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Abstract. University physics is typical of many cognitive skills in that there is
no standard procedure for solving problems, and yet a few students still master
the skill. This suggests that their learning of problem solving strategies is im-
plicit, and that an effective tutoring system need not teach problem solving
strategies as explicitly as model-tracing tutors do. In order to compare implicit
vs. explicit learning of problem solving strategies, we developed two physics
tutoring systems, Andes and Pyrenees. Pyrenees is a model-tracing tutor that
teaches a problem solving strategy explicitly, whereas Andes uses a novel
pedagogy, developed over many years of use in the field, that provides virtually
no explicit strategic instruction. Preliminary results from an experiment com-
paring the two systems are reported.

1 The Research Problem

This paper compares methods for tutoring non-procedural cognitive skills. A cogni-
tive skill is a task domain where solving a problem requires taking many actions, but
the challenge is not in the physical demands of the actions, which are quite simple
ones such as drawing or typing, but in deciding which actions to take. If the skill is
such that at any given moment, the set of acceptable actions is fairly small, then it is
called a procedural cognitive skill. Otherwise, let us call it a non-procedural cogni-
tive skill. For instance, programming a VCR is a procedural cognitive skill, whereas
developing a Java program is a non-procedural skill because the acceptable actions at
most points include editing code, executing it, turning tracing on and off, reading the
manual, inventing some test cases and so forth. Roughly speaking, the sequence of
actions matters for procedural skills, but for non-procedural skills, only the final state
matters. However, skills exists at all points along the continuum between procedural
and non-procedure. Moreover, even in highly non-procedural skills, some sequences
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of actions may be unacceptable, such as compiling an error-free Java program twice
in a row without changing the code or the compiler settings.

Tutoring systems for procedural cognitive skills can be quite simple. At every
point in time, because there are only a few actions that students should take, the tutor
can give positive feedback when the student’s action matches an acceptable one, and
negative feedback otherwise. When the student gets stuck, the tutor can pick an ac-
ceptable next action and hint it. Of course, in order to give feedback and hints, the
tutor must be able to calculate at any point the set of acceptable next actions. This
calculation is often called “the ideal student model,” the “expert model.” Such tutors
are often called model tracing tutors.

It is much harder to build a tutoring system for non-procedural cognitive skills.
Several techniques have been explored. The next few paragraphs review three of
them.

One approach to tutoring a non-procedural skill is to teach a specific problem-
solving procedure, method or strategy. The strategy may be well-known but not ordi-
narily taught, or the strategy may be one that has been invented for this purpose. For
instance, the CMU Lisp tutor (Corbett & Bhatnagar, 1997) teaches a specific strategy
for programming Lisp functions that consists of first inferring an algorithm from
examples, then translating this algorithm into Lisp code working top-down and left-
to-right. The basic idea of this approach is to convert a non-procedural cognitive skill
into a procedural one. This allows one to use a model tracing tutor. Several model
tracing tutors have been developed for non-procedural cognitive skills (e.g., Reiser,
Kimberg, Lovett, & Ranney, 1992; Scheines & Sieg, 1994).

A second approach is to simply ignore the students’ actions and look only at the
product of those actions. Such tutoring systems act like a grader in a course, who can
only examine the work submitted by a student, and has no access to the actions taken
while creating it. Such tutors are usually driven by a knowledge base of condition-
advice pairs. If the condition is true of the product, then the advice is relevant. Re-
cent examples include tutors that critique a database query (Mitrovic & Ohlsson,
1999) or a qualitative physics essay (Graesser, VanLehn, Rose, Jordan, & Harter,
2001). Let us call this approach product critiquing.

 Instead of critiquing the product, a tutoring system can critique the process even if
it doesn’t understand the process completely. Like product critiquing tutors, such a
tutor has a knowledge base of condition-advice pairs. However, the conditions are
applied as the student solves the problem. In particular, after each student action, the
conditions are matched against the student’s action and the state that preceded it. For
instance, in the first tutoring system to use this technique (Burton & Brown, 1982),
students played a board game. If they made a move that was significantly worse than
the best available move, the tutor would consider giving some advice about the best
available more. Let us call this approach process critiquing.

