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Abstract—In the literature of feature selection, different criteria have been developed to evaluate the goodness of features. In our
investigation, we notice that a number of existing selection criteria implicitly select features that preserve sample similarity, and can
be unified under a common framework. We further point out that any feature selection criteria covered by this framework cannot
handle redundant features, a common drawback of these criteria. Motivated by these observations, we propose a new “Similarity
Preserving Feature Selection” framework in an explicit and rigorous way. We show, through theoretical analysis, that the proposed
framework not only encompasses many widely used feature selection criteria, but also naturally overcomes their common weakness
in handling feature redundancy. In developing this new framework, we begin with a conventional combinatorial optimization formulation
for similarity preserving feature selection, then extend it with a sparse multiple-output regression formulation to improve its efficiency
and effectiveness. A set of three algorithms are devised to efficiently solve the proposed formulations, each of which has its own
advantages in terms of computational complexity and selection performance. As exhibited by our extensive experimental study, the
proposed framework achieves superior feature selection performance and attractive properties.

Index Terms—Feature Selection, Similarity Preserving, Redundancy Removal, Multiple Output Regression, Sparse Regularization
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1 INTRODUCTION

F Eature selection aims to choose a subset of the
original features according to a selection criterion.

It is an important technique widely used in pattern
analysis. It reduces data dimensionality by removing
irrelevant and redundant features, and brings about the
immediate effects for applications, such as speeding up
a data mining algorithm, improving predictive accuracy,
and enhancing result comprehensibility [16], [23]. Ac-
cording to the way of utilizing label information, feature
selection algorithms can be categorized as supervised
algorithms [35], [41], unsupervised algorithms [11], [19]
or semi-supervised algorithms [43], [49]. From the per-
spective of selection strategy, feature selection algorithms
broadly fall into three models: filter, wrapper or em-
bedded [16]. The filter model evaluates features without
involving any learning algorithm. The wrapper model
requires a learning algorithm and uses its performance
to evaluate the goodness of features. Algorithms of the
embedded model, e.g., C4.5 [28] and LARS [12], incor-
porate feature selection as a part of the learning process,
and use the objective function of the learning model
to guide searching for relevant features. In addition,
feature selection algorithms may return either a subset of
features [17], [45] or the weights of all features measuring
their utility [1], [34]. Hence, they can also be categorized
as subset selection algorithms or feature weighting al-
gorithms. As an important technique for dimensionality
reduction, feature selection has been applied to various
areas, including computer vision [10], text mining [13],
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and bioinformatics [31], to name a few.
The selection criterion is a pivotal component of fea-

ture selection. It can take various forms: separability,
information, dependency, consistency, learning model
performance (used in the wrapper model), and so on. In
our recent study, we observe that a number of existing
feature selection algorithms are essentially based on as-
sessing features’ capability in preserving sample similar-
ity, which can be inferred from either label information
or predefined distance metric [48]. These feature selec-
tion algorithms include Relief and ReliefF [34], Lapla-
cian Score [19], Fisher Score [9], SPEC [48], HSIC [35],
and Trace Ratio [27]. They have demonstrated excel-
lent performance in both supervised and unsupervised
learning contexts and have been applied successfully to
various real applications. These algorithms are designed
to achieve different goals. For example, Fisher Score and
ReliefF are designed to optimize sample separability,
Laplacian Score is designed to retain sample locality, and
HSIC is designed to maximize feature-class dependency.
However, it can be shown that all of these algorithms
select features by evaluating features’ capability in pre-
serving sample similarity in different ways. We defined
a unified framework which includes the above feature
selection algorithms as its special cases. And our theoret-
ical analysis and experimental study show that in these
algorithms, a crucial component is missed, which leads
to their common drawback of being unable to handle
feature redundancy. For instance, they may repeatedly
select highly correlated features in the selection process.
It has been known that redundant features can adversely
affect the performance of classification and clustering,
therefore should be removed by feature selection for
improving learning performance [7], [45].

Based on the above observations, we explicitly pro-
pose the concept of “Similarity Preserving Feature Se-
lection”, and develop corresponding feature selection
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framework in a direct and rigorous way. We provide
a thorough analysis for the proposed feature selection
framework in dealing with redundant features, and ex-
plain how the weakness of the existing algorithms can be
overcome. Beginning with a conventional combinatorial
optimization formulation, we show how the feature
selection in our framework can be reformulated as a
multiple-output regression problem [18] with an L2,1-
norm constraint. Based on these formulations, we devise
three different algorithms to identify the optimal feature
set. The first one takes the traditional sequential forward
selection approach to solve the combinatorial optimiza-
tion formulation. By using the Nesterov’s method in
constrained optimization [24], [25], [26], the second one
globally solves the constrained optimization problem
and selects features accordingly. However, this method
requires cross-validation for parameter tuning to obtain
good performance, which is time-consuming. Inspired
by the group LAR [46], we develop the third algorithm
that generates an approximate solution path for the
constrained optimization problem. It does not require
parameter tuning, and is more efficient. Each of the
three algorithms has its own advantages in terms of time
complexity and selection performance.

The contributions of this paper include: (1) We propose
a general framework that unifies a number of exist-
ing feature selection algorithms and allows their joint
study. (2) We explicitly propose the concept of “Simi-
larity Preserving Feature Selection”, and develop a new
selection framework in a direct and rigorous way. (3)
We formulate our framework as a regularized multiple-
output regression problem and propose different ways
to solve it efficiently. (4) We theoretically show that the
proposed framework is able to avoid selecting redundant
features, overcoming a common drawback of the existing
algorithms. And (5) we conduct extensive experiments to
evaluate the proposed framework with both supervised
and unsupervised learning. The results demonstrate its
generality and superior performance.

1.1 Notation

In the paper, we use X ∈ Rn×m to denote the data
matrix, where n is the number of instances and m
is the number of features. For each data set, we use
f1, . . . , fm to denote the m features, and f1, . . . , fm are
the corresponding feature vectors, where fi ∈ Rn and
X = (f1, . . . , fm). We also use x1, . . . , xn to denote the
n instances, xi ∈ Rm and X = (x1, . . . , xn)

>. Given n
instances, the pairwise similarity among them can be
presented as a symmetric matrix K ∈ Rn×n. Given K, we
use G(V,E) to denote the undirected graph constructed
from K, where V is the vertex set, and E is the edge set.
The i-th vertex of G corresponds to xi, and there is an
edge between each vertex pair (xi, xj), where the weight
kij is the (i, j) the entry of K. In this case K is called
the affinity matrix of G. Given G and its affinity matrix
K, let d denote the vector: d = (d1, d2, . . . , dn), where

di =
∑n
j=1 kij . The degree matrix D of the graph G is

defined by: Dij = di if i = j, and 0 otherwise. Here di can
be interpreted as an estimation of the density around xi,
since the more data points that are close to xi, the larger
the value of di. Given K and D, the Laplacian matrix L
and the normalized Laplacian matrix L are defined as

L = D−K; L = D−
1
2 LD−

1
2 .

In multiple-output regression analysis [18], assuming
that Y =

(
y1, . . . ,yk

)
∈ Rn×k denotes the response

matrix, and W = (w1, . . . ,wk) ∈ Rm×k denotes the
weight matrix, the goal is to learn a weight matrix W to
minimize the following objective function:

‖Y −XW‖2F = Trace
(
(Y −XW) (Y −XW)

>
)
,

where ‖ · ‖F denotes the Frobenius norm [14]. In the
paper, we use boldface characters in uppercase, such as
X and K, to denote matrices, use boldface characters
in lowercase, such as x and d, to denote vectors, and
use normal characters in lowercase to denote scalars. We
use 1 to denote the vector with all its elements being 1,
and I to denote the identity matrix with all its diagonal
elements being 1 and all other elements being 0.

2 EXISTING FEATURE SELECTION CRITERIA
BASED ON SIMILARITY PRESERVING

In this part, we review the existing feature selection crite-
ria that select features via evaluating their capability in
preserving sample similarity. These algorithms include
Laplacian Score [19], SPEC [48], Fisher Score [9], Trace
Ratio criterion [27], ReliefF [34], and HSIC [35].

2.1 Feature Selection with Laplacian Score
Laplacian Score is proposed in [19] to select features
that retain sample locality specified by an affinity matrix
K. Given K, its corresponding degree matrix D and
Laplacian matrix L, the Laplacian Score of a feature f
is calculated in the following way:

SCL (f) =
f̃
>

Lf̃

f̃
>

Df̃
, where f̃ = f− f>D1

1>D1
1.

Since features are evaluated independently in Laplacian
Score, selecting k features with Laplacian Score can be
achieved by greedily picking the top k features which
have the minimal SCL values.

