
Nonlinear Multiple Kernel Learning via
Mixture of Probabilistic Kernel Discriminant Analysis

Zheng Zhao
zhaozheng@asu.edu

Computer Science & Engineering
Arizona State University

Jieping Ye
jieping.ye@asu.edu

Computer Science & Engineering
Arizona State University

Shipeng Yu
shipeng.yu@siemens.com

CAD and Knowledge Solutions
Siemens Medical Solutions USA, Inc.

Huan Liu
huan.liu@asu.edu

Computer Science & Engineering
Arizona State University

Abstract

Multiple kernel learning (MKL) provides a powerful tool for heterogenous data integration.
Most existing MKL formulations are based on a linear kernel combination, which, however,
restricts the flexibility of the learning model. In this paper, we propose a novel nonlinear multiple
kernel learning formulation based on the model combination. The proposed formulation (called
MPKDA) is derived from a novel probabilistic model for kernel discriminant analysis (KDA) and
its mixture. Experimental results on various real applications demonstrate that the proposed
MPKDA model provides competitive performance comparing with the representative approaches.
We also analyze the relationship between the proposed model and the existing KDA-based MKL
formulations, and show how to use the proposed MPKDA model to handle missing data and
perform localized multiple kernel learning (LMKL).

1 Introduction

Kernel methods, such as the support vector machine (SVM) [Vap95], gained popularity due to their
successful applications in solving a wide range of real-world problems [TFM07, BHOS+08]. Kernel
methods [SS02, STC04] work by embedding the input data into a high-dimensional feature space,
where the embedding can be determined uniquely by specifying a kernel function that computes the
dot product between data points in the feature space implicitly. Thus one of the central problems
in kernel methods is the learning of good kernels.

Recently, multiple kernel learning (MKL), which learns a linear combination of multiple in-
put kernels, has been shown to improve the classification performance [LCB+04]. In [LCB+04],
an optimal kernel matrix is learnt by linearly combining a set of pre-specified kernel matrices
and the combination coefficients can be determined by solving a convex optimization problem.
In [BLMIJkltSa04], this problem is reformulated as support kernel machines (SKM), and this SKM
formulation is further reformulated as a semi-infinite linear program (SILP) to handle large-scale
problems [SRSS06, RBCG07]. Similar problems are also studied in [TK06, LJN06, MP07]. While
most existing approaches are based on SVM, the MKL formulation in [FDBR04] is based on ker-
nel discriminant analysis (KDA). The problem is reformulated as a semidefinite program (SDP)
in [KMB06], which is further extended to handle multiclass problems in [YCJ07]. MKL provides
a powerful tool for integrating multiple data with heterogenous representations and has been suc-
cessfully applied in many real-world problems [BTOM07].
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One limitation of most existing MKL formulations is that they are based on the linear kernel
combination. The additive nature of the combination, on one hand, makes the problem convex, so
globally optimal solution exists, but on the other hand, may restrict the model flexibility. In this
paper, we propose a novel nonlinear MKL formulation based on the mixture of probabilistic kernel
discriminant analysis (MPKDA), where each input kernel corresponds to a component in the mixture
model. We show that the outputs of the mixture model forms a projection of the input instances,
and in the transformed space, instances can be better separated. A kernel can be constructed in
the transformed space, which forms a nonlinear combination of the pre-specified kernels. We show
that the proposed mixture model includes existing KDA-based MKL approaches, such as the one
in [YCJ07], as its special cases. Additional benefits of the proposed model include: (1) its model
parameters can be automatically tuned in the Bayesian framework via the maximization of the
data likelihood [GCSR95]; (2) it can utilize the local information contained in the input kernels to
achieve localized multiple kernel learning [GA08]; and (3) it can handle missing data in the input
kernels. We performed experiments using real-world data sets. Experimental results showed that
the kernel generated by the proposed approach provides superior performance in comparison with
the representative MKL approaches.