The distinctions between a process critiquing tutor and a model tracing tutor are
both technical and pedagogical. The technical distinction is that a model tracing tutor
has rules that recognize correct actions, whereas the process critiquing tutor has rules
that recognize incorrect actions. Depending on the task domain, it may be much eas-
jer to author one kind of rule than the other. The pedagogical distinction is that model
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tracing tutors are often used when learning the problem solving strategy is an instruc-
tional objective. The strategy is usually discussed explicitly by the tutor in its hints,
and presented explicitly in the texts that accompany the tutor. In contrast, the process
critiquing tutors rarely teach an explicit problem solving strategy.

All three techniques have advantages and disadvantages. Different ones are appro-
priate for different cognitive skills. The question posed by this paper is which one is
best for a specific task domain, physics problem solving. Although the argument
concerns physics, elements of it may perhaps be applied to other task domains as
well.

2 Physics Problem Solving

Physics problem solving involves building a logical derivation of an answer from
given information. Table 1 uses a two-column proof format to illustrate a derivation.
Each row consists of a proposition, which is often an equation, and its justification. A
justification refers to a domain principle, such as Newton’s second law, and to the
propositions that match the principle’s premises. The tradition in physics is to display
only the major propositions in a derivation. The minor propositions, which are often
simple equations such as a_x=a, are not displayed explicitly but instead are incorpo-

Table 1. A derivation of a physics problem

Problem: A motorboat cruises slowly to the mouth of the harbor, covering 230 m

in 460 s at a constant velocity. It then speeds up to a cruising speed of 5 m/s in

60 seconds. What is its average acceleration while speeding up? Assume it al-

ways travels in a straight line. Let time 1 be when the motorboat starts the 230 m

journey; let time 2 be when it starts speeding up; and let time 3 be when it

reaches cruising speed.

Proposition Justification

1 dl2 x=230m Given (where d12 is the displacement of the motorboat
from time 1 to 2, the x-axis is horizontal, and d12_x is the
x-component of d12)

2 t12=460s Given (where t12 is the duration from time 1 to 2)

3 123 =60 s Given (where t23 is the duration from time 2 to 3)

4 v3 x=5m/is Given (where v3 is the motorboat’s velocity at time 3)

5 v12_ x=dl2_x/t12 Definition of average velocity applied over the time inter-
val from time 1 to time 2 (where v12 is the average veloc-
ity of the motorboat during time 1 to 2)

6 v12_x=0.50 m/s Algebraically solve 1,2, 5 forv1i2 x

7 a23_ x= Definition of average acceleration applied over the time

(v3_x-v2_x)/t23 interval from time 2 to 3 (where a23 is the average accel-

eration of the motorboat during time 2 to 3, and v2 is the
velocity of the motorboat at time 2)

8 v2 x=vI12_Xx Constant velocity

9 a23_x=a23 Projection

| 10 | a23=0.075 Algebraically solve 3, 6,7, 8, 9 for a23
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rated algebraically into the main propositions. The justifications are almost never
displayed by students or instructors, although textbook examples often mention a few
major justifications. Such proof-like derivations are the solution structures of many
other non-procedural skills, including geometry theorem proving, logical theorem
proving, algebraic or calculus equation solving, etc.

Although Al has developed many well-defined procedures for deductive problem
solving, such as forward chaining and backwards chaining, they are not explicitly
taught in physics. Explicit strategy teaching is also absent in many other non-
procedure cognitive skills.

Although no physics problem solving procedures are taught, some students do
manage to become competent problem solvers. Although it could be that only the
most gifted students can learn physics problem solving strategies implicitly, two facts
suggest otherwise. First, for simpler skills than physics, many experiments have dem-
onstrated that people can learn implicitly, and that explicit instruction sometimes has
no benefit (e.g., Berry & Broadbent, 1984). Second, the Cascade mode} of cognitive
skill acquisition, which features implicit learning of strategy, is both computationally
sufficient to learn physics and an accurate predictor of student protocol data
(VanLehn & Jones, 1993; VanLehn, Jones, & Chi, 1992).

If students really are learning how to select principles from their experience, as this
prior work suggests, perhaps a tutoring system should merely expedite such experi-
ential learning rather than replace it with explicit teaching/learning. One way to do
that, which is suggested by stimulus sampling and other theories of memory, is to
ensure that when students attempt to retrieve an experience that could be useful in the
present situation, they draw from a pool of successful problem solving experiences.
This in turn suggests that the tutoring system should just keep students on successful
solution paths. It should prevent floundering, generation of useless steps, traveling
down dead end paths, errors and other unproductive experiences. This pedagogy has
been implemented by Andes, a physics tutoring system (VanLehn et al., 2002). The
pedagogy was refined over many years of evaluation at the United States Naval
Academy. The next section describes Andes’ pedagogical method.

