

The similarity mapping of the nodes of the original tree and the distorted tree
is based upon two things: The distances between the nodes in each tree and the
distances between the common nodes in both trees. The higher the number of
common nodes between the two trees, the more similar the two trees are. Hence
resulting mappings between the distorted nodes and the original nodes are better.
Increase in the distortion reduces the number of common nodes between the two
trees; as a result, the error rate increases.

5.3.2 The effect of fanout

For trees with maximum fanout 2, there is a high probability of correct mapping
when only one of the two siblings is mislabeled. However, when the fanout is
higher, the probability that siblings (especially the leaf siblings that are structurally
identical to each other) will be erroneously mapped to each other increases. Hence,
the rate of correct mapping decreases when the fanout increases.

5.3.3 Types of errors

Figure 9 presents different types of errors for trees with 100 nodes (the results are
similar in other tree sizes as well). In Experiment I, the only operation that causes
distortion is “renaming”. Hence, although the names of some of the nodes are
modified, the structure of the distorted tree is maintained. Consequently, in most
error cases, the distorted nodes are simply mapped to a sibling of the correct node.

Discovering mappings in hierarchical data using structure

5.3.4 Precision

Figure 10, on the other hand, takes into account the degree of match even for those
nodes that do not perfectly match the requested node. From this figure, it is again
clear that the result precision is close to perfect (1.0) for low renaming distortions.
In the case of heavy renaming (65%), the weighted precision drops as the fanout
increases. However, the degree of drop is not significant, which means that even
when the algorithm cannot find a perfect match, it returns a node close to what
was expected.

More importantly, the results show that as the number of nodes in the tree
increases, the weighted precision significantly improves. This shows that, as the
number of available nodes increase, the distance-based mapping of nodes into the
search space becomes more and more robust and this leads into better matches.

5.4 Experiment II: Structural differences

In Experiment II, we used combinations of addition, deletion, and rename oper-
ations to generate distortions in the original synthetic trees. This enabled us to
observe the performance when the structures of the trees are also variable. For
each of the 100 original trees, we apply three levels of distortions:

— 15% (5% of addition + 5% of deletion + 5% of rename),
— 30% (10% addition + 10% deletion + 10% rename),
— 45% (15% addition + 15% deletion 4+ 15% rename).

Figures 11-13 provide the following observations:

Nodes = 25 Nodes = 50
100 100
£ 80 £ 80
g 60 O 15% (5% each) e 60 [15% (5% each)
2 W30% (10% 2 B30% (10% each)
D45% (15% each)
§ 40 045% (15% § 40 o (o o
& 20 - i 20
0 ij;-ll:dl:il N | o] ol]
1 2 4 8 16 1 2 4 8 16
Fan out Fan Out
Nodes = 100 Nodes = 200
100 100
;C-; 80 § 80 B15% (5% each)
2 60 D15% (5% each) o 60 B30% (10% each)
3 B30% (10% each) 2 20 0145% (15% each)
5 40 D45% (15% each) [
S i [T I I
0

1 2 4 8 16
Fan Out Fan out

Fig. 11 Percentage mapping error in Experiment 11

K. S. Candan et al.

Nodes = 100

Sibling Match Error
N oA 9 ®
s 3 & 8

o

Parent/Child Match
(Sibling Present)

Nodes =100

Empty Set

1 2 4
Fan-out

Nodes = 100

5 3 8 8

Match-Parent (No Sibling)
N
o

o

Fan-out

Nodes = 100

Nodes = 100

5%
m10%
015%

Match Sibling of parent

1 2 4 8 16
Fan-out

Fig. 12 Types of the errors (sibling match, parent match, parent/child match, empty set, sibling
of parent match) for Experiment II

25 Nodes

c
S 08
K
806
o
B o4
£
© 0.2
H

0

1 2 4
Fan-out

B 15% (5%each)
B 30% (10%each)
0145% (15 %each)

200 Nodes

Weighted Precision

1 2 4 8 16
Fan-out

Fig. 13 Weighted precision in Experiment II

— As the distortion increases, the error also increases. The most significant errors

are the empty matches.

