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Disasters	

Natural	
Hurricane	Ma<hew	-	2016	

2	

h<ps://goo.gl/AXY1Wi			

A	crisis	beyond	the	coping	capabiliJes	of	a	community	

Man-made	
Boston	Marathon	Bombings	-	2013	

h<ps://goo.gl/PLOJY2		
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Social	Media	and	Disasters	

OrganizaFons	
•  DonaJons	(Red	Cross)	
•  Emergency	phone	
numbers	(FEMA,	US	State	
Dept,	US	Military)	
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CiFzens	
•  35%	of	ciJzens	post	requests	
for	assistance	on	Twi<er	or	
Facebook*	

•  E.g.,	Hurricane	Sandy	

*			Adam	Crowe,	“Disaster	2.0,”	CRC	Press,	2012	

•  Social	media	is	a	new	and	important	source	of		
dynamic	informaJon		
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Social	Media	and	Disasters	
CiJzens	

•  35%	of	ciJzens	post	request	for	assistance	on	Twi<er	or	
Facebook*	

•  Social	media	as	the	primary	
			source	of	informaJon	

– London	subway	bombing*		
– Virginia	Tech	shooJngs**	
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*			Adam	Crowe,	“Disaster	2.0,”	CRC	Press,	2012	
**	h<p://arJcles.dailypress.com/2011-12-08/sports/dp-nws-tech-social-media-1209-20111208_1_twi<er-and-facebook-twi<er-website-power-of-social-media	
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Data,	InformaFon,	and	AcFons	

Ensure	Data	to	be	Useful	and	Make	Informa8on	Ac8onable		
•  Useful	Data	

– Credible		
– Time-criJcal	
– ObjecJve	

•  AcJonable	informaJon	requires	Awareness	
– Events	
– Requests	
– LocaJon	
– SituaJons	
– Users	(responders,	volunteers,	vicJms,	decision	makers)	
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Credibility	in	Disaster	Response	

Defini8on	
•  Credible	informaJon	is	true	or	published	by	trustworthy	sources	
Mo8va8ons	
•  We	want	to	learn	about	people,	true	and	relevant	informa8on	
•  Social	media	is	overwhelmed	with	bots	&	bot-generated	content	
•  Users	face	the	challenge	of	finding	trustworthy	sources	of	
informaJon	

•  False	informaJon	or	rumors	can	cause	panic	and	distress	
What	we	a@empted	
•  Bot	DetecJon	[Morsta<er	ASONAM’16]		
•  Trust	PredicJon	[Beigi	SDM’16]		
•  Rumor	DetecJon	[Sampson	CIKM’16]	
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Bot	DetecFon		

•  Bots	
– Innocuous:	relay	informaJon	from	official	sources	
– Malicious:	spread	rumors	and	false	informaJon	
	

•  Goal:	Remove	bots	from	social	media	data	with	high	
Recall	

•  Challenges	
– Acquiring	ground	truth	
– Increasing	Recall	without	significantly	reducing	Precision	

8	



	Arizona	State	University	
Data	Mining	and	Machine	Learning	Lab 

Social	Web	for	Disaster	Management	(SWDM'16)	

Bots	in	Social	Media	

• Bots	on	Twi<er:	
– Twi<er	claims	5%	of	230M	users	are	bots.	
– One	study	found	20M	bot	accounts	=	9%**.	
– 24%	of	all	tweets	are	generated	by	bots***.	

• 5-11%	of	Facebook	accounts	are	fake****.	
	

*							h<p://blogs.wsj.com/digits/2014/03/21/new-report-spotlights-twi<ers-retenJon-problem/	
**					h<p://www.nbcnews.com/technology/1-10-twi<er-accounts-fake-say-researchers-2D11655362	
***			h<ps://sysomos.com/inside-twi<er/most-acJve-twi<er-user-data	
****	h<p://thenextweb.com/facebook/2014/02/03/facebook-esJmates-5-5-11-2-accounts-fake/	
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Finding	Ground	Truth	

•  Three	states	of	a	
Twi<er	user:	
– AcJve	
–  Suspended	
– Deleted	

•  Idea:		
– Use	these	states	as	
labels	

–  Two	snapshots	of	each	
user	is	taken	
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Suspended	

Deleted	

AcJve	

IniFal	Crawl	
•  Finds	seed	set	of	users.	
•  Crawls	Profile,	Network,	...	