3 The Andes Method for Teaching a Non-procedural Skill

Andes does not teach a problem solving strategy, but it does attempt to fill students’
episodic memory with appropriate experiences. In particular, whenever the student
makes an entry on the user interface, Andes colors it red if it is incorrect and green if
it is correct. Students almost always correct the red entries immediately, asking Andes
for help if necessary. Thus, their memories should contain either episodes of green,
correct steps or well-marked episodes of red errors and remediation.

The most recent version of Andes does present a small amount of strategy instruc-
tion in one special context, namely, when students get stuck and ask for help on what
to do next. This kind of help is called “next-step help” in order to differentiate it from
asking what is wrong with a red entry. Andes’ next-step help suggests applying 2
major principle whose equation contains a quantity that the problem is seeking. Even
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if there are other major principles in the problem’s solution, it prefers one that is
contains a sought quantity. For instance, suppose a student were solving the problem
shown in Table 1, had entered the givens and asked for next-step help. Andes would
elicit a23 as the sought quantity and the definition of average velocity (shown on line
7 of Table 1) as the major principle.

Andes’ approach to tutoring non-procedural skills is different from product cri-
tiquing, process critiquing and model tracing. Andes gives feedback during the prob-
lem solving process, so it is not product critiquing. Like a model-tracing tutor, it uses
rules to represent correct actions, but like a process-critiquing tutor, it does not ex-
plicitly teach a problem solving strategy. Thus, is pedagogically similar to a process-
critiquing system and technically similar to a model-tracing system.

Andes is a highly effective tutoring system. In a series of real-world (not labora-
tory) evaluations conducted at the US Naval Academy, effect sizes ranged from 0.44
to 0.92 standard deviations (VanLehn et al., 2002).

However, there is still room for improvement, particularly in getting students to
follow more sensible problem solving strategies. Log files suggest that students
sometimes get so lost that they ask for Andes’ help on almost every action, which
suggests that they have no “weak method” or other general problem solving strategy
to fall back upon when their implicit memories fail to show them a way to solve a
problem. Students often produce actions that are not needed for solving the problem,
and they produce actions in an order that conforms to no recognizable strategy. The
resulting disorganized and cluttered derivation makes it difficult to appreciate the
basic physics underlying the problem’s solution.

We tried augmenting Andes’ next-step help system to explicitly teach a problem
solving strategy (VanLehn et al., 2002). This led to such long, complex interactions
that students generally refused to ask for help even when they clearly needed it. The
students and instructors both felt that this approach was a failure.

It seems clear in retrospect that a general problem solving strategy is just too com- .
plex and too abstract to teach in the context of giving students hints. It needs to be
taught explicitly. That is, it should be presented in the accompanying texts, and stu-
dents should be stepped carefully through it for several problems until they have
mastered the procedural aspects of the strategy. In other words, students may learn
even better than Andes if taught in a model-tracing manner.

4 An Experiment: Andes Versus Pyrenees

This section describes an experiment comparing two tutoring systems, a model trac-
ing tutor (Pyrenees) with a tutor that encourages implicit learning of strategies (An-
des). Pyrenees teaches a form of backward chaining called the Target Variable Strat-
egy. It is taught to the students briefly using the instructions shown in the appendix.
Although Pyrenees uses the same physics principles and the same physics problems
as Andes, its user interface differs because it explicitly teaches the Target Variable
Strategy.
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4.1 User Interfaces

Both Andes and Pyrenees have the same 5 windows, which display:
The physics problem to be solved
The variables defined by the student
Vectors and axes
The equations entered by the student
¢ A dialogue between the student and the tutor

In both systems, equations and variable names are entered via typing, and all other
entries are made via menu selections. Andes uses a conventional menu system (pull
down menus, pop-up menus and dialogue boxes), whereas Pyrenees uses teletype-
style menus.

For both tutors, every variable defined by the student is represented by a line in the
Variables window. The line displays the variable’s name and definition. However, in
Pyrenees, the window also displays the variable’s state, which is one of these:

e Sought: If a value for the variable is currently being sought, then the line
displays, e.g., “mb = SOUGHT: the mass of the boy.”

e Known: If a value has been given or calculated for a variable, then the line
displays the value, e.g., “mb = 5 kg: the mass of the boy.”

e  Other: If a variable is neither Sought nor Known, then the line displays
only the variables name and definition, e.g., “mb: the mass of the boy.”