2.2 Feature Selection with SPEC
Proposed in [48], SPEC is an extension of Laplacian
Score. In SPEC, given the affinity matrix K, the degree
matrix D, and the normalized Laplacian matrix L, three
evaluation criteria are proposed for measuring feature
relevance in the following ways:

SCS,1(fi) = f̂i
>
γ(L) f̂i =

n∑
j=1

α2
jγ(λj),
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SCS,2(fi) =
f̂i
>
γ(L) f̂i

1−
(

f̂i
>
ξ1

)2 =

n∑
j=2

α2
jγ(λj)

n∑
j=2

α2
j

,

SCS,3(fi) =
k∑
j=1

(γ(2)− γ(λj))α2
j .

In the above equations, f̂i = (D
1
2 fi) · ||(D

1
2 fi)||−1; (λj , ξj)

is the j-th Eigen-pair of L; αj = cos θj , where θj is
the angle between f̂i and ξj ; and γ(·) is an increasing
function which is used to rescale the eigenvalues of L
for denoising. The top eigenvectors of L are the optimal
soft cluster indicators of the data [38]. By comparing
with these eigenvectors, SPEC selects features that assign
similar values to instances that are similar according to
K. In [48] it is shown that Laplacian Score is a special
case of the second criterion, SCS,2(·), defined in SPEC.
Note that SPEC also evaluates features independently.

2.3 Feature Selection with Fisher Score

Given class labels y = {y1, . . . , yn}, Fisher Score [9]
selects features that assign similar values to the samples
from the same class and different values to samples from
different classes. The evaluation criterion used in Fisher
Score can be formulated as

SCF (fi) =

∑c
j=1 nj (µi,j − µi)

2∑c
j=1 njσ

2
i,j

,

where µi is the mean of the feature fi, nj is the number
of samples in the jth class, and µi,j and σ2

i,j are the mean
and the variance of fi on class j, respectively. In [19], it
is shown that Fisher Score is a special case of Laplacian
Score, when the similarity matrix is defined as

KFIS
ij =

{
1
nl
, yi = yj = l

0, otherwise
, (2.1)

where nl is the number of instances in the l-th class.

2.4 Feature Selection with Trace Ratio Criterion

The trace ratio criterion for subset-level feature selection
is proposed in [27]. It defines two weight matrices Kw

and Kb. Kw represents the within-class or local affinity
relationship of instances, whereas Kb represents the
between-class or global counterpart. Let Lw = Dw −Kw

and Lb = Db − Kb, where Dw and Db are the degree
matrices of Kw and Kb, respectively. Let k be the number
of features to be selected. An m × k selection matrix
W is expressed as [wi1 ,wi2 , · · · ,wik ], where the column
vector wij has one and only one “1” at its ij-th element.
The set {i1, i2, · · · , ik} is a subset of {1, 2, · · · ,m}. The
trace ratio criterion seeks the best selection matrix W by
maximizing the following criterion:

W? = argmax
W

=
Trace(W>X>LbXW)

Trace(W>X>LwXW)
. (2.2)

It is shown in [27] that this optimization problem can be
solved by iteratively solving the following subproblems: Wi+1 = argmax

W
Trace

(
W>X>(Lb − λiLw)XW

)
λi+1 =

Trace(W>
i+1X

>LbXWi+1)

Trace(W>
i+1X

>LwXWi+1)

.

(2.3)
Recognizing that the optimal λ is the root of the follow-
ing piecewise linear function:

f(λ) = max
W

Trace
(
W>X>(Lb − λiLw)XW

)
,

we can efficiently solve the above optimization problem.
Although the trace ratio criterion evaluates a set of
features jointly, we will show that it does not take fea-
ture redundancy into account and is prone to selecting
redundant or even duplicated features.

2.5 Feature Selection with ReliefF

Relief [21] and its multiclass extension ReliefF [22] are
supervised feature weighting algorithms of the filter
model. Assuming that p instances are randomly sampled
from data, the evaluation criterion of Relief is defined as

SCR(fi) =
1

2

p∑
t=1

d
(
ft,i − fNM(xt),i

)
− d

(
ft,i − fNH(xt),i

)
,

where ft,i denotes the value of instance xt on feature
fi, fNH(xt),i and fNM(xt),i denote the values on the ith
feature of the nearest points to xt with the same and
different class label respectively, and d (·) is a distance
measurement. To handle multiclass problems, the above
criterion is extended to the following formulation:

SCR(fi) =
1

p
·
p∑
t=1

− 1

mxt

∑
xj∈NH(xt)

d (ft,i − fj,i)

+
∑
y 6=yxt

1

mxt,y

P (y)

1− P (yxt)

∑
xj∈NM(xt,y)

d (ft,i − fj,i)

 ,

where yxt is the class label of the instance xt and P (y)
is the probability of an instance being from the class y.
NH(x) or NM(x, y) denotes a set of nearest points to x
with the same class of x, or a different class (the class
y), respectively. mxt and mxt,y are the sizes of the sets
NH(xt) and NM(xt, y), respectively. Usually, the size of
both NH(x) and NM(x, y), ∀ y 6= yxt , is set to a pre-
specified constant k. The evaluation criteria of Relief and
ReliefF suggest that the two algorithms select features
contributing to the separation of samples from different
classes. In Section 3, we show that this is equivalent to
selecting features that preserve a special form of sample
similarity derived from the class label.
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2.6 Feature Selection with HSIC
HSIC is first proposed in [15] for measuring the depen-
dence between two kernels. In [35], HSIC is extended
and applied to feature selection. The basic idea is to
select a subset of features, such that the obtained kernel
maximizes the HSIC criterion with respect to a given
kernel matrix K. In [35] an unbiased estimator of HSIC
is given as

SCH (F) =
1

n(n− 3)

[
Trace (KFK) +

1>KF11>K1

(n− 1)(n− 2)

− 2

n− 2
1>KFK1

]
. (2.4)

In the equation, F is a subset of the original features and
KF is the kernel obtained from F. To achieve unbiased
estimation, HSIC criterion requires that the diagonal
elements of K and KF be set to 0. Based on the HSIC
criterion, features can be selected via either backward
elimination or forward selection.

3 A UNIFIED FRAMEWORK FOR EXISTING
FEATURE SELECTION CRITERIA

In this part, we show that all the criteria reviewed in
Section 2 can be unified under a common framework,
which has the following formulation:

SC(f) = f̂
>

K̂f̂, (3.1)

where f̂ is the normalized feature vector obtained from
f, and K̂ is the refined similarity matrix derived from K.
The difference between different criteria is that they use
different rules to generate f̂ and K̂.

We can show that using Eq. (3.1) to select k features
can be formulated as

max
Fsub

∑
f∈Fsub

SC(f) = max
Fsub

∑
f∈Fsub

f̂> K̂ f̂ , (3.2)

where Fsub is the set of k selected features. It has been
shown in [33], that solving the following problem:

maxS�0 Trace
(
SK̂
)

st. Trace (S) ≤ 1,

will result in a kernel matrix S, which well preserves the
sample similarity specified in K̂. Also, we have

max
Fsub

∑
f∈Fsub

f̂>K̂ f̂ = max
Fsub

∑
f∈Fsub

Trace
(
f̂ f̂>K̂

)
= max

Fsub

Trace

{
K̂

∑
f∈Fsub

f̂ f̂>

}
= max

Fsub

Trace
{

K̂
(
X>Fsub

XFsub

)}
.

Here XFsub
is the data containing only the features in

Fsub. Thus max
Fsub

∑
f∈Fsub

f̂>K̂ f̂ equals to select a set

of features Fsub, such that the linear kernel on XFsub

can preserve the pairwise sample similarity specified in
K̂ well. Therefore the features that maximize the value

of Eq. (3.2) should have strong capability in preserving
the pairwise sample similarity specified in K̂. Below
we show each criterion introduced in Section 2 can be
reformulated in the form of Eq. (3.2).

3.1 Laplacian Score
Given a set of features, f1, . . . , fm, the Laplacian score for
the ith feature can be expressed as [19]

SCL(fi) =
f̃>i Lf̃i

f̃>i Df̃i
, with f̃i = fi −

f>i D1

1>D1
1 = fi − µi1,

where µi is the density-weighted mean of fi. Since L =
D − K, where K is the similarity matrix and D is the
degree matrix, we have

SCL(fi) = 1− f̃>i Kf̃i

f̃>i Df̃i
= 1−

(
f̃i

‖D 1
2 f̃i‖

)>
K

(
f̃i

‖D 1
2 f̃i‖

)
.

Note that f̃>i Df̃i is the density weighted variance of
fi, denoted as σ2

i [19]. Since f̃>i Df̃i = ‖D 1
2 f̃i‖22, we

can interpret ‖D 1
2 f̃i‖ as the standard deviation of fi.

Therefore, we can write SCL(fi) as

SCL(fi) = 1− f̂>i Kf̂i. (3.3)

where f̂i , (fi − µi1)/σi, which is a normalized fi.
Therefore the problem of using Laplacian score to select
k features can be formulated as

max
Fsub

∑
f∈Fsub

f̂>Kf̂ , f̂ , (f − µ1)/σ. (3.4)

The problem can be solved by greedily picking the top
k features which have the maximal f̂>Kf̂ values.