2 Background

We first define the notations used in this paper. We denote X = {x1, . . . ,xN} as the input data
of N instances, and φ (xi) as the mapping of the ith instance in the kernel-induced feature space.
Assume the data has C classes, y = {y1, . . . , yN} denotes the class label, with yi ∈ {1, . . . , C} being
the label of the ith instance. Let κ (x, X) = φ (X)T φ (xj) and ki,j = φ (xi)

T φ (xj). We denote K
as the kernel matrix with ki,j as its (i, j)th element. Let P = I−n−111T be the centering matrix. A
kernel matrix K can be centered by Kc = PKP , such that φc(x) = φ(xi)−φ̄(x), φ̄(x) =

∑
φ(xi)/N .

We use boldface lowercase characters, such as w and b to denote vectors. We use I to denote the
identity matrix and 1, the vector of all ones.

Kernel Discriminant Analysis (KDA): We are given a centered kernel matrix K and the
class label y. We define three scatter matrices in KDA as follows: SKt = KK is the total scatter
matrix; SKb = n−1KY Y TK is the between-class scatter matrix; and SKw = SKt − SKb is the within-
class scatter matrix. Here Y ∈ RN×C is defined as:

yi,j =


√

N
Nj
−
√

Nj

N yi = j

−
√

Nj

N otherwise,
(1)

where, Nj is the number of instances in the jth class. KDA computes a transformation matrix
B by maximizing the separability of instances in the transformed space. More specifically, KDA
simultaneously minimizes the variance of each class, trace(BTSKw B), and maximizes the separation
of the projected class means, trace(BTSKb B) by solving the following problem:

B = arg max
B

{
trace

((
BTSKw B

)−1
BTSKb B

)}
. (2)

However, the above formulation is prone to overfitting. One way to overcome overfitting is to apply
regularization, resulting in the following optimization problem:

max
B

{
trace

((
BT
(
SKt + λKc

)
B
)−1

BTSKb B
)}

. (3)
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The optimal solution is given by the eigenvectors corresponding to the largest C − 1 eigenvalues of
the following eigenvalue problem: (

SKt + λKc

)+
SKb bi = βibi. (4)

Probabilistic models have also been proposed for KDA to improve its robustness. For example
in [CL06], by relating Rayleighs coefficient to a noise model, the authors showed that their model is
equivalent to KDA. However, most existing probabilistic models rely on regressing the instances to
[-1, +1] or [n/n+,-n/n−], where n+ and n− are the numbers of instances in positive and negative
class, respectively. This coding scheme restricts existing works to binary-class problems and limits
their applicability.

3 Probabilistic KDA

In this section, we propose a probabilistic model for KDA, called PKDA, which is able to handle
multiclass problems. PKDA forms the base component in the mixture model for nonlinear MKL,
which will be presented in the next section. Below, we first extend the probabilistic model for the
linear ridge regression to the kernel case. We then show that by regressing to Y defined in Equation
(1), we can obtain a probabilistic model, which is equivalent to KDA, under some mild assumptions.
This is a novel finding of this work.

Let φ(x) be the mapping of an instance x in the kernel induced feature space. The ridge
regression in the kernel induced feature space has the following form: t = φ (x)T w + ε, where ε is
the random noise; its corresponding probabilistic model can be expressed as:

P (w) = N (w | 0, I ) (5)

P (t | φ (x) ,w, β) = N
(
t | φ (x)T w, β−1

)
. (6)

As shown in [SS02], by applying the representer theorem, the weight vector w can be expressed as
w = φ (X)T b, where b ∈ RN×1, and

t = φ (x)T φ (X) b + ε = κ (x, X) b + ε. (7)

Assuming that K is of full rank1, we have b = K−1φ (X)T w. This shows that b also follows a
gaussian distribution with its mean and variance are given by the following equations:

E (b) = 0 (8)

E
(
bbT

)
= E

(
K−1φ (X)T wwTφ (X)K−1

)
= K−1φ (X)T E

(
wwT

)
φ (X)K−1

= K−1. (9)

From Equations (7-9), we have t = κ (x, X) b + ε, and its corresponding probability model is:

P (b | K) = N
(
b | 0,K−1

)
. (10)

P (t | κ (x, X) ,b, β) = N
(
t | κ (x, X) b, β−1

)
(11)

We can obtain its predictive distribution through the marginalization of bc, which has the following
form:

P (t | yc,K, βc) = N
(
t | mc (x) , σ2i (x)

)
(12)

