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Abstract. Self-explaining has been repeatedly shown to result in positive learning 
outcomes for students in a wide variety of disciplines. However, there are two 
potential accounts for why self-explaining works. First, those who self-explain 
experience more content than those who do not. Second, there are differences in 
the activity of generating the explanations versus merely comprehending them. To 
compare these two accounts, the present in vivo classroom study, conducted in the 
PSLC physics LearnLab, attempted to contrast robust learning from generating 
explanations with the actively of studying instructional explanations. The students’ 
learning activities (self-explaining vs. paraphrasing) were crossed with the 
completeness of the examples they studied (complete vs. incomplete). During a 
classroom period on electrodynamics, students alternated between solving 
problems and studying examples. On these problems, the self-explainers made 
fewer errors and asked for less help than paraphrasers. On homework problems 
done many days later, self-explainers displayed evidence of far transfer in a related, 
yet new domain (i.e., magnetism). In conclusion, prompting students to self-
explain while studying examples, in an authentic classroom environment, can 
result in positive near- and long-term learning. 
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1. Introduction 

When students study instructional materials, including textbooks, worked-out examples, 
diagrams, and other multimedia materials, they may self-explain it, which means 
generating an explanation for what they have just read based on their knowledge or on 
content read earlier [1]. While self-explaining has consistently been shown to be 
effective in producing robust learning gains in several domains, including physics [2], 
the human circulatory system [3; 4], and algebra and geometry [5], the underlying 
sources of the effect are still being investigated. Identifying these sources is an 
important research objective because the design of effective educational practices and 
software can be guided by a deeper understanding of the process and outcomes of self-
explaining. The present study attempts to add to this understanding, especially as it 
occurs in a real-world context: the classroom. 



2. Explaining self-explaining 

The first studies of self-explanation, which were based on analyses of verbal protocols, 
showed that the amount of self-explaining correlated strongly with performance on 
post-test measures of problem-solving performance [2; 6; 7]. Subsequent studies 
showed that students who were prompted to self-explain sentences in a scientific text 
learned more than students who were asked to paraphrase the sentences instead [2; 8; 
9]. Other studies showed that self-explaining could be the elicited by computers [5; 9; 
10; 11]. 

Because these studies compared self-explanation to the lack of any explanation at 
all, it is not clear why self-explanation produced learning. On the one hand, self-
explaining generates additional information, namely the explanations themselves, that 
are not present in the instructional materials. Perhaps if students were simply given 
these explanations, they would learn just as much [12]. Alternatively, learning from 
self-explaining might arise from the activity of producing the explanations. Thus, if 
they were given the explanations, they would not learn just as much. In other words, is 
it merely attending to the explanations that matters, or is robust learning more likely to 
occur if students generate the explanations themselves? Let us label these hypotheses 
as follows: 

 
1. Attention: learning from self-generated explanations should produce comparable 

learning gains as author-provided explanations, provided the learner pays attention 
to them. Both self-generated and author-provided explanations should exhibit 
better learning than no explanation. 

2. Generation: learning from self-generated explanations should produce greater 
learning gains than author-provided explanations because they are produced from 
the students’ own background knowledge; however, author-provided explanations 
should be comparable to no explanation. 

 
There have only been a few empirical studies that attempt to separate the Attention 

hypothesis from the Generation hypothesis [13]. An exemplary case can be found in a 
study by Lovett [14] in the domain of permutation and combination problems. Lovett 
crossed the source of the solution (subject vs. experimenter) with the source of the 
explanation for the solution (subject vs. experimenter). For our purposes, only two of 
the experimental conditions matter: (1) the experimenter-subject condition, wherein the 
students self-explained an author’s solution, and (2) the experimenter-experimenter 
condition, wherein the students self-explained an author’s solution, whereas in the 
experimenter-experimenter condition, the students studied an author-provided 
explanation. Lovett found that the experimenter-experimenter condition demonstrated 
better performance, especially on far-transfer items. Lovett’s interpretation was that the 
experimenter-experimenter condition was effective because it contained higher quality 
explanations than those generated by students. Consistent with this interpretation, when 
Lovett analyzed the protocol data, she found that the participants who generated the 
key inferences had the same learning gains as participants who read the corresponding 
inferences. Thus, of our two hypotheses, Lovett’s experiment supports the Attention 
hypothesis: the content of self-explanations matters, while the source of the explanation 
does not. 



Brown and Kane [15] found that children’s explanations, generated either 
spontaneously or in response to prompting, were much more effective at promoting 
transfer than those provided by the experimenter. In particular, students were first told 
a story about mimicry. Some students were then told, "Some animals try to look like a 
scary animal so they won’t get eaten.” Other students were asked first, “Why would a 
furry caterpillar want to look like a snake?” and if that did not elicit an explanation, 
they were asked, "What could the furry caterpillar do to stop the big birds from eating 
him?" Most students got the question right, and if they did, 85% were able to answer a 
similar question about two new stories. If they were told the rule, then only 45% were 
able to answer a similar question about the new stories. This result is consistent with 
the Generation hypothesis, which is that an explanation is effective when the student 
generates it. However, the students who were told the rule may not have paid much 
attention to it, according to Brown and Kane. 

