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Abstract. The goal of the Atlas project is to increase the opportunities
for students to construct their own knowledge by conversing (in typed
form) with a natural language-based ITS. In this paper we describe two
components of Atlas—APE, the integrated planning and execution sys-
tem at the heart of Atlas, and CARMEL, the natural language under-
standing component. These components have been designed as domain-
independent rule-based software, with the goal of making them both
extensible and reusable. We illustrate the use of CARMEL and APE
by describing Atlas-Andes, a prototype ITS built with Atlas using the
Andes physics tutor as the host.

1 Motivation

The goal of the Atlas project is to enable the involvement of students in a more
active style of learning by engaging them in a typed dialogue with an ITS. This
dialogue can include both natural language and GUI actions. In this paper we
motivate the use of dialogue in intelligent tutoring. We also describe resources
developed on the Atlas project that are available for use on tutoring projects
interested in including dialogue capabilities in their applications. The two key
domain-independent components described here are APE, the Atlas Planning
Engine, and CARMEL, the natural language understanding component. APE is
a “just-in-time” planner specialized for easy construction and rapid generation
of hierarchically organized dialogues. CARMEL is a general purpose engine for
language understanding composed of robust and efficient algorithms for parsing,
semantic interpretation, and repair. We explain how we used these components
to build a prototype for a new tutor, Atlas-Andes, that adds a dialogue capability
to the existing Andes physics tutor.

* This research was supported by NSF grant number 9720359 to CIRCLE, the Cen-
ter for Interdisciplinary Research on Constructive Learning Environments at the
University of Pittsburgh and Carnegie-Mellon University.
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Collaborative dialogue between student and tutor is a well-documented promi-
nent component of effective human tutoring [1-3]. A recent corpus study of re-
flective follow-up dialogues [4] demonstrates the potential for natural language
dialogue to enhance the ability of tutoring systems to effectively diagnose stu-
dent misconceptions. Furthermore, recent research on student self-explanations
supports the view that when students express their thinking in words it en-
hances their learning [5, 6]. Students learn more effectively when they are forced
to construct knowledge for themselves.

Without natural language dialogue, the best remediation tools available to
tutoring systems are hint sequences. Hints are a unidirectional form of natural
language: the student can’t take the initiative or ask a question. In addition, there
is no way for the system to lead the student through a multi-step directed line of
reasoning or to ask the student a question, except via a list of pre-coded answers.
As aresult, there is no way to use some of the effective rhetorical methods used
by skilled human tutors, such as analogy and reductio ad absurdum. Thus, the
use of natural language dialogue allows us to extend the tutor’s repertoire to
include the types of remediation subdialogues seen in corpus studies.

An elevator slows to a stop from an y
initial downward velocity of 10 ms in
2 sec. A passenger in the elevator is
holding a 3 kg package by a string.
What is the tension in the string?

Fig. 1. Sample problem from the Andes physics tutor

2 Natural Language Dialogue in Atlas-Andes

Atlas-Andes is a dialogue-extended version of the Andes [7] tutoring system using
the capabilities offered by the Atlas tool set. Andes is an ITS whose domain is
first-year college physics. It tracks the student as the latter attempts to solve
a problem. If the student gets stuck or deviates too far from a correct solution
path, it provides hints and other assistance. The left-hand side of Fig. 1 shows
a typical Andes problem with its accompanying drawing. On the right is seen
the student’s partially completed free-body diagram, or sketch of the vectors
involved.

In this example, the elevator is decelerating, so the acceleration vector should
face the opposite direction from the velocity vector.! Andes responds to this
frequent student error by turning the incorrect item red. If requested, it will

' If the acceleration vector went in the same direction as the velocity vector, the
elevator would speed up and smash into the ground.
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provide the first hint of a sequence, in this case “Think about the direction of
the acceleration vector.” Follow-up hints include further information about the
direction of acceleration and, eventually, the answer. The prototype Atlas-Andes

system replaces these hints by a choice of generated subdialogues, such as the
one shown in Fig. 2.

<drawvs acceleration vector in same direction as velocity>
What is the definition of acceleration?
I don’t have any clue.

s wn-=awn

0K, let’s try this. If a car was driving along east, which way would

you have to push on it to make it stop?

West.

T: Exactly, the opposite direction. What does that tell you about the
direction of acceleration?

S: It goes west too.