— Unlike Experiment I, when the fanout is 1 or 2, the error percentage is the
highest. The error percent drops sharply for fanout value of 4 and it remains
more or less constant as fanout increases.

‘We next examine different effects in detail.

Discovering mappings in hierarchical data using structure

5.4.1 The effect of distortion

In Experiment II, we used a combination of addition, deletion, and rename oper-
ations to generate distortion. The expected observation in this experiment is that
almost 75% of the test-runs return results that do not exhibit entirely correct map-
pings. These errors are due to the increase in the overall distortion. The higher the
distortion is, the lower is the number of common nodes between the two trees;
hence, the greater is the probability of wrong mapping. The type of distortion is
also a key factor that influences the error proportion. As expected, the change in
the tree structure (due to additions and deletions) has a negative effect on the error
percentage.

5.4.2 The effect of fanout

In trees with lower fanouts, each node is closely related (nearby) to a few nodes.
Each of these nearby nodes is highly important in achieving a correct mapping.
If any of these nearby nodes is deleted, then the given node loses some important
distance information. Hence, it becomes difficult to exactly map the node. As a
result, either the node does not get mapped to any other node of the corresponding
tree or it maps to the parent of the correct node (Fig. 11).

On the contrary, if the tree has high fanout, each node has a large number of
siblings with which it is closely related. Even if one of these nodes is deleted,
there are many other nodes for the given node to relate to. Although, there is an
increased probability that the given node wrongly maps to a sibling, there is a
relatively high probability of correct mapping.

5.4.3 Types of errors

Figure 12 presents different types of errors for trees with 100 nodes (again, the
results are similar in other tree sizes). Unlike Experiment I, where most of the
errors were caused by sibling matches, in this case, most of the errors are due to
those nodes that do not match any other node in the distorted tree. As described,
this is most prominent in trees with low fanout.

5.4.4 Precision

Figure 13 shows the weighted precision obtained by the proposed algorithm in
the case of a combination of distortions. From this figure, it is clear that the result
precision is large for large fanouts. An increase in the number of nodes in the tree,
on the other hand, has different effects depending on the fanout of the nodes. If the
fanout is low, a larger tree actually means a significant drop in the precision. If the
fanout is large, however, a higher number of nodes in the tree actually improve the
precision. This is in accord with the drop in error in combined distortions (Fig. 11).

Note that the precision values reported in Fig. 13 are computed based on the
assumption that, if the algorithm returns an empty set of matches for a given node,
then the corresponding precision is 0. However, since after deletion type of dis-
tortions, we should not expect the algorithm to return matches for every node,
alternatively we could set the precision to 1 when the algorithm returns an empty

K. S. Candan et al.

set, but a matching node is known not to exist. Nevertheless, especially for low
fanout cases, not all empty set errors are due to deletion type of distortions: thus,
even if the definition of precision is modified, the precision value would increase
only slightly.

5.5 Experiment I versus Experiment II

As expected, better results were observed in Experiment I as compared to Exper-
iment II. In case of Experiment I, the only distortions were caused by renaming.
Thus, the structures of the original and distorted tree were the same, resulting in
better matches.

In these two experiments, we observed significantly different behaviors when
it comes to the effects of fanouts.

— In Experiment I, a smaller fanout means smaller chance of mapping a node to
the sibling of the correct node. Hence, a smaller fanout translates into a smaller
error rate.

— In the case of Experiment II, on the other hand, when the fanout is very low,
the overall tree structure could be drastically changed by a small amount of
node deletions and additions. Since the proposed algorithm is based on the
structure of the, the resulting error rate was considerably high in cases with low
fanout. For large fanouts, however, too much renaming is more detrimental than
structural change, as without enough matching nodes.