Status	on	Twi<er	as	a	labeling	mechanism	
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Ground	Truth	-	Honeypots	

•  Act	as	obvious	bot	accounts	
•  A<ract	other	bot	accounts	
•  Bots	are	idenJfied	when	they	follow	our	account	
•  AssumpFon:	Real	users	do	not	follow	bots	

11	
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Honeypots	-	Logic	

•  Post	“Luring”	Content	
–  Post	content	that	will	be	seen	
–  trending	topics,	hashtags,	
“famous”	tweets...	

	
	
	
•  Maintain	Network	ConnecFons	

–  “Follow	back”,	Retweets	
–  Fame	begets	fame	

	
	
•  Promote	Other	Honeypots	

–  Retweet	each	other’s	tweets	
– MenJon	each	other	

Honeypot	
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Choose	
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Random	
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Record	h’s	
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AdaBoost	Review	

Two	types	of	weights:	
– Weights	on	weak	learners.	
– Weights	on	individual	instances.	
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BoostOR	

•  Based	on	AdaBoost	
•  Try	to	increase	Recall	without	drasJc	decrease	in	
Precision	

•  IteraJvely	update	the	weight	of	instances:	
– Unchanged		
				if	correctly	classified	
– Decreased		
				if	false	negaJve	
– Increased		
				if	false	posiJve	
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Trust	PredicFon	

•  Goal	
– Trust	and	distrust	relaJons	play	an	important	role	in	helping	
online	users	collect	reliable	informaJon	

– Finding	trustworthy	users	and	reliable	informaJon	is	of	
significant	importance	in	asermath	of	disasters	

– How	to	predict	trust	relaJons	between	users?	

•  Challenges	
– Trust	relaJons	are	extremely	sparse	
– Distrust	relaJons	are	even	much	sparser	than	trust	relaJons	
– What	are	strong	indicators	of	trust/distrust?	

15	
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Trust	and	EmoFons	

•  According	to	psychologists,	
user’s	emoJons	are	strong	
indicators	of	trust	and	distrust	
relaJons	

•  EmoJonal	informaJon	is	more	
available	than	trust/distrust	

•  There	exists	a	correlaJon	
between	emoJons	and	trust/
distrust	relaJons	
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Modeling	EmoFonal	InformaFon	

•  Users	with	posiJve	(negaJve)	emoJons	are	more	
likely	to	establish	trust	(distrust)	relaJons	

•  Users	with	high	posiJve	(negaJve)	emoJon	strengths	
are	more	likely	to	establish	trust	(distrust)	

•  The	EmoJonal	Trust	Distrust	framework	ETD	
– Low-rank	matrix	factorizaJon	

– EmoJonal	informaJon	regularizaJon	

17	
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Rumor	DetecFon	

•  Rumor:	unverified	and	relevant	informaJon	that	
circulates	in	the	context	of	ambiguity.	

•  Goal:	detecJng	emerging	rumors	with	minimum	
informaJon	as	early	as	possible	

•  Challenges:	
– How	to	overcome	the	lack	of	informaJon	in	a	single	tweet?	
– How	to	detect	rumors	in	their	formaJve	stage?	

18	
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Rumors	on	Social	Media	

•  False	rumor	propagated	by	AP	
hijacked	account	regarding	a	
bombing	in	the	White	House		

•  Caused	significant	drop	in	Dow	
Jones	Industrial	Average	
(2013)	

• More	than	ten	thousand	
tweets	contained	fake	images	
circulated	aser	hurricane	
Sandy	(2012)	
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Insufficient	InformaFon	in	a	Single	Tweet	

• Not	enough	data	in	a	single	tweet		
• Treat	batches	of	tweets	as	“conversaJons”	

•  Based	on	keyword	similariJes	
•  Based	on	reply	chains	

20	

...	

1	to	9	tweets	 10+	tweets	

Point	of	
Acceptable	
Accuracy	

•  Aggregate	
conversaJons	
•  Shared	hashtags	
•  Common	links	
•  Cosine	similarity	
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DetecFon	of	Emerging	Rumors		

•  Emergent	detecJon	-	link	the	first	tweet	in	a	rumor	
with	those	already	posted	

•  Standard	rumor	classificaJons	are	not	effecJve	for	
small	conversaJons	
– Lack	of	network	and	staJsJcal	data	
– Data	sparsity	issues.	

•  Implicit	linking	works	effecJvely	for	detecJng	small	
rumor	cascades	

21	
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Time-CriFcal	InformaFon	in	Disaster	Response	

Mo8va8ons	
• Social	media	is	used	to	request	for	immediate	assistance	
during	disasters		

• Time-criJcal	posts	demand	immediate	a<enJon	
• Addressing	these	queries	promptly	can	help	in	
emergency	response		

• How	can	these	posts	be	disJnguished	from	others?	