T: Right. The net force goes the opposite direction, and so does the
acceleration. Try to draw the acceleration vector again now.

S: <draws acceleration vector correctly>

wn

Fig. 2. Example of generated dialogue

This example shows some prominent features of both APE and CARMEL.
From the planning point of view, after the student’s initial response, Atlas-
Andes was able to drop an unpromising line of attack and try a different one.
Later, it was able to give specific responses to statements by the student. From
the language understanding point of view, we can see that Andes-Atlas can
effectively interpret student responses, even idioms like “I don’t have a clue.”

3 Implementation of a Prototype Tutor

In this section we describe how a pre-existing tutoring system can be extended to
offer dialogue capabilities using Atlas. Figure 3 illustrates the architecture of the
resulting extended system. While we focus our discussion on the prototype Atlas-
Andes system, the same approach could be used to add dialogue capabilities to
a wide range of tutoring systems. In Fig. 3 we see that students interact with the
dialogue-extended system through the User Interface Manager, which interprets
mouse clicks and key presses. GUI actions are then channeled through the GUI
Interpreter which interprets them and stores a representation of the interpreted
input for the Tutorial Planner (APE), described in Section 4. Natural language
input is channeled through the Input Understander (CARMEL), which interprets
the student’s input. Just as the GUI Interpreter does, it stores a representation
of the interpreted natural language input for the Tutorial Planner. The Tutorial
Planner then uses the input representation, as well as data from the host system
(in this case Andes) and other sources, to formuiate a response which it sends
back to the student via the User Interface Manager.
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Fig. 3. Architecture of Atlas-Andes

Two domain-specific knowledge sources are required to apply the Atlas tools
(APE and CARMEL) to a new domain, namely a plan library to guide the
Tutorial Planner and semantic mapping rules to guide the Input Understander.
A corpus of transcribed, spoken human-human dialogues using two experienced
tutors and 20 students attempting to solve physics problems informed the devel-
opment of the prototype Atlas-Andes system. The prototype system contains 21
semantic mapping rules and a plan library of approximately 100 plan operators,
including roughly equal numbers of operators for dialogue creation, responding
to specific student misconceptions, and handling domain-independent, dialogue
issues. In addition to API and GUI handling, the latter category includes gen-
eral tutoring policies such as whether the student should be allowed to take
the initiative and return to the GUI without finishing a subdialogue in process.
With this knowledge the system can generate a large number of variations of
the dialogue in Fig. 2 as well as selected examples of other ways of teaching
about the direction of acceleration, such as the mini-reductio in Fig. 4. Thus
the resulting system has the ability to tailor its approach to a wide variety of
student inputs. Operators are selected based on historical information gatherfad
by the tutor (discourse/interaction history), information about the current s1.t-
uation (the tutor’s current goal and the student’s latest response), and domain
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knowledge. As an example of the latter, if a student draws an acceleration vector
which is incorrect but not opposite to the velocity vector, a different response
will be generated.

In the remainder of the paper, we will discuss the APE tutorial planner and
the CARMEL input understander in greater depth.

4 APE: The Atlas Tutorial Planner

Planning is required in dialogue-based I'TSs in order to ensure that a coherent
conversation ensues as the tutor’s pedagogical goals are accomplished. If the
system just responds to student actions, the resulting conversation will not nec-
essarily be coherent, and the tutor has no way to ensure that its own teaching
goals are met. Although Wenger [8) wrote in 1987 that using a global planner to
control an ITS would be too ineficient, developments in reactive planning have
made this goal a realistic possibility.

One cannot plan a conversation in advance unless the student’s responses are
classified into a small number of categories, and even then it would be wasteful.
Furthermore, depending on the quality of the student’s answers, one might need
to change the plan during the conversation. For these reasons we work with
partial plans that are expanded and refined only as needed. This style of planning
is often called reactive planning (9, 10].

For adding dialogue to ITSs, we have developed a reactive planner called
APE (Atlas Planning Engine) that is specialized for dialogue. In a previous
study (11}, we showed how modeling human-human tutorial dialogues accord-
ing to the hierarchical structure of task-oriented dialogues [12] can make them
tractable for plan-based generation. In the tutoring dialogues we have studied,
a main building block of the discourse hierarchy, corresponding to the transac-
tion level in Conversation Analysis [13], matches the tutoring episode defined
by VanLehn [14]. A tutoring episode consists of the turns necessary to help the
student accomplish one correct problem-solving step, e.g. to make one correct
entry on a graphical interface. Qur planner makes it convenient to satisfy local
goals without disturbing the basic hierarchical structure.

