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ABSTRACT

This paper summarizes useful concepts for analyzing attitude toward risk taking
in decision analysis practice. Particular attention is given to the exponential utility
function which is widely used in applications. Conditions are reviewed under which
this utility function form is appropriate. Tables are presented which aid in using the
exponential utility function, including finding the value of the risk tolerance. The
use of the exponential utility function is considered in analyzing portfolio decisions
and determining the value of perfect information. The accuracy is considered of
an approximate formula for determining certainty equivalents when the exponential
utility function holds. Exercises on this material are also included.



NOTES ON ATTITUDE TOWARD RISK TAKING

AND THE EXPONENTIAL UTILITY FUNCTION

This paper summarizes concepts related to analyzing attitude toward risk tak-
ing in decision analysis practice, with particular emphasis on the use of the exponen-
tial utility function. Relevant theorems and empirical observations are presented.
Informal “proofs” are presented for several theorems, but these are intended to be
plausibility arguments rather than detailed proofs. Technical conditions (for exam-
ple, requirements that certain functions be continuous or have continuous deriva-
tives) are not presented. The reader is assumed to be familiar with basic probability
concepts, including probability distributions, expected values, and variances.

1. The Certainty Equivalent and the Idea Underlying Utility Functions

A difficulty with decision-making under uncertainty is illustrated by the follow-
ing: You are offered an alternative with equal chances of winning $10,000 or losing
$1,000. How much are you willing to pay for this? You certainly will not pay more
than $10,000, and you will certainly take the alternative if someone offers to give you
$1,000 in addition to the alternative. How can you settle on a number somewhere
between these two extremes? Some thought shows that different individuals might
be willing to pay different amounts—If you are a graduate student with just enough
money to make it to the end of the school year, you may have a different view of
the risks associated with this alternative than if you are a wealthy businessman.

To develop a criterion for making decisions under uncertainty, it makes sense
to start with reasonable conditions that we would wish our decision-making to obey,
and then to see what criterion we must use to obey these conditions. The axioms of
consistent choice (also sometimes called the axioms of rational choice or the axioms
of decision theory) provide such a set of conditions. These axioms and two important
theorems that result from them are presented in Appendix A. In this section, we
will make informal plausibility arguments for the decision analysis procedures which
are implied by these axioms.

We will restrict ourselves to situations where the consequences of a decision
can be adequately described by a single evaluation measure or evaluation attribute
x. For many business decisions, this will be a monetary measure, such as profit,
cost, or assets, possibly discounted to account for the time value of money. We will
further assume that preferences for x are either monotonically increasing (that is,
more of x is always preferred to less) or monotonically decreasing (that is, more of
x is always less preferred). For a monetary evaluation measure, the monotonically
increasing case corresponds to using profit or total assets as an evaluation measure,
while the monotonically decreasing case corresponds to using costs or losses as an
evaluation measure.

There are situations where preferences over an evaluation measure are neither
monotonically increasing nor monotonically decreasing. For example, consider the
evaluation measure “blood pressure level” to measure the results of various medical
treatments. There is a most preferred level for this evaluation measure, and either
greater or smaller levels are less preferred. This type of situation is not common in
typical business decisions, and even in such situations it is often possible to use a
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modified evaluation measure which is monotonic. (In the blood pressure example,
the attribute “distance from the most preferred level” might be used.)

A decision maker’s attitude toward risk taking is addressed with the concept
of the certainty (or certain) equivalent, which is the certain amount that is equally
preferred to an uncertain alternative. If certainty equivalents are known for the
alternatives in a decision, then it is easy to find the most preferred alternative: It
is the one with the highest (lowest) certainty equivalent if we are considering profit
(cost).

The “Weak Law of Large Numbers” (Drake 1967) argues for using expected
values as certainty equivalents when the stakes in a decision under uncertainty are
small. This Law shows that under general conditions the average outcome for a large
number of independent decisions stochastically converges to the average of the ex-
pected values for the selected alternatives in the decisions. (The term stochastically
converges means that the probability the actual value will differ from the expected
value by any specified amount gets closer to zero as the number of independent deci-
sions increases.) Thus, if you value alternatives at more than their expected values,
you will lose money over many decisions since you will only sell such alternatives
for more than they will return on average. Similarly, if you value alternatives at less
than their expected values, you will lose money because you will sell alternatives for
less than they will return on average.

However, additional factors enter when the stakes are high. Most of us would
be willing to pay up to the expected value of $2.50 for a lottery ticket giving us a
50:50 chance of winning $10.00 or losing $5.00. On the other hand, most of us would
not be willing to pay as much as $25,000 for a lottery ticket with a 50:50 chance
of winning $100,000 or losing $50,000 even though $25,000 is the expected value of
this lottery. This is because a few $50,000 losses would leave most of us without
the resources to continue. We cannot “play the averages” over a series of decisions
where the stakes are this large, and thus considerations of long-run average returns
are less relevant to our decision making.

Many conservative business people are averse to taking risks. That is, they
attempt to avoid the possibility of large losses. Such individuals have certainty
equivalents that are lower than the expected values of uncertain alternatives if we
are dealing with profits, or higher than the expected values if we are dealing with
costs. That is, these individuals are willing to sell the alternatives for less than these
alternatives will yield on average over many such decisions in order to avoid the risk
of a loss. Intuitively, we might consider incorporating this aversion toward risk into
an analysis by replacing expected value as a decision criterion by something else
which weights less desirable outcomes more heavily. Thus, we might replace the
expected value of alternative A

E(x|A) =

n
∑

i=1

xip(xi|A)

as a decision criterion by the expected value of some utility function u(x), that is,

E[u(x)|A] =

n
∑

i=1

u(xi)p(xi|A)

2



where p(xi|A) is the probability of xi given that A is selected.

If x is total assets in hundreds of thousands of dollars, then we might have
u(x) = log(x + 1). With this utility function, higher asset positions will not receive
as much weight as with expected value and very low asset positions will receive large
negative weight. This will tend to favor alternatives that have lower risk even if they
also have lower expected values.

The certainty equivalent CE can be determined if a utility function u(x) is
known using the relationship u(CE) = E[u(x)|A] where E[u(x)|A] is the expectation
of the utility for alternative A. As an example, consider again the decision above
which has equal chances of either winning $100,000 or losing $50,000, and suppose
that the decision maker’s initial asset position is $100,000. The expected value of this
alternative in terms of total assets is 0.5 × $200, 000 + 0.5 × $50, 000 = $125, 000.
Using the logarithmic utility function shown in the preceding paragraph, we can
solve for the certainty equivalent from log(CE+1) = 0.5 log(2+1)+0.5 log(0.5+1)
which gives CE = $112, 000. Thus, the alternative has a certainty equivalent which
is $13,000 less than the expected value of $125,000 when it is evaluated with the
utility function. This demonstrates the aversion to taking risks that was discussed
above.