1Otherwise we can use K+, the pseudo-inverse of K.
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mc (x) = κ (x, X)

(
K +

1

βc
I

)−1
yc (13)

σ2c (x) =
1

βc
+ κ (x, X)

(
K + βcK

2
)−1

κ (X,x) . (14)

We denote this predictive distribution as PKR (K,β). It can be shown that PKR (K,β) is closely
related to the Gaussian Process [RW06], and the predictive distributions generated from the two
models share the same mean. A similar model is also studied by [YTS05] in the multitask learning
scenario. Based on PKR, we present a probabilistic model for KDA with the following definition:

Definition 1 Given a centered kernel matrix K, the Probabilistic Kernel Discriminant Analysis, or
the PKDA, consists of a set of C PKRc (K,βc), where C is the number of classes, and PKRc (K,βc)
uses yc ∈ Rn as its observations, and yc is the cth column of Y defined in Equation (1).

The model contains C PKR’s, which share the same kernel matrix K. For PKRc (K,βc), β
−1
c

is its noise term, which is analogous to the regularization parameter in KDA, yc is the observation
of PKRc, and can be used for model fitting. Given a data point x, the PKDA model projects x to
a C dimensional vector: y = (y1, . . . , yC) with the cth element following the predictive distribution
specified in Equations (12), (13) and (14). We show in Theorem 1 below that when the noise terms
1/βi → 0, i = 1, . . . , C, and under a mild assumption, KDA and PKDA are equivalent.

Theorem 1 Assume instances are linearly independent in the kernel-induced feature space. When
the noise terms 1/βi → 0, the projection determined by the expectation of the predictive distribu-
tions in PKDA, [m1 (x) , . . . ,mC (x)]T , is equivalent to the projection generated by KDA, which is
BTκ (X,x).

In theorem 1, the equivalence means that the distances among instances under different projec-
tions are equal2. Various equivalent projections can be obtained by applying orthogonal transfor-
mations on an existing projection or by increasing the dimensionality of a input by adding dummy
variables which contain only 0.

We first present two lemmas. The first one shows the assumption used in the theorem is indeed
very mild.

Lemma 1 When the RBF kernel function is used, as long as x1, . . . ,xn are distinct, K is of full
rank, which means the instances are linearly independent in the feature space induced by K.

The proof of the lemma can be found in [Mic84]. In real applications, it is usually the case that the
given instances are distinct.

Let the truncated SVD [GV96] of K be K = U1ΣtU
T
1 , and the full SVD of UT1 Y be UT1 Y =

PΣbQ. We have the following result:

Lemma 2 When instances are linearly independent in the kernel induced feature space, the follow-
ing holds: Σ2

b = diag(1, . . . , 1, 0).

The Lemma can be proved by simultaneously diagonalizing SKt , SKw and SKb . Below we prove
Theorem 1 to establish the equivalence between KDA and PKDA.

Proof of Theorem 1: We can show that for any input φ(x), ml(x) = κ (x, X)T
(
K + β−1i I

)−1
yl.

Therefore, when β−1i → 0, the expectation of the predictive distributions in PKDA actually projects

2This definition for equivalence makes sense, since in kernel based learning algorithms, only the distance among
instances are considered in model fitting.
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data with a transformation matrix defined as B̂ = (K)+ Y . The equivalence between KDA and
PKDA can be established by studying the relationship between B̂ and B. We first study on the
structure of matrix B̂. limβ−1

i →0, i=1,...,c B̂ = K+Y = U1Σ
−1
t UT1 H. Recall that UT1 H = PΣbQ, and

let P = [p1, . . . ,pc],

lim
λ→0

B̂ = U1Σ
−1
t [p1, . . . ,pc]ΣbQ. (15)

Next, we have the structure of B as:(
SKt
)+
SKb = U1Σ

−1
t PΣ2

bP
TΣtU

T
1 .

