MAT170 Review Problems for Exam 3

A. Applications of Exponential Equations - Section 3.5

1. How long will it take any quantity of iodine 131 to decay to 25% of its initial amount, knowing that it decays according to the function $A(t)=A_{0} e^{-.087 t}$ where t is the number of days?
2. The population of Merchantville was 20,000 in 1990 and 25,000 in 1995. If exponential growth is assumed, find a model for the population growth and then use the model to determine the population in 2008.
3. A sample of 500 grams of radioactive lead 210 decays to polonium 210 according to the function $A(t)=500 e^{-.032 t}$ where t is in years. Find the amount of the sample remaining after
(i) 4 years
(ii) 8 years
(iii) Find the half-life

B. Angles and Radian Measures (Section 4.1)

4. (a) Convert the angle -225° to radians. Express answer as a multiple of π.
(b) Convert the angle $\frac{3 \pi}{2}$ radians to degrees.
5. (a) Find a positive angle less than 360° that is coterminal with the angle -760°.
(b) Find a positive angle less than 2π radians that is coterminal with the angle $\frac{17 \pi}{2}$.
6. Find the length of arc on a circle with radius $r=16$ inches intercepted by a central angle $\theta=60^{\circ}$.Round the answer to 2 decimal places.
7. If the length of the arc on a circle of radius 10 cm is 20 cm , find the measure of the central angle in degrees.
8. Draw 620° in standard position. Find a coterminal angle for 620° between 0° and 360°. Find a coterminal angle less than zero for 620°. Find the reference angle for 620°.

C. Trigonometric Functions (Section 4.2)

9. (a) Given that $\sin (t)=\frac{6}{7}$ and t is in quadrant II.

Find the exact value $\cos (\mathrm{t}), \tan (\mathrm{t}), \sec (\mathrm{t}), \csc (\mathrm{t})$, and $\cot (\mathrm{t})$.
(b) Given that $\cos (t)=\frac{-3}{5}$ and t is in quadrant III.

Find the exact value $\sin (t), \tan (t), \sec (t), \csc (t)$, and $\cot (t)$.

D. Applications (Section 4.3)

10. A telephone pole is 55 feet tall. How long should a guy wire be if it to be attached 15 feet from the top and is to make an angle of 35° with the ground? Give your answer to the nearest tenth of a foot.
11. A plane is flying at an altitude of 9000 m . The pilot finds that the angle of depression to the airport is 20°. Find the distance between a point on the ground directly below the plane and the airport.

E. Reference Angle (Section 4.3)

12. Find the reference angle for each of the following angles;
a) 210°
b) -250°
c) $\frac{23 \pi}{4}$
d) $-\frac{13 \pi}{3}$

F. Graphs of Trigonometric Functions (Section 4.5-4.6)

13. (a) Given the function $y=-2 \sin \left(2 x+\frac{\pi}{2}\right)$ find the amplitude, period, and phase shift.
(b) Given the function $y=4 \cos (3 x+\pi)$ find the amplitude, period, and phase shift.
14. Find the equation for the graph shown below.

15. (a) Suppose $\sin (-t)=\frac{-1}{2}$ and $\cos (-t)=\frac{\sqrt{3}}{2}$, find $\tan (\mathrm{t})$
(b) Suppose $\sin (-t)=-0.32$ find $\csc (\mathrm{t})$.
16. (a) Graph the function $f(x)=2 \sec (x)$ to determine the range of $f(x)$.
(b) Graph the function $g(x)=3 \csc (x)$ to determine the range of $g(x)$.

G. Inverse Trigonometric Functions (Section 4.7)

Find the exact value of each of the following:
17. $\sin ^{-1}\left(\frac{-\sqrt{3}}{2}\right)$
18. $\cos \left[\tan ^{-1}\left(\frac{2}{3}\right)\right]$
19. $\tan \left(\cos ^{-1} x\right)$
20. $\sin ^{-1}\left[\sin \left(\frac{2 \pi}{3}\right)\right]$
21. $\cos ^{-1}\left[\cos \left(135^{\circ}\right)\right]$
22. $\sin ^{-1}\left[\sin \left(\frac{7 \pi}{6}\right)\right]$
23. $\cos \left(\sin ^{-1}\left(\frac{x}{3}\right)\right)$
24. $\tan \left(\sin ^{-1}(3 x)\right)$

H. Verifying Trigonometric Identities (Section 5.1)

Verify each trigonometric identity:
25. $(\cos (\theta)-\sin (\theta))^{2}+(\cos (\theta)+\sin (\theta))^{2}=2$
26. $\frac{\tan (\theta) \cdot \cot (\theta)}{\csc (\theta)}=\sin (\theta)$
27. $\tan (\theta)+\frac{\cos (\theta)}{1+\sin (\theta)}=\sec (\theta)$
28. $\cot (x)+\tan (x)=\sec (x) \csc (x)$
29. $(\sec (x)-\tan (x))^{2}=\frac{1-\sin (x)}{1+\sin (x)}$
30. $\frac{1-\cot (x)}{\cos (x)}=\sec (x)-\csc (x)$
I. Sum and Difference Formulas (Section 5.2)
31. Find the exact value of the expression: $\cos \frac{5 \pi}{12} \cos \frac{\pi}{12}+\sin \frac{5 \pi}{12} \sin \frac{\pi}{12}$
32. Find the exact value of the expression: $\cos \left(135^{\circ}+30^{\circ}\right)$
33. Find the exact value of the expression: $\frac{\tan \frac{\pi}{5}-\tan \frac{\pi}{30}}{1+\tan \frac{\pi}{5} \tan \frac{\pi}{30}}$
34. Verify the identity: $\quad \cos \left(x-\frac{\pi}{2}\right)=\sin x$
35. (Section 4.2) Label the unit circle, i.e. label all the special angles, and the x and y