What	we	a@empted	
• Finding	Time-CriJcal	Responses	[Ranganath	ICDM’15]	
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Finding	Time-CriFcal	Responses	

• Many	quesJons	asked	during	disasters	should	be	
immediately	a<ended	

• Many	responders	are	busy		
• How	can	we	find	a	prompt	responder	who	can	
provide	a	relevant	answer?	

• Challenges	of	IdenJfying	Prompt	Responders	
– How	do	we	esJmate	the	reply	8me	of	users	to	idenJfy	
prompt	responders?	

– Timeliness	and	relevance:	how	do	we	integrate	Jmeliness	
with	relevance	to	rank	candidate	respoders?	

23	
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InformaFon	Seeking	in	Social	Media	

• Social	media	is	used	
to	request	for	help	
during	disasters	

• Addressing	these	
queries	promptly	can	
help	in	emergency	
response		

24	
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IdenFfying	Candidate	Responders	

•  Timeliness	
– The	user	can	respond	more	quickly	if	she	is	available	soon	aser	
the	quesJon	is	posted.	It	can	be	esJmated	using	the	previous	
posJng	Jmes.	

– A	user	responds	to	quesJons	faster	if	she	has	replied	promptly	
to	similar	quesJons	in	the	past.	

•  Relevance	
– Users	whose	previous	content	is	similar	to	the	quesJon	have	
higher	relevance	and	their	response	is	more	likely	to	be	a	
relevant	answer.	

•  Timeliness	and	relevance	are	integrated	by	combining	
the	ranking	scores.	

25	
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Finding	Objec&ve	Posts	in	Disasters	

•  ObjecJve	posts	convey	a	piece	of	unbiased	factual	
informaJon	without	opinions,	cha<ers,	or	emoJons	

• Social	media	can	contain	opinions	or	intrinsic	sample	bias		
• For		sample	bias,	we	ask	

– Is	this	sample	representaJve	of	the	whole	populaJon?	
– Can	this	sample	be	manipulated	by	malicious	users?	

What	we	a<empted	
•  Twi<er’s	Streaming	API	vs.	Twi<er’s	Firehose	[Morsta<er	ICWSM’13]	
•  Bias	in	Twi<er’s	Streaming	API	[Morsta<er	WWW’14]	
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Studying	Bias	in	Social	Media	Data	

•  Twi<er	shares	its	data.	
– “Firehose”	feed	-	100%	-	costly	
– “Streaming	API”	feed	-	1%	-	free	

•  We	usually	obtain	data	via	sampling		
– Is	the	sampled	data	from	the	Streaming	API	representaJve	of	
the	true	acJvity	on	Twi<er’s	Firehose?	

•  Challenges	
– How	to	determine	if	the	sample	is	biased	when	we	do	not	have	
access	to	the	whole	data?	

– How	to	obtain	an	unbiased	sample?	

27	
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Twieer’s	Streaming	API	vs.	Firehose	

•  Data	from	Firehose	and	Streaming	API	has	been	
collected	for	specific	period	of	Jme	to	perform	analysis.	

• More	than	90%	of	all	geotagged	tweets	are	available	via	
Streaming	API	and	there	is	not	significant	difference	in	
locaJon	distribuJon.	

•  Based	on	in-degree	centrality	and	betweenness	
centrality	in	user-user	retweet	networks,	the	Streaming	
API	finds	~50%	of	the	key	users.	

28	

Firehose	 Streaming	API	
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MiFgaFng	Bias	in	Twieer’s	Streaming	API	

Can	we	find	bias	without	the	Firehose?	
	

EsJmaJng	Bias	from	Streaming	API:	
– Obtain	trend	of	hashtag	from	Sample	API	
and	Streaming	API	

– Bootstrap	Sample	API	to	obtain	confidence	
intervals	

– Mark	regions	where	Streaming	API	is	
outside	of	confidence	intervals	

MiJgaJng	Bias:	
– Leverage	mulJple	crawlers	to	maximize	
data	for	each	query	

– Round	Robin	Splixng	

29	
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Users	in	Disaster	Response	

Mo8va8ons	
•  Relief	campaigns	require	volunteers	to	assist	with	
disaster	relief	

• Mixed	with	daily	cha<er,	opinions,	and	sympathies	on	
social	media	

• Which	properJes	can	be	used	to	disJnguish	potenJal	
campaigners	from	others	posJng	on	the	same	topic	