Since P TΣtU
T
1 U1Σ

−1
t P = I, it can be verified that the top c− 1 eigenvectors of

(
SKt
)+
SKb is given

by the first c− 1 columns of U1Σ
−1
t P . Therefore we have:

B = U1Σ
−1
t [p1, . . . ,pc−1]. (16)

As Q is orthogonal, and Σ2
b =diag(1, . . . , 1, 0), we conclude that these two projections are equiva-

lent. �

4 Mixture of Probabilistic KDA

Given a collection of L kernels, {K1, . . . ,KL}, L different PKDA models can be constructed. In
the following, we show how to derive nonlinear MKL via the mixture of PKDA models. MPKDA
projects instances into a dimensionality-reduced space, where they can be better separated. It can
be shown that the kernel constructed in the reduced space corresponds to a nonlinear composite of
the L given kernels. We will also connect MPKDA to several existing work, and study MPKDA’s
capability on handling missing data. Some existing mixture models for regression, such as the one
proposed in [RG02], split instances into disjoint sets by a gating network, and do not allow the base
models to share instances with each other. We found this formulation render inferior performance
in our applications due to the shortage of instances in each base model. In contrast, the proposed
mixture model shares some similarity with the Gaussian mixture model (GMM) [Bis06], which
allows all models to share training instances.

Given L kernels, we construct L PKDA models. In a PKDA model, we use PKRc (K,βc) to
project an instance x to the cth coordinate of the transformed space. Let PKDA(Kl, c) denote
PKRc (K,βc) in the PKDA constructed from the kernel Kl. The probability of using PKDA(Kl, c)
to project x to t on the cth coordinate of the transformed space is: p (y | yc,Kl, βl,c), which is
given in Equation (12). In the generating process, let the prior probability of picking PKDA(Kl, c)
to generate t be πl with π1 + . . . + πL = 1. For each input xi, we introduce an L dimensional
latent variable zi that indicates from which model ti, the response of xi, is generated, that is if
ti is generated from PKDA(Kl, c), then zi,l = 1 and all other elements in zi is set to 0. We can
express the joint likelihood of using MPKDA to project (x1, . . . ,xN ) to t = (t1, . . . , tN ) in the cth
coordinate of the transformed space as:

p (t, Z|K1,K2, · · · ,KL,yc,Θ)

=

N∏
i=1

L∏
l=1

π
zk,l
l N

(
ti|m(l)

i,c,
(
σ
(l)
i,c

)2)zi,l
. (17)

In Equation (17), Z is the set of latent variables Z = (zi,l)N×L. Θ corresponds to the model
parameters, which include prior probabilities πl and the noise term β−1c,l for each kernel Kl. Θ and
Z are unknown and can be obtained by maximizing the joint likelihood specified in Equation (17).
Next, we present an EM algorithm for estimating these parameters.
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4.1 An EM Algorithm for Fitting MPKDA

E Step. Assume Π is known, we can show that the posterior distribution of Z takes the following
form:

P (Z|K1, · · · ,KL, t) ∝ P (Z)P (t|K1, · · · ,KL, Z) .

=

N∏
i=1

L∏
l=1

{
πlN

(
ti|m(l)

i,c,
(
σ
(l)
i,c

)2)}zi,l
. (18)

Using standard techniques, we can show that the responsibility of PKDA(Kl, c) for xi is given by

γi,l = E (zi,l) =

πlN
(
ti|m(l)

i,c,
(
σ
(l)
i,c

)2)
L∑
j=1

πjN
(
ti|m(j)

i,c ,
(
σ
(j)
i,c

)2) . (19)

The responsibilities can be used to determine the expectation of the complete data log likelihood,
which defines the Q function:

Q
(

Θ,Θold
)

= Ez (lnP (t, Z|Θ))

=

N∑
i=1

L∑
l=1

γi,l

{
lnπl + lnN

(
ti|m(j)

i,c ,
(
σ
(j)
i,c

)2)}
.