3.2 SPEC
SPEC is an extension for Laplacian score to make it more
robust to noise. First, let us assume that the data is noise
free, for which, we can set γ (x) = x and k = n. In this
case, we can show that the SCS,2(·) of SPEC is equivalent
to Laplacian score [48]. Similar as in Section 3.1, we can
also rewrite the SCS,1(·) and SCS,3(·) of SPEC in the
following forms, respectively:

SCS,1(f) = 1− f̂
>

Kf̂, SCS,3(f) = 1 + f̂
>

Kf̂, (3.5)

where f̂i , fi/‖D
1
2 fi‖. Since ‖D 1

2 fi‖ is the density
weighted norm of fi, f̂i forms the density weighted
normalized fi. The analysis shows that when noise is
not considered, the problem of using SPEC to select k
features can be formulated as

max
Fsub

∑
f∈Fsub

f̂>Kf̂ , f̂ , f/‖D 1
2 f‖. (3.6)

When noise reduction mechanisms are applied, selecting
k features with SPEC can be formulated as

max
Fsub

∑
f∈Fsub

f̂>(i)K̂(i)f̂(i), where

f̂(1) , f/‖D 1
2 f‖, K̂(1) = D

1
2 U (I− γ (Σ))U>D

1
2 ,

f̂(2) , (f − µ1)/‖D 1
2 f‖, K̂(2) = D

1
2 U (I− γ (Σ))U>D

1
2 ,

f̂(3) , f/‖D 1
2 f‖, K̂(3) = D

1
2 Uk (γ (2I)− γ (Σk))U>k D

1
2 ,
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where (i) denotes the i-th criterion defined in SPEC. U
and Σ contain the singular vectors and singular values
of the normalized Laplacian matrix, L = UΣU>. In this
case, the original similarity matrix K is mapped to K̂ by
the operation γ (·) on Σ for noise reduction.

3.3 Fisher Score

As shown in [19], when K is defined as

Kij =

{
1
nl
, yi = yj = l

0, otherwise
. (3.7)

Laplacian Score and Fisher Score are equivalent and have
the following relationship:

SCL =
1

1 + SCF
. (3.8)

Therefore the analysis in Section 3.1 also applies to the
case of Fisher Score.

3.4 Trace Ratio Criterion

Trace-ratio criterion [27] selects k features via maximiz-
ing the following criterion:

SCTR (fi1 , fi2 , . . . , fik) =
Trace(X̂>LbX̂)

Trace(X̂>LwX̂)
,

where X̂ = (fi1 , . . . , fik). Without loss of generality, we
assume that each feature fi (i = 1, · · · ,m) has been
centered to zero density weighted mean, i.e. f>D1 = 0.
In [27], with different definitions of Lb and Lw, the trace-
ratio criterion generalizes Fisher Score and Lapalacian
Score to evaluate a feature subset as a whole. For the
Fish Score case, we can show that,

SCTR (fi1 , fi2 , . . . , fik) =
∑k
t=1 f>it Kfit∑k
t=1 f>it Lfit

, (3.9)

where K is defined in Eq. (3.7). With this definition of
K, it can be shown that D = I and L = I−K. Therefore,
maximizing Eq. (3.9) is equivalent to maximizing∑k

t=1 f>it Kfit∑k
t=1 f>it Dfit

=

∑k
t=1 f>it Kfit∑k
t=1 f>it fit

=
Trace(X̂>KX̂)

Trace(X̂>X̂)
. (3.10)

Note that Trace(X̂>X̂) is just the sum of the weighted
variances of fi1 , · · · , fik . Assuming that features are nor-
malized to have unit norm, this term is a constant and
the above problem can be formulated as

max
Fsub

∑
f∈Fsub

f̂>Kf̂ , f̂ , f/‖f‖. (3.11)

When Kw = K and Kb =
(
1>D1

)−1
D11>D, the trace

ratio criterion generalizes the Laplacian Score as

SCTR (fi1 , fi2 , . . . , fik) =
∑k
t=1 f>it Dfit∑k
t=1 f>it Lfit

, (3.12)

where L = D−K. In this case, assuming that f̂ is defined
as f̂ , f/‖D 1

2 f‖, maximizing SCTR (·) will be equivalent
to solving the following problem:

max
Fsub

∑
f∈Fsub

f̂>Kf̂ . (3.13)

The above analysis shows, with another way, the con-
nections of Laplacian score and Fisher score to feature
selection based on similarity preserving. Similar analysis
also holds, when general Kw and Kb are used in the
trace-ratio criterion, by noticing the fact that

SCTR
(
f∗i1 , f

∗
i2 , . . . , f

∗
ik

)
=

k∑
t=1

f∗>itK̂f∗it ,

where f∗i1 , . . . , f
∗
ik

is the optimal feature set of size k, K̂ =
(Lb − λ∗Lw), and λ∗ is the optimal λ value obtained by
solving Eq. (2.3) iteratively.

3.5 ReliefF
Assume that the training data has c classes with l in-
stances in each class; there are k instances in both NH(x)
and NM(x); and all features have been normalized to
unit length. As shown in [48], under the above assump-
tions, the evaluation criterion of ReliefF is equivalent to

n∑
i=1


k∑
j=1

1

k
(fi − fNH(xi)j )

2 −
∑
y 6=yi

k∑
j=1

(fi − fNM(xi,y)j )
2

(c− 1)k

.
In the equation, fi is the value of the feature f on the
ith instance, xi; NH(xi)j denotes the jth nearest hit of
xi; and NM(xi, y)j denotes the jth nearest miss of xi in
class y. Here we use the Euclidean distance to calculate
the difference between two values and use all training
data to train ReliefF. When K is defined as

Ki,j =


1 i = j
− 1
k xj ∈ NH (xi)

1
(c−1)k xj ∈ NM (xi, y)

, (3.14)

it is easy to verify that D = I, and the evaluation
criterion of ReliefF is equivalent to SCR(f) = −1 + f>Kf
up to a constant [48]. Therefore using ReliefF to select k
features can be formulated as

max
Fsub

∑
f∈Fsub

f>Kf . (3.15)

3.6 HSIC Criterion
It is shown in [35] that when linear kernel is used to
compute the KF in Eq. (2.4), the HSIC criterion can be
formulated as

SCH (fi1 , . . . , fik) =
k∑
t=1

f>it K̂fit , where

K̂ =
1

n(n− 3)

[
K +

(
11> − I

) 1>K1

(n− 1)(n− 2)

− 2

n− 2

(
K11> − diag (K1)

)]
. (3.16)
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When a nonlinear kernel function is used for construct-
ing KF, features’ contribution to KF cannot be simply
decomposed as in the linear kernel case. But in this case
the HSIC criterion becomes computationally inefficient.

3.7 Discussion
The above analysis shows that many existing feature
evaluation criteria can be unified under a common for-
mulation, which suggests that although different criteria
are designed to serve different purposes and are of
very different formulations, they all in fact evaluate
features by measuring their capability in preserving the
pairwised sample similarity specified by a predefined
similarity matrix. The difference between different crite-
ria is that they use different rules to normalize features
and adjust the given similarity matrix in different ways.

Eq. (3.2) also reveals that any criterion under this
formulation will evaluate features individually, hence,
cannot handle redundant features. Redundant features
increase dimensionality unnecessarily [17], and worsen
learning performance when facing the shortage of data.
It is also shown empirically that removing redundant
features can result in significant performance improve-
ment [2], [7], [8], [45], [50]. Below, we propose a new
framework for similarity preserving feature selection.
And it forms a natural way for handling redundant
features in similarity preserving feature selection.

4 THE SPFS FRAMEWORK
In this section, we propose a novel framework for
S imilarity Preserving Feature Selection, named SPFS.
We connect SPFS to the aforementioned algorithms and
show how it extends these algorithms by overcoming
their limitation on handling redundant features.

4.1 The basic formulation
In similarity preserving feature selection, given m fea-
tures, (f1, . . . , fm), we aim to select k features, based on
which, the pairwised sample similarity specified by a
predefined similarity matrix K is best preserved. The
matrix K can be constructed either by using the la-
bel information in supervised learning or using certain
distance metrics in unsupervised learning. Hence, K
essentially encodes the class information or the intrinsic
structure of data. By preserving the sample similarity
specified in K, we are able to select a subset of features
that can maintain or even improve the performance of
learning models. Below, we propose the basic formula-
tion to capture the idea of similarity preserving feature
selection, which defines a combinatorial optimization
problem. The formulation uses linear kernel to measure
the similarities among samples in the dimensionality
reduced space generated by feature selection.