This is the basic idea underlying utility functions. Appendix A presents the
theoretical basis in more detail

2. Attitude Toward Risk Taking and Utility Function Shapes

Someone who prefers to receive the expected value of an uncertain alternative
for certain rather than the uncertain alternative is called risk averse, while someone
who finds receiving the expected value for certain to be equally preferred to the
alternative is called risk neutral, and someone who prefers to receive the alternative
rather than the expected value for certain is called risk seeking. The most common
attitude toward risk taking in business decision making is to be risk neutral for deci-
sions with small risks and to be risk averse for decisions with larger risks. Deliberate
risk seeking behavior is sometimes seen in entrepreneurs (“I can always go back to
working for somebody else if it doesn’t work out”) or in situations where you have
to “pray for rain” because the situation is already so desperate that you are going
to be in serious trouble if you don’t have a miracle. Of course, what constitutes a
“small risk” may differ depending on the size of the company. (A vice president of a
Fortune 500 company once commented to me, “Most of the decisions we analyze are
for a few million dollars. It is adequate to use expected value for these.” Whether
this is true or not depends on your asset position.)

A decision maker’s attitude toward risk taking determines the shape of his or
her utility function. The remainder of this paper presents various results relating
the utility function shape to attitude toward risk taking. It is not necessary to
understand the details of the proofs of these results in order to use utility functions,
but the results themselves are important for applying decision analysis. (The proofs
are indented slightly and set in smaller type.)
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Theorem 1 (Utility Function Shapes). If risk aversion holds for all alternatives
which have outcomes within some range over x then u(x) is concave downward over
that range of x. [That is, d2u(x)/dx2 < 0 over the range.] Similarly, risk neutrality
implies that u(x) is linear [that is d2u(x)/dx2 = 0], and risk seeking behavior implies
that u(x) is convex downward [that is, d2u(x)/dx2 > 0.]

Proof. The result will be shown for the risk averse case, and the other cases can be
proved in a similar way. The demonstration proceeds by showing that for a particular
type of uncertain alternative the utility function must be concave to yield the required
behavior. Since this particular type of alternative is one of the class of “all alternatives
which have outcomes within some range of x,” this establishes the desired result.

Consider an alternative with possible outcomes x̄ − δ and x̄ + δ which are equally
likely. If the decision maker is risk averse, then this alternative must be less preferred
than receiving the expected value x̄ of the alternative. Thus, it must be true that

u(x̄) > (1/2)[u(x̄− δ) + u(x̄ + δ)].

Write the right hand side of this relation as a Taylor expansion around x̄. This leads
to

u(x̄) > (1/2)[u(x̄) − du(x̄)

dx
δ + (1/2)

d2u(x̄)

dx2
δ2 + · · ·

+ u(x̄) +
du(x̄)

dx
δ + (1/2)

d2u(x̄)

dx2
δ2 + · · ·].

In the limit as δ approaches 0, this becomes

u(x̄) > u(x̄) + (1/2)
d2u(x̄)

dx2
δ2

which only holds if d2u(x̄)/dx2 < 0. Since x̄ can be any level of x, this establishes the
desired result.

Knowing that a decision maker is risk averse can substantially restrict the
shape of a utility function. For example, suppose a decision maker has monoton-
ically increasing preferences, is risk averse, and has a certainty equivalent of 3 for
an alternative with a 50:50 chance of yielding either 0 or 10. Then, the decision
maker’s utility function is restricted to the dotted region of Figure 1a, since other-
wise the utility function would have to be convex downward in some region. This
example shows that if the decision maker is not very risk averse (for example, the
certainty equivalent for the 50:50 chance of 0 or 10 does not differ too much from the
expected value of 5), then the possible region within which the utility function can
fall is substantially restricted. This leads naturally to considering whether there is
a simple form for the utility function that provides an adequate approximation for
such situations—perhaps the curve shown in Figure 1b. In fact, there is such a sim-
ple form—the exponential—and we will investigate it in the next section. Keeney
and Raiffa (1976, Chapter 4) consider related issues.

3. Constant Risk Aversion and the Exponential Utility Function

The theoretical basis for the exponential utility function is a condition called
constant risk aversion. This condition holds if it is true that whenever all possible
outcomes of any uncertain alternative are changed by the same specified amount the
decision maker’s certainty equivalent for the alternative also changes by that same
amount.
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Figure 1. Risk Aversion and Utility Function Shapes

Theorem 2 (Constant Risk Aversion). Constant risk aversion holds if and only if
u(x) has either an exponential or linear shape. (Pratt 1964)

Proof. Showing that a linear or exponential utility function form implies that constant
risk aversion holds is straightforward. We will show that constant risk aversion implies
that one of these forms holds, and will only consider the case where preferences are
monotonically increasing with respect to the evaluation measure. (The proof for the
monotonically decreasing case is analogous.) Additional notation is useful for this proof.
The risk premium for an alternative is the difference between the expected value x̄ for
the alternative and its certainty equivalent CE. Specifically, for an evaluation measure
with monotonically increasing preferences, the risk premium π is given by π = x̄−CE
while with monotonically decreasing preferences it is π = CE − x̄. Thus, the risk
premium is positive for a risk averse decision maker, 0 for one who is risk neutral, and
negative for one who is risk seeking.

Consider two alternatives related in the manner given in the definition of constant
risk aversion. That is, the second alternative differs from the first only by having the
same amount either added to or subtracted from each outcome. It follows directly
from the definition of the risk premium π that the risk premiums must be the same
for the two alternatives if constant risk aversion holds. Furthermore, if z is defined by
z = x − x̄, then z has the same probability distribution for both alternatives.

Suppose that the certainty equivalent of an uncertain alternative is CE. Then it
must be true that u(CE) = E[u(x)]. This can be rewritten in terms of π and z as
u(x̄ − π) = E[u(x̄ + z)].

Now Taylor expand both sides of this equation around x̄. The left side becomes

u(x̄ − π) = u(x̄) − du(x̄)

dx
π + (1/2)

d2u(x̄)

dx2
π2 + · · ·

and the right side becomes

E[u(x̄ + z)] = E[u(x̄) +
du(x̄)

dx
z + (1/2)

d2u(x̄)

dx2
z2 + · · ·]

= u(x̄) +
du(x̄)

dx
E(z) + (1/2)

d2u(x̄)

dx2
E(z2) + · · ·

Since x̄ is the expected value for the alternative and z = x − x̄, then E(z) = 0 and
E(z2) = σ2 where σ2 is the variance for the alternative.
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Using these facts, equating the right-hand and left-hand Taylor expansions, and
dropping common terms leads to

−du(x̄)

dx
π + (1/2)

d2u(x̄)

dx2
π2 + · · · = (1/2)

d2u(x̄)

dx2
σ2 + · · ·

Now assume a situation with “small” risk aversion so that π � σ and where the
uncertainty is small enough that only terms through second order need be considered
in the Taylor expansion. Then the equation above reduces to

−du(x̄)

dx
π = (1/2)

d2u(x̄)

dx2
σ2

or

π = −(1/2)
d2u(x̄)/dx2

du(x̄)/dx
σ2 (1)

With constant risk aversion, π and σ will not change when a constant amount is
added to each possible outcome of an alternative. However, x̄ will change by the
constant amount. Thus, for Equation 1 to hold, it must be true that

d2u(x)/dx2

du(x)/dx
= −c

for some constant c. (Otherwise the right hand side of Equation 1 will vary as x̄
changes, and hence constant risk aversion will not hold.) This is a second-order linear
constant-coefficient differential equation, and the solution is

u(x) =

{

a + b exp(−cx), c 6= 0

a + bx, c = 0

where a and b are undetermined constants.