M Step. Assume Z is known, we can find the Θ by maximizing the Q function under certain
constraints which leads to the following updating:

πnewl =
1

N

N∑
i=1

γi,l. β
new
c,l =

N∑
i=1

γi,l

N∑
i=1

γi,l

(
ti −m(l)

i,c

)2 . (20)

4.2 Projection with MPKDA

With the computed priors π1, . . . , πL for the cth coordinate in the transformed space, we can obtain
the projection of a new point x∗ on the the cth coordinate by calculating the expectation of y∗:

P (y∗|x∗) =

L∑
l=1

P (y∗|yc,Kl,x
∗)P (Kl|yi,x∗), (21)

mc (x∗) =

∫
y · P (y|x∗) dy

=
L∑
l=1

m(l)
c (x∗)P (Kl|x∗,yc). (22)
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In Equation (22), P (Kl|x∗,yc) is the posterior of using the PKDA(Kl, c) for projecting, when x∗

is given. We can assume that the selection of the model is independent of x∗, and we have:

p (Kl|x∗,yc) = p (Kl|yc) = πl

mc (x∗) =

L∑
l=1

m(l)
c (x∗)πl. (23)

We can also make P (Kl|x∗,yc) dependent on x∗ by using the following formulation:

P (Kl|x∗,yc) ∝ P (x∗|Kl,yc)P (Kl|yc) (24)

P (x∗|Kl,yc) =

N∑
i=1

γi,lκl (xi,x
∗)

L∑
l=1

N∑
i=1

γi,lκl (xi,x∗)

. (25)

For a given test data point, we can not use Equation (12) to obtain its generating probability,
since its label is not known. We propose Equation (25) to estimate this probability by utilizing the
similarity between a test point and the training points. A test point can obtain a large P (Kl|x∗,yc)
value, only if it is similar to the training points that the lth model is “responsible” to. Based on
this definition, we have:

mc (x∗) =
L∑
l=1

N∑
i=1

γi,lκl (xi,x
∗)

L∑
l=1

N∑
i=1

γi,lκl (xi,x∗)

m(l)
c (x∗)πl (26)

It is interesting to notice that by making P (Kl|x∗,yc) dependent on x∗, we obtain the localized
MLK [GA08].

4.3 MPKDA for Nonlinear MKL

The pseudocode of MPKDA for multiple kernel learning is given in Algorithm 1. It contains 5 steps:
(1) In Line 3, we construct the target Y . (2) In Lines 4-6, we construct L PKDA as the base models.
(3) In Lines 7-10, we build the mixture model by calculating the generating probabilities for training
instances, and learning the mixture coefficient using the EM algorithm specified in Section 4.1. (4)
In Lines 11-13, we project instances to the dimensionality-reduced space using the obtained mixture
model. And (5) in Lines 14-15, we obtain the final learnt kernel using the transformed instances in
the reduced space. It can be shown that the overall time complexity of MPKDA for kernel learning
is O

(
C max

(
LN3,M2

))
, where, C is the number of classes, L is the number of input kernels, N

and M are the size of the training and the whole data, respectively. The kernel learnt from MPKDA
is based on the output of a mixture model. It is a nonlinear composite of the input kernels.

4.4 Connection to Existing MKL Approaches

Existing MKL approaches for KDA, such as the ones in [KMB06] and [YCJ07], are closely related
to MPKDA. It can be shown that for KDA, the projection vector bc is uniquely determined by
the input kernel matrix K through Equation (4). Therefore, existing KDA-based MKL approaches
project an instance x∗ as follows:

mc (x∗) = bTc

L∑
l=1

πlκ (X,x∗), (27)
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Algorithm 1 MPKDA for Nonlinear MKL

1: Input: K1, . . . ,KL and class label y
2: Output: KNEW , the learnt kernel
3: Construct Y from y using Equation (1).
4: for each class c, and each kernel Kl do
5: Construct the PKDA(Kl, c).
6: end for
7: for each training instance do
8: Calculate its generating probability on the L obtained PKDA models.
9: end for

10: Obtain Π = {πl,c}L×C using the EM algorithm.
11: for each instances do
12: Project it to the dimensionality reduced space using the methods proposed in Section 4.2.
13: end for
14: Construct KNEW using the transformed instances.
15: Return: KNEW .

which can be compared to Equation (23) which has the form:

mc (x∗) =

L∑
l=1

ml (x
∗)πl =

L∑
l=1

πlb
T
l,cκ (X,x∗). (28)

We can see that, although both approaches try to project data to a space where instances can be
best separated, the former one has requires different kernels to share the same b, therefore it can
be regarded as a special case of the later one.