Figure 4 shows a sample plan operator from Atlas-Andes. For legibility, we
have shown the key elements in English instead of in Lisp.

To initiate a planning session, the user invokes the planner with an initial
goal. The system searches its operator library to find all operators whose goal
field matches the next goal on the agenda and whose filter conditions and precon-
ditions are satisfied. Goals are represented by first-order logic without quantificrs
and are matched using full unification. Since APE is intended especially for the
generation of hierarchically organized task-oriented discourse, operators have
multi-step recipes. When a match is found, the matching goal is removed from
the agenda and replaced by the steps in the recipe. This operation is repeated
until a primitive (non-decomposable) step is reached. If the primitive step cor-
responds to a question, the tutor asks the question and ends its turn. If the
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(def-operator handle-same-direction

:goal (...)

:filter (...)

:precond (...)
; We have asked a question about acceleration
i ... and the student has given an answer
3 +.. from which we can deduce that he/she thinks acceleration and

velocity go in the same direction

; and we have not given the explanation below yet
:recipe (...)

; Tell the student: "But if the acceleration went the same direction

as the velocity, then the elevator would be speeding up."
; Mark that we are giving this explanation
; Tell the student that the tutor is requesting another answer
; ("Try again.")
; Edit the agenda so that tutor is ready to receive another answer
thiercx ())

Fig. 4. Sample plan operator

primitive step corresponds to a statement, the tutor utters the statement but
continues to plan, allowing the generation of multi-sentence turns.

To tailor the tutor’s responses to the student as much as possible, one needs
the ability to change plans during a conversation. This ability is provided in
APE through the use of three types of recipe steps that can update the agenda.
APE can skip the remainder of a strategy if circumstances have changed; it
can replace a strategy with another strategy that has the same goal; and it can
replace a sequence of goals at the top of the agenda. The last type is especially
useful for responding to a student utterance without disturbing the global plan.
In this way our approach differs from that of Vassileva (15]. Her work, based on
AND-OR graphs, uses a separate set of rules for reacting to unexpected events.

A second way to tailor the tutor’s response to the student is to take context
into account before choosing a response. APE provides this ability in two ways.
The “hierarchical context” or hiercz slot of an operator, shown in the last line
of Fig. 4, provides a way for the planner to be aware of the goal hierarchy in
‘which a decomposition is proposed. Additionally, operators can update and test
predicates in a dynamic knowledge base.

APE communicates with the host system via an API. It obtains information
from the world—the GUI interface, the natural language understanding compo-
nent (CARMEL), and the host tutoring system—through preconditions on its
plan operators. It returns information and action requests through recipe steps
that update its knowledge base and execute external actions. Further details
about the APE planner can be found in [16], and a deeper treatment of the role
of reactive planning in dialogue generation can be found in {17].

Many previous dialogue-based ITSs have been implemented with finite-state
machines, either simple or augmented. In the most common finite-state model,
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each time the human user issues an utterance, the processor reduces it to one of
a small number of categories. These categories represent the possible transitions
between states. There are several problems with this approach. First, it limits
the richness of the student’s input that can be appreciated. With APE, on the
other hand, the author can write arbitrarily complex predicates, evaluable at run
time, to define a class of input. Second, one can only take history and context
into account by expanding the number of states, putting an arbitrary restriction
on the amount of context or depth of conversational nesting that can be consid-
ered. Third, the finite-state approach misses the significant generalization that
tutorial dialogues are hierarchical: larger units contain repeated instances of the
same smaller units in different sequences and instantiated with different values.
Finally, the finite-state machine approach does not allow the author to drop
one line of attack and replace it by another without hard-coding every possible
transition, thus limiting the tutor’s ability to tailor its responses.

The prototype Atlas-Andes system described above shows that APE permits
one not only to build more sophisticated ITSs but to build them faster. Since
the domain-specific tutorial strategies are built from a small vocabulary of lower-
level operators, there is a considerable economy of scale when expanding such
a prototype to a full-scale tutoring system. Additionally, many of the operators
that express general tutoring policies and conversational strategies are domain-
independent and do not need to be repeated when expanding domain coverage.