5.6 Experiment III: TreeBank collection

In addition to the synthetic trees we used in Experiments I and II, we also run addi-
tional experiments with the TreeBank dataset available at [52]. The deep recursive
structure of this dataset (maximum depth, 36; average depth, 7.87), in contrast to
the mostly balanced structures we used in experiments with synthetic trees, also
provides opportunities for additional observations. For the experiments with real-
world data, in order to observe the effects of distortion, we clustered the trees
in the collection based on their numbers of nodes. Therefore, for instance, if we
wanted to observe the precision of our algorithm for trees with 100 nodes, from
the collection we selected trees that have around 100 nodes. Then, we applied
various types of distortions on these trees.

5.6.1 Effects of label differences on TreeBank data

Figure 14a shows the weighted precisions obtained by the proposed algorithm in
experiments with TreeBank data (with only node relabelings). The results show
that the proposed algorithm is very robust with respect to relabeling errors in real
data. Even when 65% of the nodes are relabeled, the approach is able to identify
the correct node with up to 90% precision. When we compare the results presented
in this figure with the results obtained using synthetic trees (Figs. 10 and 11),
we see that for large fanouts, the precision the algorithm provides on real data

Discovering mappings in hierarchical data using structure

Weighted Precision Weighted Precision
1 — 1 1
c
f§ 0.8 Eoas
& B 5% 4
& 0.6 W25y 2os O 15%(5% each)
k-] B 307 10% each)
Loa O45% R 0 45%(15% each
= O65%| 3§ |
=02 2,2
o
25 200
25 200
Number of Nodes Humber of nodes
(a) rename distortions only (b) structural distortions

Fig. 14 Weighted precision in experiments with TreeBank data; a only rename distortions and
b with structural distortions

is significantly larger (up to 90% precision even with 65% relabelings) than the
precision obtained on synthetic tree sets (60% precision with 65% relabelings).

We observed that for trees with 200 nodes around 70% of the errors were
due to nodes that did not match any other node, 14% of the errors were due
to nodes that matched their siblings, and another 14% were due to nodes that
matched sibling of their parents. This is in contrast with the results with syn-
thetic data (Fig. 9) where the no-mapping errors were close to 0. Nevertheless,
the overall precision was higher than the case for synthetic data; i.e., when there
were nodes that are returned in the result set, the errors of these nodes were
closer to 0.

5.6.2 Effects of structural differences on TreeBank data

Figure 14b shows the weighted precisions obtained by the proposed algorithm in
experiments with TreeBank data (all types of distortions, including additions and
deletions of nodes, are allowed). From this figure, it is clear that the precision
behavior of the proposed algorithm in real data matches the precision behavior
obtained using the synthetic tree set we have used in the previous experiments
(Figs. 14 and 15).

As expected, due to structural distortions, the weighted precisions are lower
than the case for only relabelings, but they are above 80% even with 45% com-
bined distortions. As we discussed earlier, since due deletion type of distortions,
we can not expect the algorithm to return matches for every node, an alternative
definition of precision would be to set the precision to 1 when the algorithm re-
turns an empty set and a matching node is known not to exist. When the definition
of precision is modified this way, the precision values reported in Fig. 14 would
rise above 90% even for high distortion cases, as the empty set errors are not
overly penalized for deleted nodes.

5.7 Execution times

The final set of experiments is about the execution times required by the proposed
algorithm under different matching scenarios for the TreeBank data and the
results are presented in Tables 2 through 5. The experiments have been performed

K. S. Candan et al.

Table 2 Execution times for matching under rename distortions

Rate of distortions (%) 25nodes (s) 100 nodes (s) 200 nodes (s)
5 0.076 0.55 1.94
25 0.079 0.57 2.57
45 0.079 0.69 2.74
65 0.080 0.73 3.10
Table 3 Execution times for matching under structure distortions
Rate of distortions (%) 25 nodes (s) 100 nodes (s) 200 nodes (s)
S+5+5)15 0.078 0.64 2.66
10+ 10+ 10) 30 0.082 0.66 3.09
15+ 154 15) 45 0.083 0.67 3.26