4.5 Handling Missing Data Points

In some applications, some data points may be missing in the kernels. For tractional MKL methods,
there are two possible ways to address this issue: (1) finding the instances that are present in all
kernels and learn the kernel combination coefficient using these instances only. (2) adding zeros to
the columns and rows corresponding to the missing data points in the kernel matrices. The first
approach may not effectively use the data, when there are many kernels and their intersection is
small. The second approach is also problematic, since the zero blocks in the kernel will generate
many instances on the origin of the feature space, which may not be desirable for supervised
algorithms. MPKDA is a more flexible model based on the model combination. In MPKDA,
different PKDA models can be trained on the data that it observed, and their output can then
be combined according to the model responsibilities. In the process we do not need to remove (or
add dummy) instances from (or to) any kernels. Therefore the flexibility of MPKDA enables it to
effectively deal with the missing data points in kernels.

5 Empirical Study

In this section, we empirically evaluate the performance of PKDA and MPKDA. Nine Microar-
ray data sets from the Gene Expression Omnibus (GEO)3 are used in the experiments. Detailed

3http://www.ncbi.nlm.nih.gov/geo/. Data set IDs are: GDS1412, GDS1454, GDS2771, GDS0968, GDS1627,
GDS1962, GDS2545, GDS1975 and GDS2415.
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Table 1: Summary of the benchmark data sets.

Data Sets # Instance # Feature # Class # Kernels

HRT 89 2759 2 15

CLL-SUB 100 11340 2 15

SMK-CAN 187 19993 2 15

TOX 171 5748 4 15

BRE-CAN-CEL 83 20163 4 15

BRA-CAN 180 49151 4 15

PRO-CAN 153 11302 3 15

GLI-III-IV 85 22283 2 15

BRE-CAN-REC 118 19200 2 15

information on these data sets are given in Table 1. To obtain the data, we filter the raw data
from GEO by removing genes with low variance, and then normalize the data using the standard
technique. On each data set, we generate 15 kernels as follows. According to the biological process
related to each data set, we obtain 15 relevant biological pathways from our biological collaborators.
For instance, CLL-SUB data contains gene expression information of samples from different B-cell
chronic lymphocytic leukemia (CLL) subtypes [HSSD04]. For the data P-53 signalling pathways
and Chronic myeloid leukemia pathways are included in the pathway list, since they are known to
be related to CLL. After obtained the pathways, we used the genes in the pathways to filter the
data and build kernels on the filtered data. For each data set, we generate 15 kernels. Different
pathways associate to different biological functions. Kernels derived from these pathways provides
us different angles to observe the relationships among instances under the influence from the dif-
ferent biological functions. Our task is to learn a kernel form these 15 kernels, which reflects the
intrinsic relationships among the instances.

We compare the MPKDA model with two representative MKL algorithms: KDAQCQP [YCJ07]
and SVMSILP [RBCG07]. We implemented MPKDA in two different ways: MPKDA-Pri and
MPKDA-Pos, corresponding to different projection schemes in Equation (23) and Equation (26),
respectively. The average performance from 10 different runs using different training and test sets
is reported. All algorithms are implemented in Matlab.

5.1 Accuracy Comparison

Table 2 presents the performance of different MKL algorithms. Based on the results, we have the
following observations. First, among the four MKL approaches, MPKDA-Pri achieved the best
performance. For instance, on the nine benchmark data sets, MPKDA-Pri achieved an averaged
accuracy of 0.65, which is followed by MPKDA-Pos (0.64), SVMSILP (0.63) and KDAQCQP (0.62).
In addition, among the nine data sets, MPKDA-Pri achieved the highest accuracy on 8 of them.
We conjecture that the flexibility of the nonlinear MKL model based on the proposed MPKDA
may help achieve better performance. Compared with the results obtained from single kernels,
MPKDA-Pri achieved similar performance as the best single kernel. We also observed in the BRA-
CAN and BRE-CAN-CEL data sets that the MKL algorithms can achieve a better accuracy when
complementary information exists. This is consistent with the observations in [LBC+04].