In summary, one study’s results are consistent with the Attention hypothesis, and 
the other study’s results are consistent with the Generation hypothesis, but both studies 
confounded two variables. In the Lovett study, the student-produced and author-
provided explanations were of different qualities. In the Brown and Kane study, the 
students in the author-provided explanations condition may not have paid much 
attention to the explanations. 

To contrast the Generation and Attention hypotheses, we conducted an experiment 
in the physics LearnLab (www.learnlab.org), which is a course that is designed to 
conduct rigorous, in vivo experiments on issues related to robust learning. Robust 
learning is defined in three parts. First, learning is considered robust when the 
knowledge is retained over a significant period of time. Second, robust learning is the 
opposite of inert knowledge in the sense that students are able to broadly apply their 
knowledge to other problems within the same class. Finally, robust learning can be 
applied to a different, yet related, domain. Robust learning is contrasted with “normal” 
learning, which is the performance on problems that are near transfer and retained over 
a relatively short duration. 

3. Materials 

The training materials1 used for the present experiment were developed in association 
with one of the LearnLab instructors and two other physicists. The experiment covered 
the domain of electrodynamics, with an emphasis on the forces acting on a charged 
particle due to the presence of an electric field. The homework problems were near- 
and far-transfer versions of the training problems, along with problems from the 
magnetism chapter. Magnetism was used as a test-bed for studying transfer across 
domains. The data were collected in the LearnLab, as opposed to the laboratory, 
because the realism of the classroom increases the generalizability of the results 
without sacrificing randomization or control over extraneous variables. 

3.1. Design 

The experiment was a 2 x 2 between-subjects design, which crossed two independent 
variables: Study Strategy (paraphrasing vs. self-explaining) and Example Type 

                                                           
1 For a copy of the experimental materials, visit: http://andes3.lrdc.pitt.edu/~bob/mat/exper1.html 



(complete vs. incomplete). When students studied a complete example, they were given 
an author-provided explanation, and both the paraphrasing (PP) and self-explanation 
(SE) instructions were intended to insure that they paid attention to it. When students 
studied an incomplete example, the self-explanation prompts were intended to elicit 
self-explanation, while the paraphrase instructions were intended to block it. The 
instructions were modeled after earlier studies [2; 9], where verbal protocols confirmed 
that they had the intended effects of eliciting or suppressing self-explanations. Students 
were block randomized into one of the following four experimental conditions: 
paraphrase complete examples (n = 26), paraphrase incomplete examples (n = 23), self-
explain complete examples (n = 27), and self-explain incomplete examples (n = 28). 
The two hypotheses make the following predictions: 

 
• Attention:  SE-complete = SE-incomplete = PP-complete > PP-incomplete 
• Generation:  SE-complete = SE-incomplete > PP-complete = PP-incomplete 

4. Procedure 

One hundred and four students, recruited from five sections of a second-semester, 
calculus-based physics course taught at the U.S. Naval Academy, were given course 
credit for their participation. The experiment took place in one of the open class periods, 
which were approximately 110 minutes in duration. 

The students were introduced to the experiment and shown the instructions. Then 
students were prompted to solve the first problem, which was a warm-up problem to 
get the students acquainted with the Andes interface. Andes (www.andes.pitt.edu) is an 
intelligent tutoring system, created for helping students solve homework problems 
from the first two semesters of physics [16]. After solving the first problem, the 
students then studied the first example. This process, alternating between solving 
problems and studying examples [17], repeated for three cycles so that by the end of 
the training, four problems were solved and three examples were studied. 

While the students were studying the examples, they were prompted to either 
paraphrase or self-explain at the end of each segment. To capture their verbalizations, 
each student wore a pair of headphones equipped with a close-talk, noise-cancelling 
microphone. In addition to audio, all of the on-screen activity was recorded using a 
screen-logging facility built into the Andes interface. 

The following data-streams were created for each student: 1) an audio track of 
their verbalizations; 2) a video of their on-screen activities; and 3) a text-only log file 
of each action taken in the Andes interface. In addition to the in-class experimental 
session, log files from the assigned Andes homework problems were made available to 
the researchers. Problems from the electric and magnetic fields chapters were of 
particular relevance. The course instructor also provided the paper-and-pencil chapter 
exam that included a problem with a charged particle moving in an electric field. 

5. Results 

This section is broken down into three sub-sections, corresponding to the type of 
learning that was measured: normal and robust, which included within- and between-



domain, far-transfer items. Normal learning was defined as problem-solving 
performance on the items administered on the day of the experiment. Robust within-
domain, far-transfer learning took place separately from the experiment, while the 
students solved either homework (Andes) or exam (paper-and-pencil) problems. 
Robust between-domain, far-transfer learning was performance on Andes homework 
problems, taken from a topic that was separate from the experimental materials (i.e., 
magnetism). 