The Target Variable Strategy’s second phase, labeled “applying principles” in the
Appendix, is a form of backwards chaining where Sought variables serve as goals.
The student starts this phase with some variables Known and some Sought. The stu-
dent selects a Sought variable, executes the Apply Principle command, and eventually
changes the status of the variable from Sought to Other. However, if the equation
produced by applying the principle has variables in it that are not yet Known, then the
student marks them Sought. This is equivalent to subgoaling in backwards chaining.
The Variables window thus acts like a bookkeeping device for the backwards chain-
ing strategy; it keeps the current goals visible.

As an illustration, suppose a student is solving the problem of Table 1 and has en-
tered the givens already. The student selects a23 as the sought variable, and it is
marked Sought in the Variable window. The student executes the Apply Principle
command, selects “Projection” and produces the equation shown on line 9 of Table 1,
a23_x=a23. This equation has an unknown variable in it, a23_x, so it is marked
Sought in the Variable window. The Sought mark is removed from 423. Now the
cycle repeats. The student executes the Apply Principle command, selects “definition
of average acceleration,” produces the equation shown on line 7 of Table 1, removes
the Sought mark from a23_x, and adds a Sought mark to v2_x. This cycle repeats
until no variables are marked Sought. The resulting system of equations can now be
solved algebraically, because it is guaranteed to contain all and only the equations
required for solving the problem.

In Andes, students can type any equation they wish into the Equation window, and
only the equation is displayed in the window. In Pyrenees, equations are entered only
by applying principles in order to determine the value of a Sought variable, so its
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equation window displays the equation plus the Sought variable and the principle
application, e.g., “In order to find W, we apply the weight law to the boy: W = mb*g.”

Some steps, such as defining variables for the quantities given in the problem
statement, are repeated so often that students master them early and find them tedious
thereafter. Both Andes and Pyrenees relieve students of some of these tedious steps.
In Andes, this is done by predefining certain variables in problems that appear late in
the sequence of problems. In Pyrenees, steps in applying the Target Variable Strat-
egy, shown indented in the Appendix, can be done by either the student or the tutor.
When students have demonstrated mastery of a particular step by doing it correctly
the last 4 out of 5 times, then Pyrenees will take over executing that step for the stu-
dent. Once it has taken over a step, Pyrenees will do it 80% of the time; the student
must still do the step 20% of the time. Thus, student’s skills are kept fresh. If they
make a mistake when it is their turn, then Pyrenees will stop doing the step for them
until they have re-demonstrated their competence.

4.2 Experimental Subjects, Materials, and Procedures

The experiment used a two-condition, repeated measures design with 20 students per
condition. Students were required to have competence in high-school trigonometry
and algebra, but to have taken no college physics course. They completed a pre-test, a
multi-session training, and a post-test.

The training had two phases. In phase 1, students learned how to use the tutoring
system. In the case of Pyrenees, this included learning the target variable strategy.
During Phase 1, students studied a short textbook, studied two worked example
problems, and solved 3 non-physics algebra word problems. In phase 2, students
learned the major principles of translational kinematics, namely, the definition of
average velocity v=d/t, the definition average acceleration a=(vf-vi)/t, the constant-
acceleration equation v=(vi+yf)/2 and freefall acceleration equation, a=g. They
studied a short textbook, studied a worked example problem, solved 7 training prob-
lems on their tutoring system and took the post-test.

4.3 Results

The post-test consisted of 4 problems similar to the training problems. Students were
not told how their test problems would be scored. They were free to show as much
work as they wished. Thus, we created two scoring rubrics for the tests. The “Answer
rubric” counted only the answers, and the “Show work” rubric counted only the deri-
vations leading up to the answers but not including the answers themselves. The
Show-work rubric gave more credit for writing major principles’ equations than mi-
nor ones. It also gave more credit for defining vector variables than scalar variables.
Table 2 presents the results. Scores are reported as percentages. A one-way
ANOVA showed that the pre-test means were not significantly different. When stu-
dents post-tests were scored with the Answer rubric, their scores were not signifi-
cantly different according to both an one-way Anova (F(29)=.888, p=.354) and an
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Ancova with the pre-test as the covariate (F(28)=2.548, p=.122). However, when the
post-test were scored with the Show-work rubric, the Pyrenees students scored relia-
bly higher than the Andes students according to both an Anova (F(29)=6.076,
p=.020) and an Ancova with the pre-test as the covariate (F(28)=5.527, p=.026).