Table 4 The way time is split among the individual steps of the algorithm

Dist. (%) Total(s) Stepl (%) StepIll(%) StepIll (%) StepIV (%)
25 Nodes

15 0.078 10.9 2.6 0.6 85.9

30 0.082 10.9 3.0 0.6 85.5

45 0.083 10.8 2.4 0.6 86.2
200 Nodes

15 2.04 222 1.1 0.1 76.6

30 2.47 19.2 1.1 0.0 79.7

45 2.63 18.3 1.2 0.0 80.5

Table 5 The effect of the fanout on the execution time of the algorithm

Fanout StepI(s) Stepll(s) Steplll(s) StepIV (s) Total (s)
1 0.62 0.01 0.001 0.59 1.22
2 0.62 0.01 0.001 0.61 1.24
4 0.60 0.05 0.001 2.60 3.25
8 0.59 0.09 0.003 3.79 4.47
16 0.59 0.12 0.001 5.13 5.85

on a PC with Pentium M CPU 1400 MHz and 512 MB main memory running
Windows XP. The transformations were implemented using MatLab 6.5. Each
value presented in these tables is computed as the average of results from 20

experiments.

Table 2 presents the case where the structures of the trees that are being
matched are similar, but a certain portion of the nodes are relabeled. As shown
in the table, the execution time increases with both the number of nodes in the
trees that are being matched and the amount of distortion that has to be accounted
for. Nevertheless, the algorithm scales well against the amount of rename distor-
tions, while the required time is quadratic in the number of nodes in the trees that

Discovering mappings in hierarchical data using structure

are being compared. Thus, the number of nodes is a more important factor in total
execution time than the amount of distortion. Table 3 on the other hand presents
the time needed for matching when the trees are also structurally distorted. Again,
the execution time needed is similar to (only very slightly higher than) the case
with only rename distortions.

Table 4 shows how the execution time is split among the four individual
steps (mapping trees onto a space using MDS, finding transformations using
Procrustes, mapping uncommon nodes using these transformations, and finding
the appropriate matchings using k-means clustering) of the algorithm. As shown
in this table, 80—85% of the time is spent on the final (clustering) step of the
algorithm, while the first (MDS) step of the algorithm takes 10-20% of the total
time. As seen prominently for the 200 nodes case, when the amount of distortions
increases, the major contributor to the corresponding increase in the execution
time is the clustering step of the algorithm. This is expected as, due to distortions,
the precision drops; this causes more matches to be found and returned, slightly
increasing the execution time. On the other hand, when we compare the two
tables for 25 nodes and 200 nodes, respectively, we see that while the execution
times for both first and last steps of the algorithm increase in absolute terms, the
major contributor to the large increase in the overall execution time is the first
step where MDS is used for mapping trees onto multidimensional spaces.

Finally, Table 5 shows the effect of the tree fanout change on the execution
time of the algorithm. In order to observe this effect, we synthetically created
trees with varying degrees of fanout. Here, we are reporting the results for a set
of experiments with trees with 200 nodes and an overall 30% structural distortion
rate, and the results for other scenarios are similar. The value of fanout affects
the execution time, especially of the clustering phase, significantly. Given a fixed
number of nodes, when the fanout is large, the distance between the nodes are
smaller (more nodes are siblings or close relatives of each other); this leads to
more work at the clustering and cluster-based retrieval phase of the algorithm,
increasing the total execution time significantly.

6 Related work

Matching has been recognized as an important problem in diverse application
domains. For instance, automated schema or model matching, which takes
two schemas as input and produces a mapping between elements of the two
schemas that correspond semantically to each other, has been investigated in
various data management contexts, including scientific, business, and web data
integration [11, 27, 34, 38]. A survey of the techniques for the automated
schema matching problem, presented in [44], classifies these based on various
dimensions, including whether data instances are used for schema matching,
whether linguistic information, key constraints, or other auxilary information are
used for matching, and whether the match is performed for individual elements
(such as attributes) or for complex structures. Using the approach we presented
in this paper, both data instances and hierarchical schemas can be matched.
The approach does not need additional linguistic information or key constraints,
though these can certainly help improving the overall precision. The proposed

K. S. Candan et al.

approach uses not only the individual elements, but the entire structures to
produce the required mappings between the elements of the two schemas.