Because Andes insured that students always found a correct solution to the 
problem, our main dependent measure was their normalized assistance score on the 
problem, which was defined as the sum of all the errors and requests for help on that 
problem divided by the number of entries made in solving that problem. Thus, lower 
assistance scores indicate that the student derived a solution while making fewer 
mistakes and getting less help, and thus demonstrating better performance and 
understanding. 

5.1. Normal learning: Problems solved during the experimental session 

To ensure equivalent experimental conditions, we analyzed performance on the warm-
up problem, which revealed no reliable differences, F(3, 99) = .37, p = .78. In terms of 
normal learning, normalized assistance scores were contrasted by averaging over 
individuals for all three problems in the training set. Using a repeated-measures 
Analysis of Variance (ANOVA), a main effect for Study Strategy was observed, with 
the self-explanation condition demonstrating lower normalized assistance scores than 
the paraphrase condition (see Figure 1), F(1, 73) = 6.19, p = .02, ηp

2 =.08. This result is 
consistent with the Generation hypothesis. 
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Figure 1. Means and standard errors on the three training problems. 

5.2. Robust learning: Within-domain, far transfer 

On the chapter exam, administered 29 days after the experiment, there were neither 
reliable main effects nor an interaction; however, post-hoc comparisons using the 



Fischer LSD test revealed that the complete self-explanation condition (M = 90.83, SD 
= 9.96) had a marginally higher score than the complete paraphrase condition (M = 
73.00, SD = 22.51) (LSD, p = .06). The reason why a difference was not observed 
could be due to the insensitivity of the measure or that the students’ preparation for the 
exam washed out any potential differences between conditions. 

To overcome these potential limitations, we analyzed the students’ performance on 
a homework problem that was isomorphic to the chapter exam, in the sense that they 
shared an identical deep structure (i.e., both analyzed the motion of a charged particle 
moving in two dimensions). The homework problem was solved after the training but 
before the chapter exam. The marginal effect observed on the chapter exam was 
replicated on the isomorphic homework problem. There was a reliable main effect for 
Study Strategy, with the self-explanation condition demonstrating lower normalized 
assistance scores than the paraphrase condition, F(1, 27) = 4.07, p = .05, ηp

2 = .13 (see 
Figure 2). This result is also consistent with the Generation hypothesis. 
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Figure 2. Means and standard errors on a homework electric-field problem. 

5.3. Robust learning: Between-domain, far transfer 

Another component of robust learning is to examine performance on problems in a 
different domain. To measure far transfer between domains, we analyzed homework 
performance in the magnetism chapter. We chose a magnetism problem that was 
somewhat similar to the electrodynamics training problems, although there remained 
major differences due to the differences in the task domain. The similarities were that 
both the principle knowledge component from electrodynamics (i.e., the definition of 
an electric field: Fe = qE) and magnetism (i.e., the vector expression for a magnetic 
force on a charged particle moving in a magnetic field: Fb = qv×B) were vector 
equations. Second, both problems included an opposing force that was equal in 
magnitude, but opposite in direction; thus, there was no acceleration in either case. 

Using an ANOVA, a main effect for Study Strategy was observed, with the self-
explanation condition demonstrating lower normalized assistance scores than the 



paraphrase condition (see Figure 3), F(1, 46) = 5.22, p = .03, ηp
2 = .10. Once again, the 

results favor the Generation hypothesis. 
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Figure 3. Means and standard errors on a homework magnetic-field problem. 

6. Conclusions 

Prior to this study, it appeared that the self-explanation effect could be due simply to 
attending to the content of the explanations, and that it did not matter whether the 
explanations were provided by an author or produced by the student. This hypothesis, 
which we called the Attention hypothesis, was not supported by our data. When 
students paraphrased high-quality explanations, we found less learning than students 
who were prompted to generate their own explanations of examples which omitted the 
author-provided explanations. Paraphrasing was used so that we could be reasonably 
sure that they at least paid some attention to the explanations. Thus, the evidence favors 
the Generation hypothesis, which asserts that the important variable for learning was 
the process of producing an explanation. In future work, we hope to gain insights into 
the underlying process by analyzing the recordings collected during the study. 

This study also demonstrates that a fairly robust finding from the laboratory [2] 
could be imported into the classroom. The evidence suggests that prompting for self-
explaining can be replicated in the real world, even when the conditions are such that 
the students are prompted to self-explain worked-out video examples in a noisy, 
complex environment such as a classroom. Prompting for self-explaining had a positive 
influence on normal learning. Normal learning consisted of a short retention interval, 
and problems that were designed to be isomorphic to the worked-out examples. The 
positive influence of self-explaining on learning has been shown on normal learning in 
previous laboratory studies [4]; however, the present study takes this result one step 
further by evaluating the effect on robust learning measures, including features such as 
long retention intervals, far transfer within and between domains. 
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