From Theorem A-2 in Appendix A, it follows that the values of a and b do not
matter except that b must have the correct sign so that preferences either increase or
decrease as is appropriate for the evaluation measure of interest.

The usual convention is for a utility function to be scaled so that the least pre-
ferred level of the evaluation measure that is being considered has a utility of zero
and the most preferred level being considered has a utility of one. With these con-
ventions, if preferences are monotonically increasing over x (that is, larger amounts
of x are preferred to smaller amounts), then the exponential utility function can be
written

u(x) =



















exp [−(x − Low)/ρ]− 1

exp [−(High− Low)/ρ]− 1
, ρ 6= Infinity

x − Low

High− Low
, otherwise,

(2a)

and if preferences are monotonically decreasing over x, then

u(x) =



















exp [−(High − x)/ρ]− 1

exp [−(High− Low)/ρ]− 1
, ρ 6= Infinity

High − x

High− Low
, otherwise,

(2b)
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Figure 2. Exponential Utility Functions

where “Low” is the lowest level of x that is of interest, “High” is the highest level
of interest, and ρ (rho) is the risk tolerance for the utility function. The utility
functions in (2a) and (2b) are scaled so that they vary between 0 and 1 over the
range from x = Low to x = High. That is, for monotonically increasing prefer-
ences, u(Low) = 0 and u(High) = 1, while for monotonically decreasing preferences
u(Low) = 1 and u(High) = 0. (The proof of Theorem 1 used the risk aversion
coefficient c rather than the risk tolerance ρ. The two are related by the equation
c = 1/ρ.)

The curve in Figure 1b is an exponential utility function of the form of Equation
2a which goes through the three specified values for the utility function. Generally,
ρ is of the order of magnitude of the range from Low to High. Specifically, if
ρ < 0.1×(High−Low) then the utility function displays highly risk averse behavior—
so risk averse that the assumption of constant risk aversion is very suspect—while
if ρ > 10× (High− Low) the utility function is essentially linear, and you might as
well use the linear form (that is, use expected value as a decision criterion).

Figure 2 shows examples of exponential utility functions for different risk toler-
ances. In both parts of this figure, the range of values for the evaluation measure is
from Low = 0 to High = 10. Part a of the figure shows functions with monotonically
increasing preferences (corresponding to Equation 2a), and part b shows functions
with monotonically decreasing preferences (corresponding to Equation 2b). The
unlabeled straight line in the center of each part of the figure corresponds to the
case when ρ = Infinity. We see from the figure that as the magnitude of the risk
tolerance increases, the utility function becomes more linear.

With some algebraic manipulation, it can be shown that when Equation 2a
holds the certainty equivalent CE for an uncertain alternative is

CE =

{

−ρ lnE[exp(−x/ρ)], ρ 6= Infinity
E(x), otherwise

(3a)

and when Equation 2b holds

CE =

{

ρ lnE[exp(x/ρ)], ρ 6= Infinity
E(x), otherwise

(3b)
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4. Determining the Risk Tolerance

It is straightforward to show that ρ is approximately equal to the X such
that an alternative with equal chances of winning X or losing X/2 has a certainty
equivalent of zero. It is also true that ρ is approximately equal to the X ′ such that
an alternative with a 0.75 chance of winning X ′ and a 0.25 chance of losing X ′ has
a certainty equivalent of zero.

Howard (1988) gives some rules of thumb for the size of ρ as a function of
certain financial measures of a company. He has found values of ρ which are about
six percent of net sales, about 100 to 150 percent of net income, and about one-
sixth of equity. (These figures were derived from companies in the oil and chemicals
industries.) McNamee and Celona (1990) comment that a ratio of risk tolerance to
equity of one-sixth or of risk tolerance to market value of one-fifth seems to translate
best across companies in different industries.

The value of ρ can be more precisely determined by eliciting the certainty
equivalent for an uncertain alternative and then solving for the ρ which gives this
same certainty equivalent. For example, consider a situation with monotonically
increasing preferences where the certainty equivalent for an alternative with equal
chances of Low or High is CE. From Equation 2a, if CE = (Low + High)/2, then
ρ = Infinity; otherwise it is the solution to

0.5 =
exp[−(CE− Low)/ρ]− 1

exp[−(High− Low)/ρ]− 1
(4)

This equation must be solved numerically.

Appendix B includes a table of solution values for Equation 4. To use this
table for a situation with monotonically increasing preferences, set z0.5 = (CE −
Low)/(High − Low) and look this up in the table to find a corresponding value for
R. Then, ρ = R×(High−Low). For monotonically decreasing preferences, the same
procedure is followed, except that z0.5 is determined by z0.5 = (High−CE)/(High−
Low). For example, suppose that preferences are monotonically decreasing, and that
the certainty equivalent for an alternative with equal chances of $10,000 and $5,000
is $8,500. Then z0.5 = ($10, 000 − $8, 500)/($10, 000 − $5, 000) = 0.3. Looking
this entry up in the Appendix B table, we see that R = 0.56, and hence ρ =
0.56× ($10, 000− $5, 000) = $2, 800.

It is straightforward to enter Equation 2 into an electronic spreadsheet or a
programmable calculator to determine values for u(x) once ρ is known. The table
in Appendix C can also be used to find u(x). (A Pascal computer program to solve
Equation 4 is given in Appendix D.)

5. Portfolios of Independent Alternatives

Suppose that you have a portfolio of n different alternatives where the total
outcome s from all the alternatives is the sum of the outcomes x1, x2, . . . , xn from
the different alternatives. When constant risk aversion holds and the alternatives
are probabilistically independent, the certainty equivalent CE for the portfolio is the
sum of the certainty equivalents CE1, CE2, . . . , CEn for the individual alternatives.

8



Proof. Assume that the exponential case of Equation 2a holds. (The proofs for
the other cases are analogous.) Then from Equation 3a, CE = −ρ ln E[exp(−s/ρ)] =
−ρ ln E{exp[−(

∑n
i=1

xi)/ρ]} = −ρ ln E[
∏n

i=1
exp(−xi/ρ)]. Since the xi are proba-

bilistically independent, this reduces to CE =
∑n

i=1 −ρ lnE[exp(−xi/ρ)]. By similar
reasoning, CEi = −ρ lnE[exp(−xi/ρ)]. Comparing these two equations, we see that
CE =

∑n
i=1

CEi.

6. The Value of Perfect Information

A straightforward argument shows that when constant risk aversion holds the
value of perfect information is the difference between the certainty equivalent of the
perfect information alternative ignoring the cost of the information and the cer-
tainty equivalent of the best alternative without perfect information. The following
argument demonstrates that this is true: The perfect information alternative taking
into account the cost of the information differs from the perfect information alter-
native ignoring the cost of the information only by having a constant amount (the
cost of the information) subtracted from each possible outcome. Thus, from the
definition of constant risk aversion, the certainty equivalent for the perfect infor-
mation alternative including the cost of information must be equal to the certainty
equivalent of the perfect information alternative ignoring the cost of the information
minus the cost of the information. Hence, the value of perfect information can be
determined by taking the difference between the certainty equivalents of the perfect
information alternative ignoring the cost of the information and the best alternative
without perfect information.