Clio [35] accepts XML and RDF documents, a name matcher provides ini-
tial element-level mapping, and a structural matcher provides the final mapping.
LSD [11] uses machine-learning techniques to match a new data source against
a previously determined global schema, thus it needs a user-supplied mapping as
well as a training process to discover characteristic instance patterns and match-
ing rules. SKAT [38, 39] uses first-order logic rules to express match and mis-
match relationships between two ontologies. Name and structural matching is
performed based on the is—a relationships between the intersection (or articula-
tion) ontology and source ontologies. The work in [37] uses structures (schema
graphs) for matching; matching is performed node by node starting at the top;
thus this approach presumes a high degree of similarity (i.e., low structural dis-
tortion) between the schemas. Furthermore, unlike our approach, if no match is
found for a given node, user intervention is required to select a match candidate.
After performing linguistic matching of the nodes, Cupid [32] transforms the orig-
inal schema into a tree and then performs bottom-up structure matching, based on
the similarity of the leaf sets of pairs of elements. As in our work, the DIKE sys-
tem [42] uses the distance of the nodes in the schemas to compute the mappings;
while computing the similarity of a given pair of objects, other objects that are
closely related to both count more heavily than those that are reachable only via
long paths of relationships. Similar approaches, where closer entities in a given
graph add more to the overall similarity than the far entities have also been used
while mining web document associations [5, 6, 28] as well as for finding similar-
ities between terms in a natural language [25, 43, 46, 47].

Although not directly related with finding mappings between elements in two
given structures, recently there has been a large body of relevant work for effi-
cient indexing and retrieval of tree-structured data [2, 10, 17, 26, 36, 45, 53, 55].
The DataGuide [17] is a structural summary of a database, and makes it possi-
ble to query XML documents based on their structure. The 7 -Index [36] on the
other hand is a non-deterministic structure for both tree and graph databases. It is
tailored to fit queries matching a given path template, thus not being an aid in sub-
path matching. The IndexFabric [10] indexes paths as well as the content of tree
databases in a balanced hierarchy of Patricia tries. In general, most of these works
focus on indexing and matching of paths and path-expressions on trees. As in our
work, on the other hand, structural matching techniques between two labeled trees
with potential “rename” mismatches and other distortions are used in [54, 56, 57].
These works use the tree edit-distance concept [29, 49] to measure how similar
two trees are. A good survey of approaches to tree edit- and alignment-distance
problems can be found in [1]. Unfortunately, the general undordered edit-distance
problem has been shown to be NP-complete [56]. Certain special cases can be
solved efficiently if appropriate local edit costs are available. [49, 56], for instance,
provide postorder traversal based algorithms for calculating the editing distance
between ordered, nodelabeled trees. [57] extends this works to connected, undi-
rected, acyclic, graphs where only edges are labeled. It first shows that the problem
is, as expected, NPhard and then it provides an algorithm for computing the edit
distance between graphs where each node has at most two neighbors. Chawhate
et al. [8, 9] provide alternative, and more flexible, algorithms to calculate the edit

Discovering mappings in hierarchical data using structure

distance between ordered nodelabeled trees. Other research in tree similarity can
be found in [16, 30, 40, 48]. Unlike our approach where the structural match be-
tween the nodes is captured wholisitically in the multidimensional space obtained
through the MDS transformation, the edit-distance-based approaches associate
explicit costs to each one of the local tree edit operations of deleting, inserting,
and relabeling of the nodes and aim finding a minimum-cost sequence of such
edit operations that would transform one of the input trees into the other. Thus, in
addition to being costly in terms of execution time, these apporaches need appro-
priate local edit costs to function.