5 Discussion

Pyrenees requires students to focus on applying individual principles, whereas Andes
requires only that students write equations. Moreover, Andes allows students to com-
bine several principle applications algebraically into one equation. Thus, the Andes
students may have become used to deriving answers while showing less work. This
would explain why they had lower Show-work scores.

However, having learned an explicit problem solving strategy did not seem to help
Pyrenees students derive correct answers. This may be due to a floor effect—three of
the four test problems were too difficult for most students regardless of which train-
ing they received. Also, during the test, students had to do their own algebraic ma-
nipulations, while during training, the tutors handled all the algebraic manipulations
for them so that they could concentrate on learning physics.

This was the first laboratory evaluation of Andes and of Pyrenees, so we learned a
great deal about how to improve such evaluations. In the next experiment in this se-
ries, we plan to pace the instruction more slowly and to give students more examples.
We need to devise a testing method that doesn’t require students to do their own al-
gebra. Most importantly, we need a way to measure floundering, which we expect
Pyrenees will reduce, and across-chapter transfer, which we expect Pyrenees will
increase. :

Although this experimental results should be viewed with caution due to the many
improvements that could be made to the evaluation methods, the results are consistent
with our hypothesis that Andes students learn problem solving strategies implicitly,
which limits their generality and power relative to an explicitly taught strategy.
When Pyrenees taught a problem solving strategy explicitly, its students employed a
qualitatively better strategy on post-tests, but this did not suffice to raise their Answer
score relative to the Andes students.

Table 2. Means and Standard Errors
Andes Pyrenees p (2-tailed)

N 17 14

Pretest 39.9(4.99) | 444 (5.62) .555
Posttest Show-work 30.4 (2.71) | 40.1 (2.84) .020
Posttest Answer 35.3 (6.45) | 26.8 (6.13) 354
Adjusted Show-work 30.8 (2.54) | 39.7 (2.30) .026
Adjusted Answer 36.8 (4.94) | 25.0(5.44) 122
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Appendix: The Target Variable Strategy

The Target Variable Strategy is has three main phases, each of which consists of
several repeated steps. The strategy is:
1 Translating the problem statement. For each quantity mentioned in the problem
statement, you should:
1.1  define a variable for the quantity; and
1.2 give the variable a value if the problem statement specifies one, or mark the
variable as "Sought" if the problem statement asks for its value to be deter-
mined. The tutoring system displays a list of variables that indicates which are
Sought and which have values.
2 Applying principles. As long as there is at least one variable marked Sought in
the list of variables, you should:
2.1  choose one of the Sought variables (this is called the "target" variable);
2.2 select a principle application such that when the equation for that principle is
written, the equation will contain the target variable;
2.3 define variables for all the undefined quantities in the equation;
2.4 write the equation, replacing its generic variables with variables you have
defined
2.5  (optional) rewrite the equation by replacing its variables with algebraic ex-
pressions and simplifying
2.6 remove the Sought mark from the target variable; and
2.7  mark the other variables in the equation Sought unless those variables are
already known or were marked Sought earlier.
3 Solving equations. As long as there are equations that have not yet been solved,
you should:
3.1  pick the most recently written equation that has not yet been solved;
3.2 recall the target variable for that equation;
3.3 replace all other variables in the equation by their values; and
3.4  algebraically manipulate the equation into the form V=E where V is the target
variable and E is an expression that does not contain the target variable (usu-
ally E is just a number).

On simple problems, the Target Variable Strategy may feel like a simple mechani-
cal procedure, but on complex problems, choosing a principle to apply (step 2.2)
requires planning ahead. Depending on which principle is selected, the derivation of
a solution can be short, long or impossible. Making an appropriate choice requires
planning ahead, but that is a skill that can only be mastered by solving a variety of
problems. In order to learn more quickly, students should occasionally make inap-
propriate choices, because this lets them practice detecting when an inappropriate
choice has been made, going back to find the unlucky principle selection (use the
Backspace key to undo recent entries), and selecting a different principle instead.