	
What	we	a@empted	
•  DetecJng	Advocates	for	Campaigns	[Ranganath	
WSDM’16]	
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DetecFng	Advocates	

•  Advocates	are	individuals	who	use	social	media	to	
strategically	advance	their	agenda	for	a	given	campaign	

•  Goal:	idenJfying	advocates	from	random	users	using	
social	mobilizaJon	theories		

•  Challenges	
– Nuanced	strategies	to	shape	user	opinions	
– Diverse	strategies	

•  Individual	acJviJes	like	construcJng	persuasive	messages	
•  RelaJonal	pa<erns	like	shared	language	and	interacJons	

– Scalability	
• Millions	of	users	post	on	a	given	issue	
• Obtaining	labels	is	hard	
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DetecFon	based	on	Social	MobilizaFon	Theories	

•  Social	mobilizaJon	theories	
– Message	Strategies:	Persuasive	language,	Topical	focus	
– PropagaJon	Strategies:	TargeJng	popular	users	
– Community	Structure	:	Social	and	InteracJon	networks	

•  These	features	are		
used	in	a	LogisJc		
Regression	classifier	

32	

Factors	 Features	 ElecFons	 Gun	Rights	

Message	Strategies	 Persuasion	 1.71**	 1.04***	

Focus	 -3.63*	 -0.21**	

PropagaJon	Strategies	 TargeJng	 2.15***	 1.91*	

Hubs	 2.91***	 -0.31	

AuthoriJes	 6.39***	 0.51*	

Community	Structure	 Following	 1.56***	 0.90***	

Followers	 2.04***	 0.95***	

InteracJons	 1.44***	 0.01**	
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Event	DetecFon	for	Disaster	Response	

Defini8on	of	an	Event	
•  Non-trivial	incidents	happening	in	a	certain	place	at	a	
certain	Jme	

Mo8va8on	
• Exogenous	events	cause	changes	in	social	media	acJviJes	
• These	changes	are	useful	for	early	event	detecJon		
• Early	detecJon	can	accelerate	relief	process	
	

What	we	a@empted	
•  Event	DetecJon	in	Twi<er	Streams	[Kumar	ASONAM’15]	
•  Crisis-Mapping	Using	Language	DistribuJon	[Sampson	ICDM’15,	
Demo]	
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Event	DetecFon	in	Twieer	Streams	

•  Goal:	Given	a	stream	of	tweets	T	=	t1,	t2,	t3,	…,		
   detect	events	E	=	e1,	e2,	e3,	…	.	
•  Challenges	

– Informal	language	
– Rapidly	evolving	events	
– User	diversity	
– Handling	streaming	data	

•  Find	events	E	such	that	
– ConsJtuent	tweets	are	similar	
– User	diversity	is	maintained		
– Distance	between	events	is	maximized	
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An	IntuiFve	Clustering	Approach	for	ED	

35	

E1	

E3	
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Crisis-Mapping	Using	Language	DistribuFon	

•  Language	distribuJon	is	probability	distribuJon	of	
words	in	the	vocabulary	

•  Goal:	DetecJng	events	using	changes	in	the	regional	
language	

•  Challenges:	
– How	to	model	the	language	of	a	region?	
– How	to	measure	language	change?	
– What	amount	of	change	can	indicate	the	occurrence	of	an	
event?	
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Macro-level	Divergence	Mapping	

•  Compare	the	distribuJon	of	a	specific	hour	in	a	region	
to	its	expected	distribuJon	

•  Spikes	in	the	divergence	of	the	language	model	indicate	
events	

•  Divergence	is	measured	using	Jensen-Shannon	
divergence	
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Micro-level	Surprise	

•  Baseline:	average	of	previous	
distribuJons	for	a	region	

•  The	language	distribuJon	in	the	
same	region	for	a	desired	period	of	
Jme	is	calculated	

•  SubtracJon	of	the	two	distribuJons	
shows	the	surprise	level	of	each	
word	in	the	vocabulary	

•  Provides	insight	for	the	detected	
event	
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QuesFons	and	Disaster	Response	

Mo8va8ons	
•  There	are	many	social	media	sites		
•  Each	site	is	designed	for	a	specific	purpose	
•  Difficult	for	users	to	choose	the	one	to	search	for	
informaJon	

	
What	we	a@empted	
•  Social	Answer	System	[Dani	ICDM’15,	Demo]	
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Social	Answer	System	

