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Abstract. We describe a combination of a statistical and symbolic approaches for
automated scoring of student utterances according to their semantic content. The
proposed semantic classifier overcomes the limitations of bag-of-words methods by
mapping natural language sentences into predicate representations and matching
them against the automatically generated deductive closure of the domain givens,
buggy assumptions and domain rules. With the goal to account for uncertainties in
both symbolic representations of natural language sentences and logical relations
between domain statements, this work extends the deterministic symbolic approach
by augmenting the deductive closure graph structure with conditional probabilities,
thus creating a Bayesian network. By deriving the structure of the network for-
mally, instead of estimating it from data, we alleviate the problem of sparseness of
training data. We compare the performance of the Bayesian network classifier with
the deterministic graph matching-based classifiers and baselines.
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1. Introduction

Modern intelligent tutoring systems attempt to explore relatively unconstrained interac-
tions with students, for example via a natural language (NL) dialogue. The rationale be-
hind this is that allowing students to provide unrestricted input to a system would trigger
meta-cognitive processes that support learning (i.e. self-explaining) [1] and help expose
misconceptions. WHY2-ATLAS tutoring system is designed to elicit NL explanations in
the domain of qualitative physics [7]. The system presents a student a qualitative physics
problem and asks the student to type an essay with an answer and an explanation. A typ-
ical problem and the corresponding essay are shown in Figure 1. After the student sub-
mits the first draft of an essay, the system analyzes it for errors and missing statements
and starts a dialogue that attempts to remediate misconceptions and elicit missing facts.

Although there are a limited number of classes of possible student beliefs that are of
interest to the system (e. g., for the Pumpkin problem, about 20 correct and 4 incorrect
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Question: Suppose you are running in a straight line at constant speed. You throw a pumpkin
straight up. Where will it land? Explain.

Explanation: Once the pumpkin leaves my hand, the horizontal force that I am exerting on it no
longer exists, only a vertical force (caused by my throwing it). As it reaches it’s maximum height,
gravity (exerted vertically downward) will cause the pumpkin to fall. Since no horizontal force
acted on the pumpkin from the time it left my hand, it will fall at the same place where it left my
hands.

Figure 1. The statement of the problem and a verbatim explanation from a student who received no follow-up
discussions on any problems.

beliefs), for each class there are multiple examples of NL utterances that are semantically
close enough to be classified as representatives of one of these classes by an expert. Typ-
ically the expert will classify a statement belonging to a certain class of student beliefs
if either (1) the statement is a re-phrasal of the canonical textual description of the belief
class, or (2) the statement is a consequence (or, more rarely, a condition) of an inference
rule involving the belief. An example of the first case is the sentence “pumpkin has no
horizontal acceleration” as a representative of the belief class “the horizontal accelera-
tion of the pumpkin is zero.” An example of the second case is the sentence “The hor-
izontal component of the pumpkin’s velocity will remain identical to that of the man’s
throughout” as a representative of the belief class “The horizontal average velocities of
the pumpkin and man are equal”: the letter can be derived in one step from the former
via a domain rule. The second case occurs due to the coarseness of the classes: the expert
would like to credit the student’s answer despite the fact that it doesn’t match any of the
pre-specified semantic classes, based on its semantic proximity to the nearby semantic
classes. To summarize, utterances assigned to a particular semantic class by an expert
can have different syntactic and semantic features.

While bag-of-words methods have seen some successful applications to the problems
of semantic text classification [4], their straightforward implementations are known to
perform weakly when the training data is sparse, the number of classes is large, or classes
do not have clear syntactic boundaries1 [6]. This suggests using syntactic and semantic
parsers and other NLP methods to convert the NL sentences into symbolic representa-
tions in a first-order predicate language [7]. However, uncertainty inherent in the various
NLP methods that generate those representations [5] means that the same utterances can
produce representations of different quality and structure. Figure 2, for example, shows
two representations for the same utterance, produced by different NLP methods.

The uncertainty in parsing and in other NLP components adds to the syntactic and
semantic variability among representatives of a semantic class. Encoding these sources
of variabilities explicitly appears to be infeasible, especially since the properties of the
NLP components may be difficult to describe, and the reasoning behind an expert as-
signing a semantic class label to an input may be hard to elicit. A method to combine
different sources of uncertainty in an NLP pipeline using a Bayesian network has been
proposed in [3]. Our objective is to adapt this idea to the scenario when semantic classes
themselves, as well as relationships between them are uncertain. In particular, we would

1Syntactic features alone become insufficient for classification when classes depend on the semantic struc-
ture of the domain (as described in the previous paragraph), including the sensitivity to conditionals and nega-
tion.