Note that this is not true for all utility functions. Most introductory decision
analysis textbooks restrict themselves to treating the value of information only when
expected value is used as a decision criterion. Since this is a special case of constant
risk aversion, the value of perfect information can be determined as specified in the
preceding paragraph. However, it is easy to construct counterexamples which show
that this procedure does not give the correct answer for utility functions that are
neither exponential nor linear.

7. Approximations Using Exponential Utility Functions

From Equation 1, it follows that when constant risk aversion holds the certainty
equivalent CE for an alternative with monotonically increasing preferences is given
approximately by

CE = x̄ − σ2

2ρ
(5)

where x̄ is the expected value of the alternative, and σ2 is the variance of the
alternative. (With monotonically decreasing preferences, the equation is the same
except that the minus sign is changed to a plus sign.) It is possible to show by direct
calculation that Equation 5 is exact for an exponential utility function when an
alternative has a Normal (Gaussian) probability distribution for its outcomes. This
section presents the results of some empirical studies which show that Equation 5 can
be a fairly accurate approximation even when the alternative has a distribution that
is not very Normal. However, before presenting these results, note that in situations
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where Equation 5 is valid, it can be used to make some statements about the types
of decisions where considering risk aversion can change the preferred decision.

Howard [1988] notes,

While the ability to capture risk preference is an important part of our conceptual
view of decision-making, I find it is a matter of real practical concern in only 5
percent to 10 percent of business decision analysis. Of course, the situations that
require risk preference, such as bidding or portfolio problems, use it very seriously.

Equation 5 gives a basis for this observation. Using this equation, the difference
between the expected value and the certainty equivalent is σ2/(2ρ). Hence, the
ranking of alternatives will be impacted by risk attitude (which is encoded by ρ)
only if σ2 differs among the alternatives. That is, the amount of uncertainty (as
measured by σ2) must differ among the alternatives for risk attitude to impact the
ranking of alternatives. Otherwise, the term σ2/(2ρ) merely adds the same constant
correction to the expected value for each alternative, and hence expected value will
correctly rank alternatives even though it will give incorrect certainty equivalents.

The accuracy of Equation 5 is investigated below for two families of probabil-
ity distributions over x: asymmetric two-fork lotteries (that is, distributions with
two possible outcomes and unequal probabilities for the two outcomes) and beta
distributions. These two distribution families were studied because they provide
considerable flexibility regarding specific distribution shapes and because together
they cover situations that are representative of those seen in practice. The results
of the accuracy studies are shown in Table 1 for the asymmetric two-fork lottery,
and in Table 2 for the beta distribution.

To study the accuracy of the approximations, it is first necessary to establish
scales for measuring errors. For the two fork lottery, two measures are used: the
error as a percentage of the range between the upper and lower fork values and
the error as a percentage of the standard deviation of the lottery. (The standard
deviation is used for comparison because it is a commonly used summary of the
uncertainty represented by a probability distribution.)

In Table 1, “Range” is the difference between the values of x for the higher and
lower forks of the lottery, p(x∗) is the probability of the higher value, c is the risk
aversion coefficient, σ is the standard deviation of x for the two fork lottery, cσ is the
product of c and the standard deviation (from the Taylor expansion development in
Theorem 2, Equation 5 will certainly be an accurate approximation when cσ � 1),
xrp is the exact risk premium for the two-fork lottery using Equation 2a, ∼xrp is the
approximate risk premium calculated using Equation 5, and the last two columns
give the differences between the approximate and exact risk premiums as a percent
of the range and standard deviation of the lottery respectively. These two ratios
summarize the accuracy of the approximation relative to the uncertainty in the two
fork lottery. (For smaller values of the ratios, the approximation is more accurate.)

The upper half of Table 1 gives the maximum values of c for which the error
using Equation 5 is less than ten percent of the standard deviation of x for various
combinations of Range and p(x∗), and the lower half of the table gives the maximum
values of c for which the error is less than twenty percent of the standard deviation.
(These maximum values are given in the column labeled “max c.”) This table
shows that for cσ approaching or even exceeding 1 Equation 5 is still a reasonably
accurate approximation; the values of c for which Equation 5 is accurate cover
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many situations of practical interest. Note, in particular, that the approximation is
accurate for fairly large values of c even when the two-fork lottery is highly skewed
and not at all “normal-like” in shape.

In Table 2, the first column gives the exact expected value of the beta distribu-
tion over x, σ is the exact standard deviation, c is the risk aversion coefficient, cσ
is the product of c and the standard deviation, xce is the exact certainty equivalent
for the beta distribution, ∼xce is the approximate certainty equivalent calculated
using Equation 5, and the last two columns show the differences between the exact
and approximate certainty equivalents as a percentage of the range (from 0 to 1)
and standard deviation of the beta distribution.

The upper half of Table 2 give the maximum values of c for which the error using
Equation 5 is less than ten percent of the standard deviation of the distribution for
various combinations of expected values and standard deviations, while the lower
half of the table gives the maximum values of c for which the error is less than
twenty percent of the standard deviation. (As in Table 1, these maximum values
are in the column labeled “max c.”) This table shows that Equation 5 is accurate for
many values of c likely to be assessed in practice for a wide range of shapes for the
beta distribution. Many of the beta distributions for which results are presented are
extreme cases that are not at all “normal-like.” Entries in Table 2 marked with one
asterisk are one-tailed distributions with a maximum at either x = 0 or x = 1, while
entries marked with two asterisks have a “bathtub” shape where the distribution
increases as x = 0 and x = 1 are approached. Even with such skewed distributions,
Table 2 shows that Equation 5 is accurate for practically useful values for c.

The results in Tables 1 and 2 can be summarized as follows: For the two
distributions studied, Equation 5 is accurate even for probability distributions over
x which are not very “normal” in shape. Some cases shown in the tables are more
skewed than most situations of interest in practice. Therefore, the fact that the
approximation is accurate in these cases indicates that it may be accurate in many
practical situations.
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max (∼xrp − xrp)/