•  Goal:	Given	a	quesJon	and	set	of	social	media	sites,	
rank	the	sites	based	on	the	probability	of	answering	
the	quesJon	

•  Challenges	
– Understanding	the	topics	of	the	quesJon	and	
topics	discussed	on	social	media	sites	

– Finding	similarity	between	the	quesJon	and	
discussions	
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Social	Answer	System	Overview	

a) Query	expansion	using	Wikipedia	(quesJon	Index)	
b) Search	engine	crawling	(site	index)	
c) QuesJon	and	search	engine	vector	similarity	site	ranking)	
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Query	Expansion	Using	Wikipedia	

•  Extract	keywords	from	the	quesJon	
•  Obtain	Wikipedia	arJcles	for	each	keyword	
•  Stem	and	remove	stopwords	from	documents	
•  Send	the	aggregate	of	the	documents	as	the	new	query	
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Search	Engine	Crawling	

•  25	social	media	sites	
•  Find	top	ten	pages	of		
each	site	

•  Using	search	results	of	
Google,	Yahoo,	and	Bing	
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QuesFon	and	Search	Engine	Vector	Similarity	

•  EsJmate	the	frequency	of	each	
quesJon	word	in	the	content		
of	sites	

•  Combine	esJmates	from	
different	search	engines	using	
conflict	allocaJon	algorithm	

•  Use	cosine	similarity	measure		
to	obtain	the	similarity	score	
between	query	and	each	site	
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Examples	
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LocaFons	and	Disaster	Response	

Mo8va8ons	
•  SituaJonal	Awareness	

– Assess	the	impact	of	a	crisis	
– IdenJfy	severely	impacted	regions	

•  Disaster	response	
– Coordinate	rescue	efforts	
– Disseminate	informaJon	to	people	

•  PrioriJzing	informaJon	processing	for	faster	response	
	

What	we	a@empted	
•  IdenJfying	Tweets	from	Crisis	Regions	[Kumar	HT’14]		

46	



	Arizona	State	University	
Data	Mining	and	Machine	Learning	Lab 

Social	Web	for	Disaster	Management	(SWDM'16)	

IdenFfying	Tweets	from	Crisis	Regions	

•  Goal:	idenJfying	tweets	generated	from	crisis	regions	
based	on	the	characterisJcs	that	discriminate	them	
from	the	ones	which	are	published	elsewhere.	

•  Challenges:	
– Paucity	of	geotagged	Tweets	
– limited	history	of	users		
– User	network	is	expensive	to	collect	
– Topic	bias	in	crisis	data	
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A	Behavior-DifferenFal	Approach	

•  Hypotheses:	users	in	crisis	region	exhibit	unique	
behaviors	

	
•  User	behaviors	in	crisis	regions	

– More	likely	to	contain	resources	
– Less	likely	to	be	retweets	
– Less	likely	to	contain	hashtags	
– Less	likely	to	reference	enJJes	

•  These	characterisJcs	can	be	harnessed	to	locate	
tweets	
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TweetTracker	-	Track	

•  Developed	in	
DMML	@	ASU	

•  Data	collecJon	
–  Keywords	
–  hashtags	
–  LocaJon	
–  Users		

•  Sources	
– Twi<er	
– Instagram	
– YouTube	
– VK	

•  CollecJon	type	
– Crisis-related	
– Normal	
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TweetTracker	-	Analyze	
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TweetTracker	-	Understand	

•  LocaJon	distribuJon	
• Wordcloud	
•  Top	links	
•  Top	users	
•  Images	
•  Videos	
•  Top	hashtags	
• Most	probable	bots	
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ACT	Disaster	Relief	System	Features	

•  Enables	relief	organizaJons	to	respond	in	an	
organized	and	collaboraJve	manner	

•  Leverages	the	informaJon	available	from	a	relief	
group	to	supplement	the	crowdsourcing	informaJon	

•  Provides	helpful	staJsJcs		
– OrganizaJonal	contribuJon	during	relief	operaJons	
– SpaJo-temporal	distribuJon	of	requests	
– Request	delivery	status	for	evaluaJng	relief	progress	
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ACT	Architecture	

•  System	displays	
requests	pool	on	
crisis	map	

•  OrganizaJons	
respond	to	requests	
and	coordinate	with	
each	other	

•  A	staJsJcs	module	
helps	track	relief	
progress	
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ACT	Modules	-	Crowdsourcing	
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ACT	Modules	-	Response	&	CoordinaFon	
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ACT	Modules	-	Response	StaFsFcs	
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