7 Conclusions

The functioning of an automated multimodal media integration system requires
access to metadata that describe the individual media resources. The metadata
are generally application-dependent. Therefore, an automated media integration
mechanism needs to mine and relate the common and uncommon components. In
this paper, we developed algorithms to automatically discover mappings in hier-
archical media data, metadata, and ontologies. The proposed algorithm uses the
structural information to mine and map the semantically similar but syntactically
different terms and components. We extensively evaluated the performance of the
algorithm for various parameters and showed that the algorithm is very effective
in achieving a high degree of correct matches.

Acknowledgements This work has been supported by an NSF grant #ITR0326544 and
a CEINT grant. This is an extended version of a work originally published at the Fifth
International Workshop on Multimedia Data Mining [4].

References

1. Bille P (2003) A Tree edit distance, alignment distance and inclusion. IT University of
Copenhagen, Technical Report Series, TR-2003-23

2. Bremer J, Gertz M (2003) An efficient XML node identification and indexing scheme.
VLDB

3. Brickley D, Guha R (2000) Resource description framework (RDF) schema specification.
http://www.w3.org/TR/RDF-schema

4. Candan KS, Kim JW, Liu H, Suvarna R (2004) Structure-based mining of hierarchical me-
dia data, meta-data, and ontologies. In: Proceedings of the Sth workshop on multimedia data
mining in conjunction with the ACM conference on knowledge discovery & data mining,
August 22-25. Seattle, WA, USA

5. Candan KS, Li WS (2000) Using random walks for mining web document associations.
In: Proceedings of the Pacific-Asia conference on knowledge discovery and data mining
(PAKDD), pp 294-305

6. Candan KS, Li WS (2001) Discovering web document associations for web site summa-
rization. DaWaK 152-161

7. Candan KS, Li WS (2001) On similarity measures for multimedia database applications.
Knowl Inf Syst 3(1):30-51

8. Chawathe S (1999) On the editing comparing hierarchical data in external memory. In: Pro-
ceedings of the 25th international conference on very large data bases. Edinburgh, Scotland,
UK

9. Chawathe S, GarciaMolina H (1997) Meaningful change detection in structured data.
In: Proceedings of the ACM SIGMOD international conference on management of data.
Tucson, Arizona, pp 26-37

K. S. Candan et al.

18.
19.

20.
21.
22.

23.
24.

25.
26.
217.
28.
29.
30.
31.

32.

33.
34.
35.
36.
37.
38.
39.

40.

. Cooper BF, Sample N, Franklin MJ, Hjaltason GR, Shadmon M (2001) A fast index for

semistructured data. VLDB, pp 341-350

. Doan A, Domingos P, Levy A (2000) Learning source descriptions for data integration. In:

Proceedings of the WebDB workshop, pp 81-92

. Document Object Model (DOM) (1997) http://www.w3.org/DOM/

. Dublin Core Initiative and Metadata Element Set (1995) http://dublincore.org

. Extensible 3D (X3D) Graphics (2000) http://www.web3d.org/x3d.html

. Extensible Markup Language (XML) (2004) http://www.w3.org/TR/REC-xml

. Farach M, Thorup M (1997) Sparse dynamic programming for evolutionarytree compari-

son. SIAM J Comput 26(1):210-223

. Goldman R, Widom J (1997) Enabling query formulation and optimization in semistruc-

tured databases. VLDB, pp 436445

Gower J (1975) Generalized procrustes analysis. Psychometrika 40:33-51

Guha RV, Bray T (1997) Meta content framework using XML. http://www.w3.org/
TR/NOTE-MCF-XML-970624

Kendall DG (1984) Shape manifolds: procrustean metrics and complex projective spaces.
Bull London Math Soc 16:81-121

Kruskal JB (1964) Multidimensional scaling by optimizing goodness of fit to a nonmetric
hypothesis. Psychometrika 29(1):1-27

Kruskal JB (1964) Nonmetric multidimensional scaling: a numerical method. Psychome-
trika 29(2):115-129