Range p(x∗) c σ cσ xrp ∼xrp Range σ

Ten Percent Error Limits on c

0.25 0.2 6.6 0.100 0.66 0.023 0.033 3.9% 9.7%

0.25 0.4 7.7 0.122 0.94 0.046 0.058 4.8% 9.8%

0.25 0.6 12.5 0.122 1.53 0.082 0.094 4.8% 9.8%

0.25 0.8 6.7 0.100 0.67 0.043 0.034 -3.9% -9.7%

0.50 0.2 3.3 0.200 0.66 0.047 0.066 3.9% 9.7%

0.50 0.4 3.8 0.245 0.93 0.091 0.114 4.7% 9.6%

0.50 0.6 6.2 0.245 1.52 0.163 0.186 4.6% 9.5%

0.50 0.8 3.3 0.200 0.66 0.085 0.066 -3.8% -9.5%

0.75 0.2 2.2 0.300 0.66 0.070 0.099 3.9% 9.7%

0.75 0.4 2.5 0.367 0.92 0.135 0.169 4.6% 9.3%

0.75 0.6 4.1 0.367 1.51 0.243 0.277 4.5% 9.2%

0.75 0.8 2.2 0.300 0.66 0.128 0.099 -3.8% -9.5%

Twenty Percent Error Limits on c

0.25 0.2 9.9 0.100 0.99 0.030 0.050 8.0% 19.9%

0.25 0.4 10.8 0.122 1.32 0.057 0.081 9.7% 19.8%

0.25 0.6 15.7 0.122 1.92 0.093 0.118 9.7% 19.8%

0.25 0.8 11.3 0.100 1.13 0.076 0.057 -8.0% -19.9%

0.50 0.2 4.9 0.200 0.98 0.059 0.098 7.8% 19.6%

0.50 0.4 5.4 0.245 1.32 0.114 0.162 9.7% 19.8%

0.50 0.6 7.8 0.245 1.91 0.186 0.234 9.5% 19.4%

0.50 0.8 5.6 0.200 1.12 0.151 0.112 -7.9% -19.7%

0.75 0.2 3.3 0.300 0.99 0.089 0.149 8.0% 19.9%

0.75 0.4 3.6 0.367 1.32 0.170 0.243 9.7% 19.8%

0.75 0.6 5.2 0.367 1.91 0.280 0.351 9.5% 19.4%

0.75 0.8 3.7 0.300 1.11 0.225 0.167 -7.8% -19.6%

Table 1. Two-Fork Lottery Test of Equation 5
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max (∼xce − xce)/

x̄ σ c cσ xce ∼xce (∼xce − xce) σ

Ten Percent Error Limits on c

0.10 0.05 18.6 0.93 0.082 0.077 -0.5% -9.9%

0.10 0.09* 8.1 0.73 0.076 0.067 -0.9% -9.8%

0.25 0.10 11.3 1.13 0.203 0.194 -1.0% -9.9%

0.25 0.20* 4.2 0.84 0.185 0.166 -1.9% -9.6%

0.50 0.20 8.1 1.62 0.358 0.338 -2.0% -9.8%

0.50 0.30† 4.5 1.35 0.326 0.298 -2.9% -9.7%

0.50 0.40† 2.8 1.12 0.315 0.276 -3.9% -9.6%

0.75 0.10 11.0 1.10 0.685 0.695 1.0% 9.8%

0.75 0.20* 4.3 0.86 0.644 0.664 2.0% 9.9%

0.90 0.05 15.2 0.76 0.876 0.881 0.5% 9.9%

0.90 0.09* 6.1 0.55 0.866 0.875 0.9% 9.9%

Twenty Percent Error Limits on c

0.10 0.05 27.7 1.39 0.075 0.065 -1.0% -19.9%

0.10 0.09* 12.3 1.11 0.068 0.050 -1.8% -19.9%

0.25 0.10 16.5 1.65 0.187 0.168 -2.0% -19.9%

0.25 0.20* 6.3 1.26 0.164 0.124 -4.0% -19.8%

0.50 0.20 10.8 2.16 0.323 0.284 -3.0% -19.7%

0.50 0.30† 6.0 1.80 0.288 0.230 -5.8% -19.3%

0.50 0.40† 3.8 1.52 0.273 0.196 -7.7% -19.2%

0.75 0.10 16.3 1.63 0.649 0.669 2.0% 19.8%

0.75 0.20* 7.0 1.40 0.570 0.610 4.0% 19.8%

0.90 0.05 20.5 1.03 0.864 0.874 1.0% 19.9%

0.90 0.09* 8.4 0.76 0.848 0.866 1.8% 19.7%

* Single Tailed Distribution

† “Bathtub” Distribution

Table 2. Beta Distribution Test of Equation 5
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Exercises

1. An alternative has a probability 0.6 of winning $25,000, 0.2 of winning $1,000,
and 0.2 of losing $50,000. Determine the expected profit for this alternative.
Determine the certainty equivalent for the alternative using the utility function
u(x) = −e−x/10, where x is in thousands of dollars.

2. For a decision maker with risk averse, monotonically increasing preferences, de-
termine whether it is possible to select which of the following is more preferred:
An alternative with equal chances of yielding 50, 25, 0, or −10; or an alternative
that is certain to yield 16.25.

3. For a decision maker with monotonic, risk averse preferences and u(−100) = 10,
u(0) = 6, and u(100) = 0, determine the possible expected utilities for an
alternative with a 0.6 probability of 0 and a 0.4 probability of 50.

4. Assume the same situation as in problem 3 except that preferences are con-
stantly risk averse. Determine the expected utility of the alternative.

5. Suppose preferences are constantly risk averse, and the certainty equivalent for
an alternative with equal chances of winning X or losing X/2 is zero. Determine
the percentage error from assuming that the risk tolerance is equal to X .

6. Suppose preferences are constantly risk averse, and the certainty equivalent for
an alternative with a 0.75 probability of winning X ′ and a 0.25 probability of
losing X ′ is zero. Determine the percentage error from assuming that the risk
tolerance is equal to X ′.

7. Show that with constantly risk averse, monotonically increasing preferences the
certainty equivalent CE for an alternative is

CE =

{

−ρ lnE[exp(−x/ρ)], ρ 6= Infinity
E(x), otherwise

and that with constantly risk averse, monotonically decreasing preferences it is

CE =

{

ρ lnE[exp(x/ρ)], ρ 6= Infinity
E(x), otherwise

8. Assume that a company has annual net sales of $5 billion. Using Howard’s
rules-of-thumb, determine the company’s risk tolerance. Assuming constant
risk aversion and this risk tolerance, determine the certainty equivalent for an
alternative with equal chances of winning $10 million or losing $5 million. De-
termine the percent error in the certainty equivalent that results from assuming
infinite risk tolerance.

9. For the risk tolerance and alternative in problem 8, use the equation CE =
x̄ − σ2/(2ρ) to determine an approximate certainty equivalent. Compare this
approximate certainty equivalent to the exact certainty equivalent determined
in problem 8.

10. Suppose a decision maker is constantly risk averse with monotonically increas-
ing preferences and a risk tolerance of 20. Consider an alternative with a 0.8
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probability of winning 50 and a 0.2 probability of losing 10. Consider another
alternative with equal chances of winning 10 or 25. Show by direct calculation
that if the two alternatives are probabilistically independent, then the certainty
equivalent for the sum of these two alternatives is equal to the sum of the cer-
tainty equivalents for the alternatives.

11. For the decision in problem 10, find the error in the certainty equivalent for the
sum of the alternatives when using the approximation CE = x̄−σ2/(2ρ) for each
alternative. Specifically, find the percent error from using the approximation
relative to the exact certainty equivalent determined in problem 10 and also
relative to the standard deviation for the sum of the two alternatives.

12. For the decision in problem 10, now assume that u(x) =
√

x + 10. Show that
the certainty equivalent for the sum of the two alternatives is not equal to the
sum of the certainty equivalents for the alternatives.

13. A decision problem has two alternatives, one of which yields 10 for certain
and one of which has equal chances of yielding 5 or 15. The decision maker
has constantly risk averse, monotonically decreasing preferences with a risk
tolerance of 10. Show by direct calculation that the value of perfect information
about the outcome of the uncertain alternative is the difference between the
certainty equivalent for the perfect information alternative ignoring the cost of
the information and the certainty equivalent of the preferred alternative without
perfect information.