(P ) min
W
‖X̂X̂> −K‖2F

s.t. X̂ = XW, W ∈ {0, 1}m×k ,
W>1m×1 = 1k×1, ‖ W1k×1 ‖0 = k. (4.1)

‖ ·‖F denotes the Frobenius matrix norm and ‖ ·‖0 is the
zero norm of a vector. These constraints imply that (1) W
is a selection matrix with only “0” or “1” as its elements.
X̂ = XW exactly selects k columns out of X; (2) each
column of W has one and only one “1”. This ensures
the original features rather than a linear combination of
them to be selected; (3) among the m rows of W, only k
rows contain one “1” exactly, and the remaining m − k
rows are just zero vectors. This guarantees that none of
the m features will be repeatedly selected. Altogether,
the three constraints ensure that X̂ contains k different
original features of X. The selected k features can be
expressed as X̂ = XW = (fi1 , . . . , fik), where {i1, . . . , ik}
is a subset of {1, . . . ,m} with the cardinality of k.

According to the definition of Frobenius norm, mini-
mizing Eq. (4.1) is equivalent to minimizing

Trace
(
X̂X̂>X̂X̂>

)
− 2 Trace

(
X̂>KX̂

)
+ Trace (KK) .

Since Trace (KK) is a constant, this essentially boils
down to a joint optimization of the following two terms:

min
W

Trace
(
X̂X̂>X̂X̂>

)
& max

W
Trace

(
X̂>KX̂

)
. (4.2)

It is not difficult to see that Trace(X̂>KX̂) =∑k
j=1 f>ij Kfij . As discussed, maximizing this term leads

to selecting the features that can preserve the pairwised
sample similarity specified by K.

It is interesting to study the effect of minimizing
Trace(X̂X̂>X̂X̂>), an extra term in our similarity pre-
serving feature selection criterion. Without loss of gen-
erality, we assume that all the features have been cen-
tralized to have zero mean. Note that the (r, s) element
of X̂>X̂ is just f>ir fis . It can be obtained that

Trace
(
X̂X̂>X̂X̂>

)
= 〈X̂>X̂, X̂>X̂〉F

=

k∑
r=1

k∑
s=1

(
f>ir fis

)2
=

k∑
r=1

n2σ4
ir + 2

k∑
ir>is≥1

n2σ2
irσ

2
isρ

2
ir,is ,

where ρir,is denotes the Pearson correlation [39] between
xir and xis , and σir is the standard deviation of xir .
The last step is due to the fact that all feature vectors
f1, . . . , fm have been centered to have zero means. In this
case, f>ir fis equals to ρir,js scaled by nσirσjs . From this, it
can be found that minimizing Trace

(
X̂X̂>X̂X̂>

)
prefers

to select the features which are less correlated to each
other. Moreover, if all the features have been standard-
ized to conform the normal distribution N (0, 1), mini-
mizing Trace

(
X̂X̂>X̂X̂>

)
simply minimizes the sum of

the squared correlation coefficient among the selected k
features. Hence, the extra term in our selection criterion
penalizes the selection of strongly correlated features.
This is an important observation. It clearly shows that
in evaluating features, the proposed criterion considers
both similarity preservation and pairwised correlation
among features in a natural way, which allows it to
avoid choosing redundant features. This effect will be
empirically demonstrated in the Section 6.
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4.2 Problem Reformulation

Optimizing Eq. (4.1) is an integer programming problem,
which is NP-hard and cannot be efficiently solved even
for medium m and k. Also, in the formulation, the
sample similarity measurement is restricted to the inner
product between samples (linear kernel function). To
address the two issues, we propose to reformulated the
problem in the following form:

(P1) min
W
‖X̂X̂> −K‖2F

s.t. X̂ = XW, W ∈ Rm×l, ‖W‖2,0 = k. (4.3)

‖W‖2,0 is the L2,0-norm of the matrix W. It counts the
number of non-zero rows of W. ‖W‖2,0 = k means
that only k rows of W are non-zero vectors. Since each
feature corresponding to a row of W, the constraint
enforces that only k features will be selected, whose
corresponding rows in W have non-zero elements. In
Eq. (4.3), l is the number of columns of W, which is
determined by the character of K. We will discuss how
to choose a proper value for l in the later part of this
section. For our problem, this reformulation not only
makes the optimization problem easier by relaxing W
to continuous domain, but also helps to identify features
that can better preserve sample similarity. In Eq. (4.1),
WP ∈ {0, 1}m×k enforces sample similarity be calculated
from the inner product based on the k selected features:

< W>
Pxi, W>

Pxj >=

k∑
r=1

xirxjr . (4.4)

While in Eq. (4.3), the sample similarity is calculated
using the inner product based on a linear transformation
of the k selected features:

< W>
P1xi, W>

P1xj >=

k∑
r=1

x̂ir x̂jr , x̂ir = w>r xi. (4.5)

Here wr=1...l is the rth column of WP1, which contains
at most k elements to be non-zero, due to the constraint.
Clearly, Eq. (4.4) is a special case of Eq. (4.5). Eq. (4.5)
provides a more comprehensive way to evaluate fea-
tures’ capability in preserving similarity by considering
their linear transformations. It is known that in the
classification or clustering stage after feature selection,
we can always apply a linear transform on the selected
features to make the sample similarity align better with
K. Therefore we merge the two steps: feature selection
and linear transformation into one through the above
reformulation. More specifically, we directly select a set
of k features such that they can best approximate K
under their linear transform. This better serves our goal
on maximizing the learning performance.

However, the L0-norm in ‖W‖2,0 = k is non-convex.
And the optimization problem specified in Eq. (4.5) is
still difficult to solve. Following the common strategy
for addressing this issue, the convex L1-norm is adopted

to approximate the L0-norm. And we reformulate the
problem (P1) specified in Eq. (4.5) as

(P2) min
W
‖X̂X̂> −K‖2F

s.t. X̂ = XW, W ∈ Rm×l, ‖W‖2,1 ≤ t. (4.6)

Here, t (t > 0) is a hyper-parameter and its optimal value
can be set via cross-validation. The L2,1-norm constraint
enforces the columns of W to share similar patterns
(different columns of W tend to have nonzero entries
on the same position) [3], [24], which is a nice property
serves our feature selection purpose.

The constraint ‖W‖2,1 ≤ t corresponds to an L2,1

ball, which is a convex set. Unfortunately, the objective
function ‖X̂X̂>−K‖2F is not convex with respect to W.
Traditional methods such as sub-gradient descent1 may
be applied to find a local minimum. The solution is,
however, still not computationally efficient, because the
number of variables, mk, can be very large in a feature
selection problem. It can be shown that given K, an
optimal solution of minA∈Rn×l ‖AA> −K‖2F is

A? = ΓlΛ
1/2
l , (4.7)

where the columns of Γl are the l eigenvectors of K
corresponding to the l largest eigenvalues, which form
the diagonal elements of the diagonal matrix Λl. Based
on this observation, we further reformulate (P2) as

(P3) min
W
‖X̂−A?‖2F

s.t. X̂ = XW, W ∈ Rm×l, ‖W‖2,1 ≤ t. (4.8)

The following thereom shows minimizing ‖X̂−A?‖F is
a good approximation to minimizing ‖X̂X̂> −K‖F .

Theorem 1: Let A? = ΓlΛ
1/2
l and Ω = X̂ − A?. For

X̂ ∈ Rn×l, we have the following bounds:

‖A?A?> −K‖F ≤ ‖X̂X̂> −K‖F
≤ 2(‖A?‖F + ‖Ω‖F )‖Ω‖F + ‖A?A?> −K‖F .

�
The proof of the theorem is given in Appendix. In the

theorem ‖A?A?> −K‖F is a constant when K is given,
which is

∑n
i=l+1 λi, the summation of the (n−l) smallest

eigenvalues of K. Given m� max(l, n), the objective of
Eq. (4.8) is underdetermined and the ‖Ω‖F can usually
be small. As seen, by minimizing ‖Ω‖F , we minimize
the upper bound of ‖X̂X̂> − K‖F . Eq. (4.8) defines a
multiple-output regression problem [18], which has a
smooth and convex objective function with a convex
L2,1-norm constraint. Its global optimal solution can be
efficiently obtained via convex optimization techniques2.

1. The sub-gradient descent method needs to be used in this case,
as ‖W‖2,1 is non-differentiable at certain points in the space.

2. After solving problem (P3), we may also use the obtained solution
as a starting point to solve problem (P2).
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5 NEW FEATURE SELECTION ALGORITHMS
BASED ON THE SPFS FRAMEWORK

To turn SPFS formulations into efficient feature selection
algorithms, we need to develop efficient techniques to
solve the objective functions specified in SPFS. More
specifically, we propose one greedy algorithm to solve
Eq. (4.1), which specifies our original problem. We also
propose two algorithms to solve Eq. (4.8), which cor-
responds to the reformulated formulation. Among the
two, the first algorithm is based on Nesterov’s method
for constrained smooth convex optimization [24], [25],
[26], which generates an exact solution for the problem.
The second algorithm is based on group LAR [46], which
generates an approximate solution path for the problem.
The advantage of this algorithm is that it does not
require the tedious process of parameter tuning, which
is a limitation of the first one. The performance of the
three algorithms will be compared via experiments.