Kruskal JB, Wish M (1978) Multidimensional scaling. Sage Publications, Beverly Hills
Lassila O (1997) Introduction to RDF metadata. http://www.w3.org/TR/NOTE-rdf-simple-
intro

Lee J, Kim M, Lee Y (1993) Information retrieval based on conceptual distance in IS-A
hierarchies. J Doc 49(2):188-207

Li Q, Moon B (2001) Indexing and querying XML data for regular path expressions, VLDB
Li W, Clifton C (1994) Semantic integration in heterogeneous databases using neural
networks. In: Proceedings of the 20th international conference on very large data bases,
pp 1-12

Li WS, Candan KS, Vu Q, Agrawal D (2002) Query relaxation by structure and semantics
for retrieval of logical web documents. TKDE 14(4):768-791

Lu SY (1979) A tree-to-tree distance and its application to cluster analysis. IEEE Trans
PAMI 1:219-224

Luccio F, Pagli L (1995) Approximate matching for two families of trees. Inf Comput
123(1):111-120

MacQueen J (1967) Some methods for classification and analysis of multivariate observa-
tions. In: Proceedings of the Sth Berkeley symposium on mathematical Statistical Probabil-
ity, vol 1, pp 281-297

Madhavan J, Bernstein PA, Rahm E (2001) Generic schema matching with cupid. In:
Proceedings of the 27th international conference on very large data bases, pp 49—
58

McHugh J, Abiteboul S, Goldman R, Quass D, Widom J (1997) Lore: a database manage-
ment system for semistructured data. SIGMOD Rec 26(3):54—66

Miller R, Ioannidis Y, Ramakrishnan R (1994) Schema equivalence in heterogeneous sys-
tems: bridging theory and practice. Inf Syst 19(1):3-31

Miller RJ, Haas L, Hernandez MA (2000) Schema mapping as query discovery. In: Pro-
ceedings of the 26th international conference on very large data bases, pp 77-88

Milo T, Suciu D (1999) Index structures for path expressions. In: Proceedings of the
ICDT’99. ICDT, pp 277-295

Milo T, Zohar S (1998) Using schema matching to simplify heterogeneous data translation.
In: Proceedings of the conference on very large data bases, pp 122—133

Mitra P, Wiederhold G, Jannink J (1999) Semiautomatic integration of knowledge sources.
In: Proceedings of Fusion’99. Sunnyvale, USA

Mitra P, Wiederhold G, Kersten M (2000) A graph oriented model for articulation of on-
tology interdependencies. In: Proceedings of the extending database technologies. Lecture
Notes in Computer Science, vol 1777, pp 86—-100

Myers E (1986) An O(ND) difference algorithms and its variations. Algorithmica 1(2):251—
266

Discovering mappings in hierarchical data using structure

41.
42.
43.
44.

45.
46.

47.
48.
50. Tai KC (1979) The tree-to-tree correction problem.] ACM 36:422-433
51.
52.
53.
54.
55.
56.
57.
58.

59.

Namespaces in XML (1999) http://www.w3.org/TR/REC-xml-names

Palopoli L, Sacca D, Ursino D (1998) An automatic technique for detecting type conflicts in
database schemas. In: Proceedings of the 7th international conference on information and
knowledge management (CIKM), pp 306-313

Rada R, Mili H, Bicknell E, Blettner M (1989) Development and application of a metric on
semantic nets. IEEE Trans Syst, Manage Cybern 19(1):17-30

Rahm E, Bernstein PA (2001) A survey of approaches to automatic schema matching.
VLDB J 10:334-350

Rao P, Moon B (2004) PRIX: indexing and querying XML using Prufer sequences, ICDE
Resnik P (1995) Using information content to evaluate semantic similarity in a taxanomy.
IJCAL pp 448453

Resnik P (1999) Sematic similarity in a taxanomy: an information-based measure and
its application to problems of ambiguity in natural language. J Artif Intell Res 11:95—
130