14. For the decision problem in problem 13, show that the stated procedure for
determining the value of perfect information does not give the correct result if
u(x) = ln(20− x).

15. Show that if an alternative has a Normal probability distribution and prefer-
ences are risk averse and monotonically increasing, then the certainty equivalent
is given by CE = x̄ − σ2/(2ρ).

16. The selling price of an alternative is the minimum amount for which a decision
maker who owns the alternative will sell it, while the buying price is the max-
imum amount which a decision maker who does not own the alternative will
pay to buy it. From the definitions, it follows that the selling price is equal to
the certainty equivalent and that the buying price is the amount which, when
subtracted from each outcome of the alternative, yields a certainty equivalent
of zero for the alternative. Show that when constant risk aversion holds the
buying price for any alternative is equal to the selling price.

17. Consider an alternative with equal chances of yielding 0 and 10. Show that if
u(x) = 3

√

x/10 then the buying price for this alternative is not equal to the
selling price.

1/23/97
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Appendix A. Two Fundamental Theorems

This appendix presents the axioms of consistent choice and two fundamental
theorems which result from these axioms. In this appendix, the symbol “�” means
“is preferred to,” and the consequences of a decision are designated c1, c2, . . . , cn.
Note that these consequences may themselves be uncertain alternatives. These
axioms assume that probabilities exist and that the rules of probability apply. Pratt,
Raiffa, and Schlaifer (1964) present a more extensive set of axioms which develops
probability from first principles. Here are the axioms of consistent choice:

1. (Transitivity) If ci � cj and cj � ck, then ci � ck.

2. (Reduction) If the standard rules of probability can be used to show that two
alternatives have the same probability for each ci, then the two alternatives are
equally preferred.

3. (Continuity) If ci � cj � ck, then there is a p such that an alternative with
a probability p of yielding ci and a probability 1 − p of yielding ck is equally
preferred to cj .

4. (Substitution) If two consequences are equally preferred, then one can be sub-
stituted for the other in any decision without changing the preference ordering
of alternatives.

5. (Monotonicity) For two alternatives which each yield either ci or cj where
ci � cj , then the first alternative is preferred to the second if it has a higher
probability of yielding ci.

If these conditions hold, then it is possible to prove the following theorem.

Theorem A-1 (Expected Utility). If the axioms of consistent choice hold, then
there exists a function u(ci) such that alternative A is preferred to alternative B if

n
∑

i=1

p(ci|A)u(ci) >

n
∑

i=1

p(ci|B)u(ci) (A − 1)

where p(ci|A) is the probability of ci if A is selected, and p(ci|B) is the probability
of ci if B is selected.

Proof. The following steps demonstrate the desired result:

1. Using the Transitivity Axiom, the consequences can be rank-ordered in terms of
preferability. Suppose the consequences are labeled so that c1 � c2 � · · · � cn.

2. By the Reduction Axiom, any uncertain alternative has an equally preferred al-
ternative which directly yields the outcomes c1, c2, . . . , cn. Suppose the equally
preferred alternative for A has probabilities p(c1|A), p(c2|A), . . . , p(cn|A) of
yielding c1, c2, . . . , cn respectively, and the equally preferred alternative for B
has probabilities p(c1|B), p(c2|B), . . . , p(cn|B) of yielding c1, c2, . . . , cn. Then
by the Substitution Axiom, the original alternatives can be replaced by their
equally preferred reduced equivalents. Make this replacement.

3. By the Continuity Axiom, there is a number u(ci) such that ci is equally pre-
ferred to an alternative with a probability u(ci) of yielding c1 and a probability
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1 − u(ci) of yielding cn. Thus, by the Substitution Axiom, each ci can be
replaced by the equally preferred alternative which has a probability u(ci) of
yielding c1 and a probability 1 − u(ci) of yielding cn. Make this substitution.

5. By the Reduction Axiom, A is equally preferred to an alternative with a prob-
ability

∑n
i=1 p(ci|A)u(ci) of yielding c1 and a probability 1−∑n

i=1 p(ci|A)u(ci)
of yielding cn. Similarly, B is equally preferred to an alternative with a proba-
bility

∑n
i=1 p(ci|B)u(ci) of yielding c1 and a probability 1 − ∑n

i=1 p(ci|B)u(ci)
of yielding cn. Thus, by the Substitution Axiom, A and B can be replaced by
these alternatives which have outcomes which only include c1 and cn. Make
this substitution.

6. Thus, by the Monotonicity Axiom, A � B if

n
∑

i=1

p(ci|A)u(ci) >

n
∑

i=1

p(ci|B)u(ci).

This is the relationship in Equation A-1.

The function u(ci) is called a utility function, and the decision criterion in The-
orem A-1 says that expected utility must be used as a decision criterion if the axioms
of consistent choice are to be obeyed. These axioms were originally postulated as a
model of unaided human decision making behavior. Many experiments have been
done to test whether unaided human decision making naturally obeys the axioms.
The results have shown that unaided human decision making does not obey the
axioms of consistent choice. This has led to some questioning of whether the axioms
are a good basis for decision analysis procedures, and a number of alternative axiom
sets have been developed to better describe unaided human decision making.

However, there is a difference between describing how unaided decision making
processes work and using analysis to make better decisions. Our focus here is on
making better decisions. From this perspective, it is difficult to argue with the
axioms of consistent choice. Each is reasonable, and it is hard to give any of them
up as logical principles that we would want our reasoning to obey.

On a more practical level, we are all aware of limitations in human reasoning.
Very few of us would trust ourselves to accurately add up a column of 100 numbers
in our head. Many decisions under uncertainty are more complex than adding up
100 numbers. Why should we trust our unaided reasoning processes to be more
accurate at analyzing these decisions than at adding 100 numbers? Thus, the fact
that unaided decision making does not obey the axioms of consistent choice is not
a convincing argument that these axioms should not be used as a basis for decision
making.

There is another theorem related to utility functions that is useful. The proof
of Theorem A-1 shows that u(ci) must be between 0 and 1 since it is defined as
a probability. However, it is not necessary that all utility functions be between 0
and 1, as the following theorem demonstrates.

18



Theorem A-2 (Linear Transformation). Given a utility function u(ci), then an-
other function u′(ci) is guaranteed to give the same ranking of alternatives if and
only if

u′(ci) = au(ci) + b (A − 2)

for some constants a > 0 and b.

Proof. Suppose that
∑n

i=1 p(ci|A)u(ci) >
∑n

i=1 p(ci|B)u(ci). Then, it is also true
that a

∑n
i=1 p(ci|A)u(ci) > a

∑n
i=1 p(ci|B)u(ci) for any constant a > 0, and hence

a
∑n

i=1 p(ci|A)u(ci) + b > a
∑n

i=1 p(ci|B)u(ci) + b for any constant b.