5.1 SPFS-SFS

The problem specified in Eq. (4.1) is NP-hard. Treating
its objective function as a feature selection criterion, we
propose to combine it with the traditional forward search
strategy for feature selection. The pseudo-code of the
algorithm can be found in Algorithm 1. Note that card (·)
in line 2 returns the size of a set; and lines 3 and 7 make
use of the following fact:

K−XAX>A = K−
∑

i∈A
fif
>
i , where

XA = (fi1 , . . . , fik) , ip ∈ A, p = 1, . . . , k.

It allows us to remove fif
>
i from R, once fi is selected,

which will make the algorithm more efficient. To select
k features, SPFS-SFS needs to run k iterations. In each
iteration, it greedily picks one feature that is most con-
sistent with the current residue R, adds the feature to A
and updates the residue by deducting fif

>
i from R. The

condition specified in line 4 of Algorithm 1 guarantees
that after each step, ‖R‖2F monotonically decreases. It is
easy to show that the time complexity of using SPFS-SFS
to solve the problem specified in Eq. (4.1) is O

(
kmn2

)
,

where k is the number of selected features.

5.2 SPFS-NES

Eq. (4.8) defines a multiple-output regression problem
with an L2,1-norm constraint. It is a constrained smooth
convex optimization problem and can be efficiently
solved by using the Nesterov’s method [24], [25], [26].
Nesterov’s method is an optimal first-order black-box
method for smooth convex optimization. The pseudo-
code of Nesterov’s method for constrained smooth con-
vex optimization is shown in Algorithm 2. In Algo-
rithm 2, f (W) = ‖Y − XW‖2F ; f ′ (W) is the gradient
of f (W) with respect to W; fγ,S (W) is the regularized
tangent line of f (·) at W; and πt (W) is the Euclidian

Algorithm 1: SPFS-SFS
Input: f1, . . . , fm, K, k
Output: A - the selected features

1 A = φ,R = K;
2 while card (A) < k do
3 i∗ = argmini/∈A ‖R− fif

>
i ‖2F ;

4 if ‖R− fif
>
i ‖2F > ‖R‖2F then

5 return A;
6 else
7 A = A ∪ {i∗}; R = R− fif

>
i ;

8 end
9 end

10 return A;

projection of W onto the domain of the problem, which
can be obtained by solving

πt (W) = argmin
U

1

2
‖W −U‖22, ‖U‖2,1 ≤ t. (5.1)

In [24], an efficient approach is proposed to analytically
compute the Euclidian projection of W onto an L2,1-
norm ball. We refer readers to that paper for more details
on the approach. It is shown that the time complexity of
using SPFS-NES to solve Eq. (4.8) is O

(
1
ε (mn+ nk)

)
,

where ε is the error of the solver [24].

Algorithm 2: SPFS-NES

Input: X, Y, t , ε, γ0, W[0]

Output: W
1 W[1] = W[0], u−1 = 0, u0 = 1, i = 1;
2 while ‖W[i] −W[i−1]‖ > ε do
3 αi = (ui−2 − 1) /ui−1; j = 0;
4 W[i] = W[i] + αi

(
W[i] −W[i−1]);

5 while f
(
W[i+1]

)
> fγ,Si

(
W[i+1]

)
do

6 γ = 2j × γi−1;
7 W[i+1] = πt

(
W[i] − 1

γ f
′ (W[i]

))
;

8 j = j + 1;
9 end

10 γi = γ; ui =
(
1 +

√
1 + 4u2i−1

)
/2;

11 i = i+ 1;
12 end
13 return W[i];

A proper t value is crucial for SPFS-NES to achieve
good feature selection performance. Cross-validation
provides an effective way to determine the optimal t
value. However, a problem associated with the cross-
validation process is that it is very time-consuming.
To address the problem, below we propose an efficient
path algorithm by linking our formulation to the group-
LAR [29], [46] algorithm, which leads to the SPFS-LAR
algorithm for feature selection.
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5.3 SPFS-LAR
We first convert the problem defined in Eq. (4.8) to a
group lasso problem via data transformation

XL ∈ Rnk×mk, yL ∈ R
nk×1, wL ∈ Rmk×1,

XL =


f1 0 · · · 0 f2 0 · · ·
0 f1 · · · 0 0 f2 · · ·
· · · · · · · · · · · · · · · · · · · · ·
0 0 · · · f1 0 0 · · ·

 ,

yL =


a1

a2

· · ·
ak

 , wL =


w>1
w>2
· · ·
w>m

 , (5.2)

where

X = (f1, · · · , fm) , A∗ = (a1, · · · , ak) , W =


w1

w2

· · ·
wm

 .
In Eq. (5.2), XL = (X1, . . . ,Xm), where Xi is a k × k
block matrix, with the (j, l)-th block being fi if j = l,
and 0, otherwise. It is easy to check that with the data
transformation defined above, the problem specified in
Eq. (4.8) can be rewritten as

min
wL

‖yL −XLwL‖22

s.t.
m∑
i=1

‖wi‖2 ≤ t. (5.3)

The problem defined in Eq. (5.3) is a group-lasso prob-
lem, and can be efficiently solved by the group-LAR
algorithm [46]. The pseudo-code of group-LAR is shown
in Algorithm 3. In Algorithm 3, Ai denotes the active
set of the i-th run, which contains the features selected
in this run. XAi denotes the matrix comprised of the
feature groups of XL corresponding to Ai; X∗ denotes
any feature group in Ai; and ext (·) denotes the function
that extend γAi

to an m × k dimensional vector by
filling 0 in the positions corresponding to the feature
groups that are not in Ai. Algorithm 3 generates an
approximate solution path for Eq. (5.3). It does not
involve t, which is implicitly determined in group-
LAR, when different numbers of features are selected.
Our experimental study shows that, the SPFS-LAR can
usually achieve the performance comparable to that of
SPFS-NES. The advantage of SPFS-LAR is that it does
not require parameter tuning.

Let m be the number of features, n the number of
samples, k the number of selected features, l the number
of columns in Y. Assuming that m � k, we can show
that for Algorithm 3, the computational cost of Line 2
is O (mnc). The cost of Line 4 is O (i (i+ l)n), where i
is iteration number, and in the i-th iteration, there are i
features in the active set. The cost of Lines 5-7 is O (mnl).
And the cost of Lines 8-10 is O (inl). Since Lines 4-10
need to be repeated for k times, the total computational
cost of Lines 4-10 is O

(
mnkl + nk3

)
, which overwhelms

the cost of Line 2. Therefore, the total time complexity
of SPFS-LAR is O

(
mnkl + nk3

)
.

Algorithm 3: SPFS-LAR
Input: XL = (X1, . . . ,Xm) , yL, k
Output: wL

1 w[0]
L = 0, i = 1 and r[0] = yL;

2 compute the current “most correlated set”:
A1 = argmaxj ‖X>j r[0]‖22;

3 while i ≤ k do
4 compute the current direction γAi :

γAi =
(
X>Ai

XAi

)−1
X>Ai

r[i−1];
5 for ∀j /∈ Ai do
6 compute how far (measured by αj) we can

progress in direction γAi
, before Xj enters

the most correlated set.
‖X>j

(
r[i−1] − αjXAi

γAi

)
‖22

= ‖X>∗
(
r[i−1] − αjXAi

γAi

)
‖22;

7 end
8 j∗ = argminj /∈Ai

αj ; Ai+1 = Ai
⋃
{j∗};

9 w[i]
L = w[i−1]

L + αj∗ext (γAi);
10 r[i] = yL −XLw[i]

L ; i = i+ 1;
11 end
12 return wL = w[k]

L ;

6 EXPERIMENTAL STUDY

We now empirically evaluate the performance of the
three algorithms derived from the SPFS framework in
both supervised and unsupervised learning context.

In the experiments, we choose nine representative
feature selection algorithms for comparison purposes.
And different algorithms are compared in both super-
vised and unsupervised learning context. For super-
vised learning context, six existing feature selection algo-
rithms are chosen as baseline algorithms for comparison.
They are ReliefF [34], Fisher Score [9], Trace-ratio [27],
HSIC [35], mRMR [7] and AROM-SVM [41]. The first
four algorithms are related to sample similarity preserv-
ing. The last two are the-state-of-the-art feature selection
algorithms that can handle feature redundancy. mRMR
is of filter model, which removes redundant features
via considering pairwised feature correlation measured
by mutual-information. AROM-SVM is of embedded
model, which removes redundant features by iteratively
reducing the weights of features which are less impor-
tant for an SVM classifier. For unsupervised learning
context, five representative algorithms are selected as
baseline algorithms for comparison. They are Laplacian
score [19], SPEC-1 and SPEC-3 [48], Trace-ratio [27], and
HSIC [35]. These algorithms are all existing unsuper-
vised methods related to sample similarity preserving.
For SPFS-SFS, SPFS-NES and SPFS-LAR, in the super-
vised learning context, K is calculated by using Eq.
(3.7); and in the unsupervised case, K is calculated by
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using the RBF kernel function, Ki,j = exp
(
−‖xi−xj‖2

2δ2

)
.