Second, in comparison to MPKDA-Pos, MPKDA-Pri achieved a better performance. As we
discussed in the theoretical part, MPKDA-Pos performs prediction using the posterior distribution,
and it is able to handle local information in the learning process. We conjecture that the inferior

9



Table 2: The performance of different MKL algorithms on the benchmark data sets. For each
algorithm, the first column contains the averaged accuracy and the second column contains the
standard deviation. The numbers with bold facetype indicates the highest accuracy rates achieved
by MKL algorithms on each data set. “Max Single” and “Ave Single” denotes the highest and the
averaged accuracy achieved by the 15 input kernels on each data set, respectively.

Data Sets MPKDA-Pri MPKDA-Pos KDAQCQP SVMSILP Max Single Ave Single
HRT 0.65 0.09 0.63 0.08 0.64 0.11 0.63 0.10 0.66 0.09 0.53
CLL-SUB 0.64 0.07 0.64 0.09 0.62 0.09 0.62 0.09 0.66 0.11 0.60
SMK-CAN 0.66 0.04 0.66 0.03 0.65 0.04 0.65 0.04 0.66 0.03 0.63
TOX 0.71 0.08 0.70 0.08 0.71 0.06 0.69 0.06 0.70 0.05 0.48
BRE-CAN-CEL 0.60 0.09 0.60 0.08 0.53 0.09 0.56 0.09 0.54 0.08 0.48
BRA-CAN 0.59 0.06 0.57 0.09 0.56 0.04 0.57 0.06 0.56 0.04 0.41
PRO-CAN 0.55 0.04 0.53 0.05 0.52 0.06 0.53 0.05 0.57 0.03 0.50
GLI-III-IV 0.79 0.07 0.80 0.07 0.76 0.09 0.76 0.09 0.81 0.05 0.72
BRE-CAN-REC 0.64 0.13 0.62 0.16 0.57 0.13 0.58 0.13 0.65 0.15 0.56
AVE & WIN 0.65 8 0.64 4 0.62 1 0.63 0 0.65 0.55

performance of MPKDA-Pos may be due to the variance in the data. The benchmark data sets
used in the experiment are all of small size, therefore the estimation of the posterior may not be
reliable given the small sample size. MPKDA-Pri is thus more effective in this case.

Third, in our experiment, we observed that the set of the combination coefficients Π generated
by MPKDA is sparse. Usually no more than five kernels are selected for each class. We observed
similar trends in the combination coefficients generated by KDAQCQP and SVMSILP too. In
general KDAQCQP generates the sparsest combination coefficient, which is followed by MPKDA,
and then SVMSILP. Recall that most benchmark data sets are cancer related. We observed from our
experiments that the MAPK signaling pathway is frequently selected by the four MKL approaches.
MAPK signaling pathway is a highly conserved module that is involved in various cellular functions,
including cell proliferation, differentiation and migration, and is known to be cancer related. This
observation validates our experiment design in the use of pathways to induce kernels.
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Figure 1: Comparison of different algorithms in the presence of missing data points. The horizontal
axis denotes the percentage of the missing data and the vertical axis denotes the accuracy.
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5.2 Handle Missing Data Points

Figure 1 shows the performance of the algorithms when missing data points are presented in the
kernels. In this experiment, we randomly select 5%, 10%, 15%, 20% and 25% training instances
as missing instances for each kernel. For KDAQCQP and SVMSILP, the missing data points are
handled by adding zero columns and rows to the matrices to complete the kernel matrix, which
corresponds to the second strategy mentioned in Section 4.5. The first strategy does not work well
in our experiment, since the intersection of the kernels is usually very small. The experimental
results in Figure 1 show that MPKDA-Pri is quite effective in dealing with missing data points. We
also observed that MPKDA-Pos is less robust and we conjecture that this may also be caused by
overfitting when the number of training instances is small.

6 Conclusion

In this paper, we proposed a nonlinear MKL formulation, called MPKDA, which is based on the
mixture of multiple probabilistic KDA models. As compared to existing linear kernel combination
approaches, MPKDA is more flexible and it can effectively deal with missing data in the kernels.
Our experimental results demonstrated the effectiveness of the proposed model.

The estimation of the generating probability for training instance is important for MPKDA. We
found in our experiment that when the training sample size is small, the estimation of the generating
probability becomes less reliable. To address this problem, we plan to ultilize the t-process [YTY07]
to improve model robustness. Another line of our ongoing work is to apply MPKDA to other real-
world applications involving multiple heterogenous data sources.
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