However, since a
∑n

i=1 p(ci|A)u(ci) + b =
∑n

i=1 p(ci|A)[au(ci) + b] and
a

∑n
i=1 p(ci|B)u(ci) + b =

∑n
i=1 p(ci|B)[au(ci) + b], which is the same as

n
∑

i=1

p(ci|A)u′(ci) >

n
∑

i=1

p(ci|B)u′(ci),

then the desired result is demonstrated.
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Appendix B. Calculating Rho

This table presents pairs of numbers z0.5 and R which solve the equation

0.5 =
exp(−z0.5/R)− 1

exp(−1/R) − 1

This table can be used to solve for the risk tolerance ρ in equation 2 given the
certainty equivalent for an alternative with equal chances of yielding either of two
specified values. Suppose preferences are monotonically increasing and the certainty
equivalent for an alternative with equal chances of yielding 100 or 200 is 140. Then
z0.5 = (140 − 100)/(200− 100) = 0.40, and the table below shows that R = 1.22.
Hence, the risk tolerance is ρ = 1.22× (200− 100) = 122.

If preferences are monotonically decreasing with the same certainty equivalent,
then z0.5 = (200 − 140)/(200− 100) = 0.60, and the table shows that R = −1.22,
so that ρ = −1.22 × (200− 100) = −122.

z0.5 R z0.5 R z0.5 R z0.5 R

0.00 — 0.25 0.41 0.50 Infinity 0.75 -0.41

0.01 0.01 0.26 0.44 0.51 -12.50 0.76 -0.39

0.02 0.03 0.27 0.46 0.52 -6.24 0.77 -0.36

0.03 0.04 0.28 0.49 0.53 -4.16 0.78 -0.34

0.04 0.06 0.29 0.52 0.54 -3.11 0.79 -0.32

0.05 0.07 0.30 0.56 0.55 -2.48 0.80 -0.30

0.06 0.09 0.31 0.59 0.56 -2.06 0.81 -0.29

0.07 0.10 0.32 0.63 0.57 -1.76 0.82 -0.27

0.08 0.12 0.33 0.68 0.58 -1.54 0.83 -0.25

0.09 0.13 0.34 0.73 0.59 -1.36 0.84 -0.24

0.10 0.14 0.35 0.78 0.60 -1.22 0.85 -0.22

0.11 0.16 0.36 0.85 0.61 -1.10 0.86 -0.20

0.12 0.17 0.37 0.92 0.62 -1.00 0.87 -0.19

0.13 0.19 0.38 1.00 0.63 -0.92 0.88 -0.17

0.14 0.20 0.39 1.10 0.64 -0.85 0.89 -0.16

0.15 0.22 0.40 1.22 0.65 -0.78 0.90 -0.14

0.16 0.24 0.41 1.36 0.66 -0.73 0.91 -0.13

0.17 0.25 0.42 1.54 0.67 -0.68 0.92 -0.12

0.18 0.27 0.43 1.76 0.68 -0.63 0.93 -0.10

0.19 0.29 0.44 2.06 0.69 -0.59 0.94 -0.09

0.20 0.30 0.45 2.48 0.70 -0.56 0.95 -0.07

0.21 0.32 0.46 3.11 0.71 -0.52 0.96 -0.06

0.22 0.34 0.47 4.16 0.72 -0.49 0.97 -0.04

0.23 0.36 0.48 6.24 0.73 -0.46 0.98 -0.03

0.24 0.39 0.49 12.50 0.74 -0.44 0.99 -0.01
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Appendix C. Normalized Exponential Utility Function

The table below gives values of the function

f(z|R) =
exp(−z/R)− 1

exp(−1/R)− 1

for various combinations of z and R. The primary use of this is to determine values
for the exponential utility function in equation 2. Suppose we wish to determine
u(150) in equation 2 with monotonically decreasing preferences, a range from 100
to 300, and ρ = 200. Then set z = (300 − 150)/(300 − 100) = 0.75 and R =
200/(300− 100) = 1. From the table below, ui(150) = 0.83.

z
R

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.10 0.39 0.63 0.78 0.86 0.92 0.95 0.97 0.98 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.20 0.22 0.40 0.53 0.64 0.72 0.78 0.83 0.87 0.90 0.92 0.94 0.96 0.97 0.98 0.98 0.99 0.99 1.00 1.00

0.30 0.16 0.29 0.41 0.50 0.59 0.66 0.71 0.76 0.81 0.84 0.87 0.90 0.92 0.94 0.95 0.96 0.98 0.99 0.99

0.40 0.13 0.24 0.34 0.43 0.51 0.57 0.64 0.69 0.74 0.78 0.81 0.85 0.87 0.90 0.92 0.94 0.96 0.97 0.99

0.50 0.11 0.21 0.30 0.38 0.46 0.52 0.58 0.64 0.69 0.73 0.77 0.81 0.84 0.87 0.90 0.92 0.95 0.97 0.98

0.60 0.10 0.19 0.27 0.35 0.42 0.49 0.54 0.60 0.65 0.70 0.74 0.78 0.82 0.85 0.88 0.91 0.93 0.96 0.98

0.70 0.09 0.18 0.25 0.33 0.39 0.46 0.52 0.57 0.62 0.67 0.72 0.76 0.80 0.83 0.86 0.90 0.92 0.95 0.98

0.80 0.08 0.16 0.24 0.31 0.38 0.44 0.50 0.55 0.60 0.65 0.70 0.74 0.78 0.82 0.85 0.89 0.92 0.95 0.97

0.90 0.08 0.16 0.23 0.30 0.36 0.42 0.48 0.53 0.59 0.64 0.68 0.73 0.77 0.81 0.84 0.88 0.91 0.94 0.97

1.00 0.08 0.15 0.22 0.29 0.35 0.41 0.47 0.52 0.57 0.62 0.67 0.71 0.76 0.80 0.83 0.87 0.91 0.94 0.97

2.00 0.06 0.12 0.18 0.24 0.30 0.35 0.41 0.46 0.51 0.56 0.61 0.66 0.71 0.75 0.79 0.84 0.88 0.92 0.96

3.00 0.06 0.12 0.17 0.23 0.28 0.34 0.39 0.44 0.49 0.54 0.59 0.64 0.69 0.73 0.78 0.83 0.87 0.91 0.96

4.00 0.06 0.11 0.17 0.22 0.27 0.33 0.38 0.43 0.48 0.53 0.58 0.63 0.68 0.73 0.77 0.82 0.87 0.91 0.96

5.00 0.05 0.11 0.16 0.22 0.27 0.32 0.37 0.42 0.47 0.52 0.57 0.62 0.67 0.72 0.77 0.82 0.86 0.91 0.95

6.00 0.05 0.11 0.16 0.21 0.27 0.32 0.37 0.42 0.47 0.52 0.57 0.62 0.67 0.72 0.77 0.81 0.86 0.91 0.95

7.00 0.05 0.11 0.16 0.21 0.26 0.32 0.37 0.42 0.47 0.52 0.57 0.62 0.67 0.71 0.76 0.81 0.86 0.91 0.95

8.00 0.05 0.11 0.16 0.21 0.26 0.31 0.36 0.42 0.47 0.52 0.57 0.61 0.66 0.71 0.76 0.81 0.86 0.91 0.95