The adjustable parameter δ should be carefully tuned
according to the problem at hand. If overestimated, the
function will behave almost linearly, and lose its non-
linear power. On the other hand, if underestimated, it
will lack regularization and the decision boundary will
be highly sensitive to noise. In the experiment, we set

δ2 = percentile
({
‖ xi − xj ‖2, i, j = 1 . . . , n

}
, 20

)
,

and this usually results in good learning performance.
All the algorithms are implemented in Matlab.

Eight high dimensional data sets are used in the
experiment. There are four image data: AR10P3, PIE10P4,
PIX10P5, and ORL10P6. Two Microarray data: TOX and
CLL-SUB from the GEO gene expression data deposi-
tory7 with retrieval ID GDS1454 and GDS968, respec-
tively. And two text data: RELATHE (BASEBALL vs.
HOCKEY) and PCMAC (PC vs. MAC) from the 20-
newgroup data8. The two text data sets are preprocessed
by the TMG package [47] with standard processes. De-
tailed information of the data sets is listed in Table 1.

TABLE 1
Summary of the benchmark data sets

Data Set # Features # Instances # Classes
RELATHE 4322 1427 2
PCMAC 3289 1943 2
TOX 5748 171 4
CLL-SUB 11340 111 3
AR10P 2400 130 10
PIE10P 2400 210 10
PIX10P 10000 100 10
ORL10P 10000 100 10

Assume F is the set of selected features, and XF is
the data only contains features in F. In the supervised
learning context, the algorithms are compared on (1)
classification accuracy and (2) redundancy rate. The
redundancy rate is measured in the following way:

RED (F) =
1

m(m− 1)

∑
fi,fj∈F,i>j

ρi,j , (6.1)

where, ρi,j returns the Pearson correlation between two
features fi and fj . The measurement assesses the av-
eraged correlation among all feature pairs, and a large
value indicates that many selected features are strongly
correlated and thus redundancy is expected to exist in F.
For unsupervised case, three measurements are used to

3. http://rvl1.ecn.purdue.edu/∼leix/aleix face DB.html. Images
are subsampled down to the size of 60×40 = 2400 from 10 persons

4. http://peipa.essex.ac.uk/ipa/pix/faces/manchester/. Images are
subsampled down to the size of 60×40 = 2400 from 10 persons

5. http://www.ri.cmu.edu/projects/project 418.html. Images are
subsampled down to the size of 100×100 = 10000 from 10 persons

6. http://www.uk.research.att.com/facedatabase.html. Images are
subsampled down to the size of 100×100 = 10000 from 10 persons

7. http://www.ncbi.nlm.nih.gov/geo/
8. http://people.csail.mit.edu/jrennie/20Newsgroups/.

compare the performance of the feature selection algo-
rithms: (1) the redundancy rate defined in Eq. (6.1); (2)
the scale of the residue calculated by ‖XFXF

> −K‖2F ;
and (3) the Jaccard score computed by

JAC (KF,K, k) =
1

n

n∑
i=1

NB (i, k,KF) ∩NB (i, k,K)

NB (i, k,KF) ∪NB (i, k,K)
,

where KF = XFX>F ; KF and K are the similarity
matrix computed from the selected features and the
input similarity matrix, respectively; and NB (i, k,K)
returns the k nearest neighbors of the i-th instance
according to the pairwised similarity specified by K. The
Jaccard score measures the averaged overlapping of the
neighborhoods specified by KF and K. A high Jaccard
score indicates that the pairwised similarities specified
by the two similarity matrices are consistent. The last
two measures are used to assess an algorithm’s capabil-
ity in sample similarity preserving in the continuous and
the discrete ways, respectively.

For each data set, we randomly sample 50% instances
as the training data and the remaining are used as test
data. The process is repeated for 20 times and results in
20 different partitions of the data. Different algorithms
are evaluated on each partition. The results achieved
on each partition are recorded and averaged to obtain
the final results. To calculate the classification accuracy,
linear SVM is used. The parameters in feature selection
algorithms as well as the SVM classifier are tuned via
cross-validation on the training data. In the experiment,
the paired Student’s t-test is used to evaluate the statisti-
cal significance of the obtained results and the threshold
for rejecting the null hypothesis is set to 0.05.

6.1 Study of Supervised Cases
Accuracy: The classification accuracy results are shown
in Table 2. The plots of the accuracy rates achieved by al-
gorithms when different number of features are selected
can be found in the appendix. Table 2 shows the “aggre-
gated accuracy” of different algorithm on each data set.
The aggregated accuracy is obtained by averaging the
averaged accuracy achieved by SVM using the top 10, 20,
. . ., 200 features selected by each algorithm. The value in
the parentheses is the p-Val. The boldfaced values are the
highest ones or the ones without significant difference to
the highest.

In Table 2, we can observe that the three algorithms
derived from the SPFS framework produce superior
classification performance comparing to the baseline al-
gorithms. According to the aggregated accuracy, SPFS-
NES achieved the highest performance, which is fol-
lowed by SPFS-LAR and SPFS-SFS. The results in the
second last column of Table 2 show that all three SPFS
based algorithms achieve the accuracy higher than 0.82,
with an averaged value of 0.826. The averaged value
achieved by the baseline algorithms is 0.767, which is 8%
lower than that obtained by the SPFS based algorithms.
According to the accuracy achieved on each data set, we
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TABLE 2
Study of supervised cases: aggregated accuracy with p-Val. (The higher the better.)

Algorithm RELATHE PCMAC TOX CLL-SUB ORL10P PIX10P AR10P PEI10P AVE WIN
ReliefF 0.68 (0.00) 0.70 (0.00) 0.77 (0.00) 0.67 (0.00) 0.83 (0.00) 0.93 (0.00) 0.80 (0.02) 0.94 (0.00) 0.789 0
Fisher Score 0.73 (0.00) 0.75 (0.28) 0.72 (0.00) 0.54 (0.00) 0.80 (0.00) 0.92 (0.00) 0.77 (0.00) 0.93 (0.00) 0.769 1
Trace-ratio 0.73 (0.00) 0.75 (0.28) 0.72 (0.00) 0.54 (0.00) 0.80 (0.00) 0.92 (0.00) 0.77 (0.00) 0.93 (0.00) 0.769 1
HSIC 0.73 (0.00) 0.75 (0.37) 0.73 (0.00) 0.55 (0.00) 0.80 (0.00) 0.93 (0.00) 0.77 (0.00) 0.94 (0.00) 0.774 1
mRMR 0.75 (0.58) 0.75 (0.31) 0.70 (0.00) 0.64 (0.00) 0.73 (0.00) 0.87 (0.00) 0.70 (0.00) 0.95 (0.00) 0.762 2
AROM-SVM 0.73 (0.00) 0.74 (0.00) 0.64 (0.00) 0.57 (0.00) 0.78 (0.00) 0.86 (0.00) 0.63 (0.00) 0.93 (0.03) 0.739 0

SPSF-SFS 0.74 (0.03) 0.76 (1.00) 0.74 (0.00) 0.69 (0.30) 0.90 (1.00) 0.96 (1.00) 0.83 (0.40) 0.95 (0.00) 0.821 5
SPSF-NES 0.75 (0.16) 0.75 (0.16) 0.79 (1.00) 0.71 (1.00) 0.89 (0.34) 0.94 (0.16) 0.84 (1.00) 0.97 (1.00) 0.830 8
SPSF-LAR 0.75 (1.00) 0.75 (0.93) 0.76 (0.00) 0.70 (0.01) 0.90 (0.40) 0.95 (0.20) 0.82 (0.41) 0.96 (0.02) 0.827 5

TABLE 3
Study of supervised cases: averaged redundancy rate with p-Val. (The lower the better.)