Representation I:
(position pumpkin ...)
(rel-position ...pumpkin at)
(quantity2b ...0 ...)
(acceleration pumpkin ...)
(rel-coordinate ...)

Representation II:
(acceleration man horizontal ...0 ...)

Figure 2. Representations for the sentence “There is no horizontal acceleration in either the pumpkin or in
the man, and therefore is inconsequential,” produced by two different methods. For the sake of simplicity we
omitted uninstantiated variables.

like to learn the relationships between the various elements of symbolic representations
and semantic classes directly from the data.

In this paper we propose to combine the expert’s knowledge about the structure of
the domain with the structure’s parameter estimation from the data. In particular, we uti-
lize a Bayesian network with nodes representing the facts and domain rule applications,
and directed edges representing either an antecedent relationship between a fact and a
rule application, or a consequent relationship between a rule application and a fact. In
addition, subsets of nodes are grouped as antecedents to the nodes representing semantic
class labels. The design of the classifiers is described in Section 2. The details on our
dataset are given in Section 3.

The structure of the Bayesian network is derived as a subset2 of the deductive closure
C via forward chaining on the givens of the physics problem using a problem solver,
similarly to the approach taken in [2]. However, unlike [2], we estimate the conditional
probabilities from the data. We will compare the Bayesian network classifier with (a)
a direct matching classifier that assumes syntactic similarity and NLP consistency in
generating symbolic representations; (b) a classifier based on the match of the input
with a particular subgraph of the deductive closure C and checking the labels in the
neighborhood of this subgraph; (c) a majority baseline and (d) a Bayesian network with
untrained parameters. The evaluation results are presented in Section 4. In Section 5 we
summarize the results and outline the ways to improve the system.

2. Classifiers

In general, our classification task is: given a symbolic representation of a student’s sen-
tence, infer the probability distribution on a set of student beliefs representing knowledge
of certain statements about domain. By the domain statements here, we mean physics
principles, instantiated principles (facts) and misconceptions. In this paper we will con-
sider an evaluation of the classifying of facts, which is a part of the measure of complete-
ness, as opposed to classifying of misconceptions, which we referred to as correctness
in [8]. We treat these problems differently: analyzing a utterance for misconceptions is
viewed as a diagnosis problem (a student’s utterance can be arbitrary far in the chain of

2For the sake of simplicity we will refer to the subset of the deductive closure that is fixed throughout the
study as the deductive closure.



reasoning from the application of an erroneous rule or fact), while coverage of a fact or a
rule by an utterance is viewed as a problem of semantic proximity of the utterance to the
fact or the rule. We will compare the performances of the classifiers described below.

2.1. Direct matching

Each of the semantic classes of interest is equipped with a manually constructed symbolic
representation of the “canonical” utterance. The direct matching classifier uses a metric
of graph similarity based on largest common subgraph [10] and a manually selected
threshold to decide whether the symbolic representation of a student’s utterance is similar
enough to the representation of the canonical member of the semantic class. The method
is fast and does not require running any logical inference procedures. However, obviously
it can only account for limited variations in the semantic representations.

2.2. Matching against a deductive closure subset of radius 0

For each of the physics problems we generate off-line a deductive closure of problem
givens, likely student’s beliefs and domain rules. In the case of the Pumpkin problem
covered in this paper, the deductive closure has been built up to the depth 6, has 159
nodes representing facts, and contains the facts corresponding to the 16 semantic classes
of interest. In fact, out of the total of 20 semantic classes relevant to the solution of the
problem we have limited our investigation to the 16 classes that we were able to cover
by the deductive closure created with a reasonable knowledge engineering effort. This
effort included manual encoding of 46 problem-specific givens and 18 domain rules that
can be shared across a range of physics problems.

The nodes of the deductive closure are then automatically labeled (off-line) with
the semantic class labels via a graph matching algorithm used in the direct matching
classifier described in Section 2.1. During the run-time, the symbolic representation of
a student’s utterance is matched against the deductive closure via the graph matching
algorithm and the matching nodes of the closure are then checked for sufficient coverage
of any of the semantic classes by counting their semantic labels [8].

2.3. Matching against a deductive closure subset of radius 1

The radius here refers to the size of the neighborhood (in terms of the edge distance) of
the subset of the nodes of the deductive closure that match the symbolic representation
of the input utterance. In the previous case, we considered only those nodes that matched
the utterance. Here, we consider the set of nodes that are reachable within one edge of
the nodes matching the input utterance [8]. Thus the neighborhood of radius 1 contains
the neighborhood of radius 0. It is natural to expect that this classifier will over-generate
semantic labels, improving recall, but likely decreasing precision.