Selkow S (1977) The tree to tree editing problem. Inf Process Lett 6(6):184—186

The Moving Picture Experts Group (MPEG) (2001) homepage http://www.
chiariglione.org/mpeg/

Torgerson WS (1952) Multidimensional scaling. I. Theory and method. Psycometrika
17:401-419

University of Pennsylvania TreeBank Project collection at http://www.cs.washington
.edu/research/xmldatasets/www/repository.html

Wang H, Park S, Fan W, Yu P (2003) ViST: a dynamic index method for querying XML
data by tree structures. SIGMOD

Wang J, Zhang K, Jeong K, Shasha D (1994) A system for approximate tree matching. IEEE
TKDE, pp 559-571

Zhang C, Naughton JF, DeWitt DJ, Luo Q, Lohman GM (2001) On supporting containment
queries in relational database management

Zhang K (1989) The editing distance between trees: algorithms and applications. PhD The-
sis, Courant Institute, Department of Computer Science

Zhang K, Shasha D (1989) Simple fast algorithms for the editing distance between trees
and related problems. SIAM J Comput 18:1245-1262

Zhang K, Shasha D (1997) Approximate tree pattern matching. In: Apostolico A, Galil Z
(eds) Pattern matching in strings, trees, and arrays. Oxford University, Oxford, pp 341-371
Zhang K, Wang JTL, Shasha D (1996) On the editing distance between undirected acyclic
graphs. Int J Comput Sci 7(1):43-57

Author Biographies

K. Selcuk Candan is an Associate Professor at the De-
partment of Computer Science and Engineering at the
Arizona State University. He joined the department in
August 1997, after receiving his Ph.D. from the Computer
Science Department at the University of Maryland at College
Park. He received the 1997 ACM DC Chapter award of
Samuel N. Alexander Fellowship for his Ph.D. work. His
research interests include development of indexing and
retrieval schemes for multimedia and Web information and
management of dynamic, heterogeneous, and distributed
data. He has published various articles in respected journals
and conferences in these areas. He also served as program
committee member, chair person, and guest editor in var-
ious workshops, conferences, and journals. He received
his B.S. degree, first ranked in the department, in com-
puter science from Bilkent University in Turkey in 1993.
http://www.public.asu.edu/~candan.

K. S. Candan et al.

Jong Wook Kim received his B.S. from Korea University,
Seoul, Korea in 1998, his M.S. from KAIST, Daejon, Korea,
in 2000. He is currently a Ph.D. student at the Department
of Computer Science and Engineering, Arizona State Uni-
versity, AZ, USA. His primary research interests are web
data mining, information retrieval and database systems. His
current research concentrates on mining in web communities
like discussion board.

Huan Liu earned his Ph.D. in Computer Science in 1989
at University of Southern California, and Bachelor of Engi-
neering in the Electrical Engineering and Computer Science
Department at Shanghai Jiao Tong University in 1983. He
conducted research at Telecom (Telstra) Australia Research
Laboratories in Melbourne, Australia. In January 1994, he
joined the School of Computing at the National Univer-
sity of Singapore, and became an Associate Professor. Since
January 2000, he is with Department of Computer Science
and Engineering at Arizona State University as an Asso-
ciate Professor. He is a senior member of IEEE, member
of ACM, and AAAI His principal research interests include
machine learning, feature and subset selection, data prepro-
cessing, bioinformatics, and data (including text and web)
mining. He has worked on real-world data mining applica-
tions and published extensively in journal and conference pa-
pers, book chapters, and books. He serves on the editorial
board of journals, handbook of data mining, encyclopedia of data mining and warehous-
ing.

Reshma Suvarna is currently employed at Honeywell as
a Senior Software Engineer. Her work at Honeywell is in
the area of Aerospace Electronic Systems. She recieved her
Masters Degree in Computer Science and Engineering from
Arizona State University in 2003. In addition to her current
work in the Aerospace Electronic Systems, she is interested in
data mining, web mining, and software engineering research.