Algorithm RELATHE PCMAC TOX CLL-SUB ORL10P PIX10P AR10P PEI10P AVE WIN
ReliefF 0.06 (0.00) 0.06 (0.00) 0.34 (0.00) 0.59 (0.00) 0.92 (0.00) 0.79 (0.00) 0.77 (0.00) 0.36 (0.00) 0.487 0
Fisher Score 0.07 (0.00) 0.07 (0.00) 0.56 (0.00) 0.76 (0.00) 0.79 (0.00) 0.83 (0.00) 0.67 (0.00) 0.37 (0.00) 0.516 0
Trace-ratio 0.07 (0.00) 0.07 (0.00) 0.56 (0.00) 0.76 (0.00) 0.79 (0.00) 0.83 (0.00) 0.67 (0.00) 0.37 (0.00) 0.516 0
HSIC 0.07 (0.00) 0.07 (0.00) 0.56 (0.00) 0.76 (0.00) 0.79 (0.00) 0.83 (0.00) 0.67 (0.00) 0.37 (0.00) 0.515 0
mRMR 0.04 (0.28) 0.03 (1.00) 0.26 (0.00) 0.26 (0.00) 0.25 (0.03) 0.33 (0.00) 0.26 (0.00) 0.29 (0.00) 0.214 2
AROM-SVM 0.05 (0.00) 0.04 (0.00) 0.15 (1.00) 0.59 (0.00) 0.25 (0.21) 0.26 (0.01) 0.25 (0.00) 0.32 (0.00) 0.241 2

SPSF-SFS 0.05 (0.00) 0.04 (0.00) 0.30 (0.00) 0.44 (0.00) 0.26 (0.00) 0.26 (0.00) 0.25 (0.00) 0.24 (1.00) 0.230 1
SPSF-NES 0.04 (1.00) 0.03 (0.00) 0.16 (0.07) 0.22 (1.00) 0.24 (1.00) 0.25 (1.00) 0.22 (1.00) 0.28 (0.00) 0.179 6
SPSF-LAR 0.04 (0.21) 0.03 (0.00) 0.22 (0.00) 0.24 (0.01) 0.35 (0.00) 0.41 (0.00) 0.27 (0.00) 0.26 (0.00) 0.227 1

can also see that the SPFS based algorithms achieve good
performance on all three types of data (image, microar-
ray and text). In contrast, the baseline algorithms can
only give good performance on one or two types of data,
suggesting that the criterion used in the SPFS framework
provides more stable feature selection performance.
Redundancy rate: Table 3 presents the averaged redun-
dancy rates of the top n features selected by different
algorithms, where n is the instance number of the data.
We choose n, since when the number of selected features
is larger than n, any feature can be expressed by a linear
combination of the remaining ones, which will introduce
unnecessary redundancy in the evaluation stage. In the
table, the boldfaced values are the lowest redundancy
rates or the ones without significant difference to the
lowest. The results from the redundancy rates show
that SPFS-SFS, SPFS-LAR, and SPFS-NES all attain low
redundancy rates, which suggests that the redundancy
removal mechanism in SPFS is effective. We also observe
that the two baseline algorithms mRMR and AROM-
SVM also produce low redundancy rates. Since the two
algorithms are able to remove redundant features, the
observation is consistent with our expectation.

The results from accuracy and redundancy rates to-
gether indicate that among all the algorithms related
to sample similarity preserving, SPFS based algorithms
select features containing the least redundancy, and re-
sult in the highest accuracy, which suggests the necessity
of removing redundant features for improving learning
performance. It is observed that the two baseline al-
gorithms mRMR and AROM-SVM do not perform as
well as the SPFS based ones in terms of classification
accuracy. We conjecture that the reasons are: (1) In
mRMR, feature’s contribution to classification is consid-
ered individually by evaluating the correlation between
each feature and the class label. However, the class label

may be jointly determined by a set of features, and this
interaction among features is not considered by mRMR.
(2) In AROM-SVM, it is very hard to find a suitable
regularization parameter C for the SVM used in the
embedded model, since AROM-SVM iteratively modifies
the data via feature reweighting [41].

6.2 Study of Unsupervised Cases
Residue scale & Jaccard score: Tables 4 and 5 present
the averaged residue scale and Jaccard score achieved by
different algorithms on the benchmark data sets. Again,
top n features are selected. The two measures assess
algorithms’ capability in similarity preserving. The re-
sults show that comparing to the baseline algorithms, the
three SPFS based algorithms achieve better performance
on all eight data sets, which demonstrates their strong
capability in similarity preserving.

Among the three SPFS based algorithms, SPFS-SFS
achieves the best performance, followed by SPFS-NES
and SPFS-LAR. We observe that the performance of
SPFS-LAR is inferior to that of SPFS-SFS. The reason
is: SPFS-LAR optimizes ‖XWW>X> −K‖2F , while in
residue scale and Jaccard score, XFX>F is used to com-
pute KF. It is possible that the performance of SPFS-
LAR is underestimated by the two measures, since SPFS-
LAR may select features, whose linear combination can
produce a similarity matrix that well preserves the sim-
ilarity specified by K. To clearly show this, Table 6
lists the aggregated residue scale and Jaccard score of
SPFS-SFS and SPFS-LAR, when XWW>X> is used to
compute KF in the two measures. Here the aggregated
residue scale and Jaccard score are obtained by av-
eraging the averaged residue scale and Jaccard score
over eight benchmark data sets. The results show that
when the weight matrix W is taken into account, SPFS-
LAR achieves better results than SPFS-SFS. This indicates
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TABLE 6
The aggregated residue scale and Jaccard score of

SPFS-SFS and SPFS-LAR when the weight matrix W of
SPFS-LAR is considered in calculating the measures.

Algorithm Residue JAC kNB = 1 JAC kNB = 5
SPFS-SFS 94.15 0.38 0.35
SPFS-LAR-W 91.45 0.63 0.53

that the features selected by SPFS-LAR also have strong
capability in similarity preserving through their linear
combinations. This fact is also verified by the good
classification performance achieved by the SVM classifier
on the features selected by SPFS-LAR.
Redundancy rate: Table 7 shows the averaged redun-
dancy rates achieved with the top n features selected
by different algorithms on the benchmark data sets. The
results show that the features selected by the three SPFS
based algorithms contain much less redundancy compar-
ing with the baseline algorithms. This is expected, since
the latter cannot remove redundant features in feature
selection. We observe that the performance of SPFS-LAR
is inferior to that of SPFS-SFS in terms of redundancy
rate, which is not the case in the supervised learning.
We conjecture that this is related to the structure of the
similarity matrix K. In the supervised case, K is a block
matrix. Its structure is much simpler than that of the
K in the unsupervised case, which is calculated with
the RBF kernel function. The SPFS-LAR only produces
a solution which approximates that obtained by SPFS-
NES. When the problem becomes harder, the SPFS-LAR
may not be able to give a sufficiently good solution and
this can result in some redundant features to be selected.
We will conduct a closer study on this issue in our future
work.

The experimental results from both supervised and
unsupervised learning cases show that the three algo-
rithms derived from the SPFS framework can select
features containing less redundancy and producing ex-
cellent learning performance. Each of the three algo-
rithms has its own advantages in terms of computa-
tional complexity and selection performance. With cross-
validation9, SPFS-NES performs robustly in both super-
vised and unsupervised learning context. Especially in
the supervised case, it achieves both the highest accuracy
and the lowest redundancy rates. However, the cross-
validation process can be very time-consuming. In con-
trast to the SPFS-NES, SPFS-SFS and SPFS-LAR do not
need parameter tuning, therefore they are more efficient.
And at the same time, they provide feature selection
performance that is comparable to that of SPFS-NES.
When k is smaller than n, where k is the number of
the selected features and n is the number of instances,
SPFS-LAR is more efficient than SPFS-SFS. While in
the unsupervised cases, SPFS-SFS may select features
containing less redundancy.

9. In the unsupervised case, the regularization parameter of SPFS-
NES is tuned by cross-validation to minimize the residue scale.

7 CONCLUSIONS

In this work, we study the problem of feature selection
from the perspective of sample similarity preserving. We
explicitly propose the concept of “Similarity Preserving
Feature Selection” and develop the SPFS framework in
a direct and rigorous way. We show, through theoretical
analysis, the connections between the proposed frame-
work and the existing feature selection algorithms that
can be related to similarity preserving. The proposed
SPFS framework improves the existing algorithms by
overcoming their common drawback in handling fea-
ture redundancy. This is important in both supervised
and unsupervised learning. As illustrated by the exten-
sive experimental study, the proposed SPFS framework
achieves superior performance in various learning con-
text, which demonstrates its efficacy.

Given a high dimensional space, many approaches
have been proposed to find a low dimensional space,
where the geometric structure of the data is preserved
according to certain criterion. These methods in gen-
eral fall into the category of dimensionality reduction
via feature extraction, instead of feature selection. The
representative algorithms in this category include: Mul-
tidimensional Scaling (MDS) [6], ISOMAP [37], Locally
Linear Embedding (LLE) [30], Laplacian Eigenmaps [4],
Semidefinite Embedding (SDE) [40], Neighborhood Pre-
serving Embedding (NPE) [20] and Structure Preserving
Embedding (SPE) [33], to name a few. The difference
between feature extraction and feature selection is that
to reduce dimensionality, feature extraction generates
a small set of new features by combining the original
features, while feature selection selects a small set of
the original features. By keeping the original features,
feature selection improves the interpretability of learning
models, which is preferred in many real applications,
such as text mining and genetic analysis. Many frame-
works have been proposed to unify the aforementioned
feature extraction methods in various ways [5], [32], [36],
[42], [44]. Comparing with these works, our work con-
nects existing feature selection algorithms with the concept
of “sample similarity preserving” and overcomes their
common drawback on handling redundant features in
feature selection.