5 CARMEL: The Atlas input Understander

The task of the Atlas input understander is to extract relevant information from
student explanations and other natural language input to pass back to the plan-
ner. This information can take the form of single atomic values or collections of
flat propositional clauses, depending upon what the planner requires in specific
contexts. In either case, CARMEL, the Core component for Assessing the Mean-
ing of Explanatory Language, is used to parse the student input onto a feature
structure representation that contains both syntactic and semantic information.
Domain specific pattern matchers called semantic mapping rules are then used
to match against particular patterns of features in order to identify and extract
the needed information.

The overarching goal behind the design of the Atlas input understander is to
facilitate the rapid development of robust natural language understanding inter-
faces for multiple domains. While interest in language understanding interfaces
for tutoring systems has grown in recent years, progress towards making such in-
terfaces commonplace has been greatly hindered by the tremendous time, effort,
and expertise that is normally required for such an endeavor. Qur long term goal
is to build a tool set to semi-automate the process by applying machine learning
techniques that require system developers only to annotate corpora with infor-
mation pertinent to tutoring, thus insulating them from the underlying linguistic
aspects of the development. At the heart of our design is the CARMEL core lan-
guage understanding component, which is available for use on other tutoring
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projects.? Its underlying robust understanding technology [18-20] has already
proven successful in the context of a large scale multi-lingual speech-to-speech
translation system [21,22].

CARMEL provides a broad foundation for language understanding. It is com-
posed of a broad coverage English syntactic parsing grammar and lexicon; robust
and efficient algorithms for parsing, semantic interpretation, and repair; and a
formalism for entering idiomatic and domain-specific semantic knowledge. Cur-
rent dialogue-based tutoring systems, such as CIRcSIM-Tutor [23]) and AutoTutor
[24], rely on shallow processing strategies to handle student input. This technol-
ogy has so far proven effective for efficiently processing short student answers
and for evaluating content based on inclusion of relevant vocabulary. In contrast,
the goal of CARMEL is to support a deeper level of analysis in order to iden-
tify arbitrarily complex relationships between concepts within longer student
answers.

Our approach is to achieve the most complete deep analysis possible within
practical limits by relaxing constraints only as needed. CARMEL first attempts
to construct analyses that satisfy both syntactic and semantic well-formedness
conditions. A spelling corrector [25] is integrated with the lexical look-up mech-
anism in order to robustly recognize the student’s intended input in the face of
typos and spelling errors. The robust parser [19] has the ability to eficiently
relax syntactic constraints as needed and as allowed by parameterized flexibility
settings. For sentences remaining beyond the coverage of its syntactic knowledge,
a repair stage [18], relying solely on semantic constraints compiled from a mean-
ing representation specification, is used to assemble the pieces of a fragmentary
parse. Thus, robustness techniques are applied at each stage In processing stu-
dent input in order to address the wide variety of phenomena that make language
understanding challenging.

In a recent evaluation of CARMEL’s syntactic coverage, we measured the
parser’s ability to robustly analyze student input by testing it on a subset of
our corpus of tutoring dialogues that had not been used for development of the
prototype. The test corpus contained 50 student sentences and 50 multi-sentence
student turns randomly extracted from the full corpus. The utterances ranged
in length from 1 to 20 words, with an average length of 8 words per utterance.
The parser was able to construct analyses covering 87% of the corpus when a
high flexibility setting was used, taking on average .1 seconds per sentence.

When the parser is unable to construct an analysis of a sentence that deviates
too far from the grammar’s coverage, a fragmentary analysis is passed on to the
repair module that quickly assembles the fragments [18]. Qur approach to repair
is unique in that no hand-coded repair rules are required as in other approaches
to recovery from parser failure {26,27]. A recent evaluation demonstrates that
CARMEL's repair stage can increase the number of acceptable interpretations
produced by between 3% (when using a high flexibility setting) and 9% (when
a restricted flexibility setting is used), taking on average only .3 seconds per
sentence.

? Interested parties should contact Carolyn Rosé at rosecp@pitt.edu.
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6 Conclusions

One goal of the Atlas project is to develop reusable software for implementing
natural-language based ITSs. In this paper we described CARMEL and APE,
the parser and planner, respectively, for Atlas. We illustrated this work with
an example from Atlas-Andes, a prototype physics tutor built using the Atlas
framework. We showed how using these components could enable not only better
tutoring but reduced authoring time as well.
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