9.00 0.05 0.11 0.16 0.21 0.26 0.31 0.36 0.41 0.46 0.51 0.56 0.61 0.66 0.71 0.76 0.81 0.86 0.90 0.95

10.00 0.05 0.10 0.16 0.21 0.26 0.31 0.36 0.41 0.46 0.51 0.56 0.61 0.66 0.71 0.76 0.81 0.86 0.90 0.95

Infinity 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

-10.00 0.05 0.10 0.14 0.19 0.24 0.29 0.34 0.39 0.44 0.49 0.54 0.59 0.64 0.69 0.74 0.79 0.84 0.90 0.95

-9.00 0.05 0.10 0.14 0.19 0.24 0.29 0.34 0.39 0.44 0.49 0.54 0.59 0.64 0.69 0.74 0.79 0.84 0.89 0.95

-8.00 0.05 0.09 0.14 0.19 0.24 0.29 0.34 0.39 0.43 0.48 0.53 0.58 0.64 0.69 0.74 0.79 0.84 0.89 0.95

-7.00 0.05 0.09 0.14 0.19 0.24 0.29 0.33 0.38 0.43 0.48 0.53 0.58 0.63 0.68 0.74 0.79 0.84 0.89 0.95

-6.00 0.05 0.09 0.14 0.19 0.23 0.28 0.33 0.38 0.43 0.48 0.53 0.58 0.63 0.68 0.73 0.79 0.84 0.89 0.95

-5.00 0.05 0.09 0.14 0.18 0.23 0.28 0.33 0.38 0.43 0.48 0.53 0.58 0.63 0.68 0.73 0.78 0.84 0.89 0.95

-4.00 0.04 0.09 0.13 0.18 0.23 0.27 0.32 0.37 0.42 0.47 0.52 0.57 0.62 0.67 0.73 0.78 0.83 0.89 0.94

-3.00 0.04 0.09 0.13 0.17 0.22 0.27 0.31 0.36 0.41 0.46 0.51 0.56 0.61 0.66 0.72 0.77 0.83 0.88 0.94

-2.00 0.04 0.08 0.12 0.16 0.21 0.25 0.29 0.34 0.39 0.44 0.49 0.54 0.59 0.65 0.70 0.76 0.82 0.88 0.94

-1.00 0.03 0.06 0.09 0.13 0.17 0.20 0.24 0.29 0.33 0.38 0.43 0.48 0.53 0.59 0.65 0.71 0.78 0.85 0.92

-0.90 0.03 0.06 0.09 0.12 0.16 0.19 0.23 0.27 0.32 0.36 0.41 0.47 0.52 0.58 0.64 0.70 0.77 0.84 0.92

-0.80 0.03 0.05 0.08 0.11 0.15 0.18 0.22 0.26 0.30 0.35 0.40 0.45 0.50 0.56 0.62 0.69 0.76 0.84 0.92

-0.70 0.02 0.05 0.08 0.10 0.14 0.17 0.20 0.24 0.28 0.33 0.38 0.43 0.48 0.54 0.61 0.67 0.75 0.82 0.91

-0.60 0.02 0.04 0.07 0.09 0.12 0.15 0.18 0.22 0.26 0.30 0.35 0.40 0.46 0.51 0.58 0.65 0.73 0.81 0.90

-0.50 0.02 0.03 0.05 0.08 0.10 0.13 0.16 0.19 0.23 0.27 0.31 0.36 0.42 0.48 0.54 0.62 0.70 0.79 0.89

-0.40 0.01 0.03 0.04 0.06 0.08 0.10 0.13 0.15 0.19 0.22 0.26 0.31 0.36 0.43 0.49 0.57 0.66 0.76 0.87

-0.30 0.01 0.01 0.02 0.04 0.05 0.06 0.08 0.10 0.13 0.16 0.19 0.24 0.29 0.34 0.41 0.50 0.59 0.71 0.84

-0.20 0.00 0.00 0.01 0.01 0.02 0.02 0.03 0.04 0.06 0.08 0.10 0.13 0.17 0.22 0.28 0.36 0.47 0.60 0.78

-0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.05 0.08 0.14 0.22 0.37 0.61
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Appendix D. Computer Program to Solve for the Risk Tolerance

The Pascal computer program below solves for the risk tolerance in Equation
2 given the certainty equivalent for an alternative with equal chances of yielding
either of two specified values. Thus, this is a computerized equivalent to the table
in Appendix B. The program is written in Standard Pascal and should compile
correctly with virtually any Pascal compiler. Some compilers do not produce output
from a write statement until an input line is received. For such compilers, the write

statements which prompt for input should be replaced with writeln statements.

program findrho(input, output);

label 100, 9999;

const

CELIMIT = 0.05; {Limit on how close CE can be to Low or High;

avoids exponential function crashing;

probably overly conservative}

RHOLIMIT = 0.05; {Limit on how small abs(Rho/(High-Low)) can be;

avoids exponential function crashing;

probably overly conservative}

DELTA = 1.0e-6; {Limit on accuracy of Rho/(High-Low)}

var

Low, High : real; {Branches of uncertain alternative}

Mono : char; {Monotonicity of preferences}

CE : real; {Certainty equivalent of uncertain alternative}

NearRho, MidRho, FarRho, ZHalf : real; {For finding rho}

{Find sign of x}

function sgn(x : real) : integer; begin

if x > 0.0 then sgn := 1

else sgn := -1

end;

{Find normalized utility of z given normalized risk tolerance}

function u(z, R : real) : real; begin

u := (exp(-z/R)-1) / (exp(-1/R)-1)

end;

begin

{Data input and checking}

write(’Low = ’); readln(Low);

write(’High = ’); readln(High);

if Low >= High then goto 100;

write(’Monotonicity (I/D)? ’); readln(Mono);

if not((Mono = ’i’) or (Mono = ’I’)

or (Mono = ’d’) or (Mono = ’D’)) then goto 100;

write(’Certainty Equivalent = ’); readln(CE);
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if (CE < Low) or (CE > High) then goto 100;

if (Mono = ’i’) or (Mono = ’I’)

then ZHalf := (CE - Low) / (High - Low)

else ZHalf := (High - CE) / (High - Low);

if ZHalf < CELIMIT then goto 100;

if abs(ZHalf - 0.5) < DELTA then begin

writeln(’Rho = Infinity’);

goto 9999;

end;

{Restrict search region for solution so you don’t get Rho = 0}

if ZHalf < 0.5 then begin

NearRho := RHOLIMIT; FarRho := 10.0 end

else begin NearRho := -RHOLIMIT; FarRho := -10.0 end;

{If necessary, increasing the search range for the solution}

while sgn(u(ZHalf, FarRho)-0.5) = sgn(u(ZHalf, NearRho)-0.5)

do FarRho := FarRho * 10.0;

{Use method of bisection to find solution}

while abs(FarRho - NearRho) > DELTA do begin

MidRho := (NearRho + FarRho)/2.0;

if sgn(u(ZHalf, FarRho)-0.5) = sgn(u(ZHalf, MidRho)-0.5)

then FarRho := MidRho

else NearRho := MidRho

end;

writeln(’Rho = ’, MidRho*(High-Low):10:3);

goto 9999;

{Error message}

100 : writeln(’Invalid input.’);

9999 : end.
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