The SPFS framework forms our initial study for sim-
ilarity preserving feature selection. Our future work
includes: (1) the current SPFS formulation is based on
comparing a linear kernel constructed from the selected
features, X̂>X̂, to a given similarity matrix K. This
strategy, on one hand, makes the formulation tractable.
On the other hand, it may restrict model complexity and
reduce the estimation precision. We will try to extend the
current formulation by allowing to use general nonlinear
kernels. (2) When both labeled and unlabeled data are
presented, Semi-supervised learning technique can be
utilized to boost the learning performance. We will study
how to extend the current SPFS formulation to the semi-
supervised learning context. (3) In our study, we found
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TABLE 4
Study of supervised cases: averaged residue scale with p-Val. (The lower the better.)

Algorithm RELATHE PCMAC TOX CLL-SUB ORL10P PIX10P AR10P PEI10P AVE WIN
Laplacian Score 219.19 (0.00) 224.14 (0.00) 90.78 (0.00) 61.99 (0.00) 56.92 (0.00) 54.30 (0.00) 67.83 (0.00) 106.13 (0.00) 110.16 0
SPEC-1 219.37 (0.00) 224.55 (0.00) 90.88 (0.00) 62.03 (0.00) 57.20 (0.00) 54.37 (0.00) 67.26 (0.00) 108.47 (0.00) 110.52 0
SPEC-3 240.42 (0.00) 232.01 (0.00) 87.63 (0.00) 60.73 (0.00) 54.53 (0.00) 54.05 (0.00) 65.74 (0.00) 101.64 (0.00) 112.09 0
Trace-Ratio 200.57 (0.00) 203.75 (0.00) 90.74 (0.00) 60.27 (0.00) 57.21 (0.00) 54.37 (0.00) 67.26 (0.00) 106.69 (0.00) 105.11 0
HSIC 199.63 (0.00) 199.61 (0.00) 90.68 (0.00) 59.41 (0.00) 57.07 (0.00) 54.11 (0.00) 67.03 (0.00) 103.56 (0.00) 103.89 0

SPFS-SFS 196.43 (1.00) 197.01 (1.00) 81.03 (1.00) 51.40 (1.00) 45.02 (1.00) 41.68 (1.00) 54.31 (1.00) 86.32 (1.00) 94.15 8
SPFS-NES 196.59 (0.00) 197.18 (0.00) 81.32 (0.00) 51.85 (0.00) 45.58 (0.00) 42.63 (0.00) 54.35 (0.00) 86.44 (0.00) 94.49 0
SPFS-LAR 196.71 (0.00) 197.30 (0.00) 87.15 (0.00) 56.82 (0.00) 48.70 (0.00) 43.39 (0.00) 56.14 (0.00) 88.53 (0.00) 96.84 0

TABLE 5
Study of unsupervised cases: averaged Jaccard score with p-Val. (The higher the better.)

kNB = 1
Algorithm RELATHE PCMAC TOX CLL-SUB ORL10P PIX10P AR10P PEI10P AVE WIN
Laplacian Score 0.00 (0.00) 0.00 (0.00) 0.10 (0.00) 0.06 (0.00) 0.07 (0.00) 0.05 (0.00) 0.07 (0.00) 0.04 (0.00) 0.05 0
SPEC-1 0.00 (0.00) 0.00 (0.00) 0.11 (0.00) 0.07 (0.00) 0.06 (0.00) 0.05 (0.00) 0.07 (0.00) 0.04 (0.00) 0.05 0
SPEC-3 0.03 (0.00) 0.02 (0.00) 0.12 (0.00) 0.05 (0.00) 0.15 (0.00) 0.05 (0.00) 0.09 (0.00) 0.05 (0.00) 0.07 0
Trace-Ratio 0.05 (0.00) 0.02 (0.00) 0.12 (0.00) 0.08 (0.00) 0.06 (0.00) 0.05 (0.00) 0.08 (0.00) 0.03 (0.00) 0.06 0
HSIC 0.07 (0.00) 0.04 (0.00) 0.12 (0.00) 0.10 (0.00) 0.08 (0.00) 0.05 (0.00) 0.07 (0.00) 0.04 (0.00) 0.07 0

SPFS-SFS 0.09 (1.00) 0.05 (0.54) 0.52 (1.00) 0.25 (0.40) 0.69 (1.00) 0.60 (1.00) 0.49 (0.01) 0.32 (0.11) 0.378 7
SPFS-NES 0.08 (0.00) 0.04 (0.00) 0.51 (0.70) 0.26 (1.00) 0.58 (0.00) 0.48 (0.00) 0.52 (1.00) 0.34 (1.00) 0.352 4
SPFS-LAR 0.09 (0.18) 0.05 (1.00) 0.16 (0.00) 0.11 (0.00) 0.30 (0.00) 0.43 (0.00) 0.28 (0.00) 0.18 (0.00) 0.201 2

kNB = 5
Algorithm RELATHE PCMAC TOX CLL-SUB ORL PIX AR PIE AVE WIN
Laplacian Score 0.01 (0.00) 0.02 (0.00) 0.17 (0.00) 0.16 (0.00) 0.16 (0.00) 0.11 (0.00) 0.13 (0.00) 0.08 (0.00) 0.10 0
SPEC-1 0.01 (0.00) 0.01 (0.00) 0.17 (0.00) 0.15 (0.00) 0.15 (0.00) 0.11 (0.00) 0.14 (0.00) 0.08 (0.00) 0.10 0
SPEC-3 0.02 (0.00) 0.01 (0.00) 0.19 (0.00) 0.14 (0.00) 0.28 (0.00) 0.11 (0.00) 0.16 (0.00) 0.11 (0.00) 0.13 0
Trace-Ratio 0.04 (0.00) 0.02 (0.00) 0.18 (0.00) 0.17 (0.00) 0.15 (0.00) 0.11 (0.00) 0.14 (0.00) 0.08 (0.00) 0.11 0
HSIC 0.05 (0.00) 0.02 (0.00) 0.18 (0.00) 0.16 (0.00) 0.16 (0.00) 0.13 (0.00) 0.14 (0.00) 0.10 (0.00) 0.12 0

SPFS-SFS 0.05 (0.48) 0.02 (0.00) 0.42 (0.22) 0.28 (0.59) 0.63 (1.00) 0.66 (1.00) 0.43 (0.77) 0.32 (0.00) 0.353 6
SPFS-NES 0.05 (0.06) 0.02 (0.00) 0.43 (1.00) 0.29 (1.00) 0.57 (0.00) 0.58 (0.00) 0.43 (1.00) 0.34 (1.00) 0.338 5
SPFS-LAR 0.06 (1.00) 0.03 (1.00) 0.22 (0.00) 0.19 (0.00) 0.38 (0.00) 0.54 (0.00) 0.33 (0.00) 0.20 (0.00) 0.244 2

TABLE 7
Study of unsupervised cases: averaged redundancy rate with p-Val. (The lower the better.)

Algorithm RELATHE PCMAC TOX CLL-SUB ORL10P PIX10P AR10P PEI10P AVE WIN
Laplacian Score 0.27 (0.00) 0.33 (0.00) 0.57 (0.00) 0.65 (0.00) 0.88 (0.00) 0.97 (0.00) 0.82 (0.00) 0.84 (0.00) 0.67 0
SPEC-1 0.27 (0.00) 0.34 (0.00) 0.57 (0.00) 0.67 (0.00) 0.88 (0.00) 0.97 (0.00) 0.81 (0.00) 0.87 (0.00) 0.67 0
SPEC-3 0.66 (0.00) 0.51 (0.00) 0.47 (0.00) 0.59 (0.00) 0.72 (0.00) 0.97 (0.00) 0.75 (0.00) 0.77 (0.00) 0.68 0
Trace-Ratio 0.19 (0.00) 0.19 (0.00) 0.57 (0.00) 0.67 (0.00) 0.88 (0.00) 0.97 (0.00) 0.81 (0.00) 0.87 (0.00) 0.65 0
HSIC 0.17 (0.00) 0.12 (0.00) 0.57 (0.00) 0.64 (0.00) 0.88 (0.00) 0.97 (0.00) 0.80 (0.00) 0.82 (0.00) 0.62 0

SPFS-SFS 0.07 (1.00) 0.05 (1.00) 0.16 (1.00) 0.15 (1.00) 0.27 (1.00) 0.34 (1.00) 0.28 (0.00) 0.38 (0.00) 0.21 6
SPFS-NES 0.07 (0.33) 0.06 (0.00) 0.18 (0.00) 0.19 (0.00) 0.28 (0.62) 0.36 (0.15) 0.26 (1.00) 0.36 (1.00) 0.22 4
SPFS-LAR 0.08 (0.00) 0.06 (0.00) 0.46 (0.00) 0.55 (0.00) 0.57 (0.00) 0.44 (0.00) 0.43 (0.00) 0.50 (0.00) 0.39 0

that the SPFS formulation can be linked to a wide
range of learning models, such as PCA, LDA and SVM
through their least square formulations. We will reveal
these connections to gain more insights on similarity
preserving feature selection for developing more novel
feature selection algorithms.
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