2.4. Bayesian network, untrained

Our intention is to use the structure of the deductive closure graph to construct a Bayesian
network classifier. We augment this graph with additional nodes corresponding to the
semantic class instances and semantic class labels. Thus, the resultant Bayesian network
graph in our proposed method consists of following types of nodes:



• 159 nodes corresponding to the domain facts in the original deductive closure.
These nodes are observed in each data entry: a subset of them that is matched to
the symbolic representation of the student utterance is considered to be present
in the input utterance, the rest of these nodes are considered not present in the
utterance;

• 45 nodes corresponding to domain rule applications in the original deductive clo-
sure. These nodes are unobserved. Parents of such node are the nodes correspond-
ing to the antecedent facts of the rule application, and children of such node are
the nodes corresponding to the facts generated by the rule application (conse-
quences);

• 16 nodes representing the class label variables. They are childless and their par-
ents are nodes corresponding to the instances of the semantic class among the sub-
sets of fact nodes. These nodes are observed for every data entry of the training
set according to the human-generated semantic labels of the utterance.

• 62 unobserved nodes corresponding to the instances of the semantic class in the
deductive closure.

Each of 282 nodes in the network is boolean valued. We use informative priors for
conditional probabilities: boolean OR for the class label nodes, and boolean OR with
probability p = 0.1 of reversing its values for the other nodes. In this baseline classifier
we don’t train the parameters, using just the default conditional probabilities.

2.5. Bayesian network, trained

This classifier consists of the Bayesian network built in the same way and as the classifier
above, but this time the network parameters are estimated via Expectation-Maximization
(EM) with the same informative priors on conditional probabilities as above, using 90%
of the dataset at each step of the 10-fold cross-validation.

3. Dataset

The data set consists of 293 labeled NL utterances collected during a Spring and Summer
of 2005 study with student participants. The features are:

• a mapping to the values of the observable nodes of the Bayesian network (deduc-
tive closure),

• a human-generated score (an integer between 1 and 7) indicating the quality of
the symbolic representation,

• zero or more of human-generated class labels from the set of 16 semantic class
labels and their respective binary confidence values (high/low).

From the histogram of the semantic labels shown in Figure 3, it is clear that the data
is skewed towards the empty label, with 35.49% of the examples not labeled as corre-
sponding to any of the 16 semantic classes. Thus we expect that the majority baseline
classifier that always predicts the empty label would perform quite well. However since
it is particularly important to give a credit to a student’s contribution when there is one,
a slight raise of the performance above the empty-label majority baseline can mean a
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Figure 3. Histogram of the 16 semantic labels and the “empty” label (the rightmost column) in the dataset.

significant change in the application’s responsiveness to the student’s non-empty contri-
butions.

Due to the relatively small amount of labeled data, for the current experiment we
decided to discard the human-generated confidence values of class labels and quality
scores of symbolic representation to reduce the dimensionality of the data. However, we
account for the degree of confidence in matching the symbolic representations of utter-
ances with the nodes of the deductive closure by generating two instances of the dataset
that differ only in the threshold for the graph matching algorithm [10] that decides what
nodes of the deductive closure graph correspond to the graph of symbolic representation
of the utterance. Namely, for the dataset data07 the predicate representation of NL utter-
ances is mapped to the nodes of the deductive closure with the more permissive threshold
of 0.7 (less overlap of the structure and labels of the two graphs is required), while for
the dataset data09 the threshold is set to the more restrictive value of 0.9 (more overlap
of the structure and labels of the two graphs is required). The data with lower confidence
are, somewhat counter-intuitively, harder to obtain due to increased search space of the
graph matcher. The more permissive similarity matching results in more matched nodes
of the deductive closure and therefore of the Bayesian network, potentially making the
dataset more informative for training and prediction. This is one of the hypothesis that
we test in our experiment in Section 4.

4. Evaluation

The evaluation consists of 10-fold cross-validation on data07 and data09 datasets (Ta-
bles 1 and 2). The performance measures are average recall and average precision values
for each of the entries. The following classifiers have been compared:

• direct: Deterministic matching directly to the class representations (no deductive
closure structure).

• radius0: Deterministic matching to the deductive closure and then checking the
labels of the matched closure nodes (uses deductive closure structure).



• radius1: Deterministic matching to the deductive closure and then checking the
labels of the closure nodes within inference distance 1 from the matched closure
nodes (uses deductive closure structure).

• BNun: Probabilistic inference using untrained Bayesian Network with informative
priors (uses deductive closure structure).

• BN: Probabilistic inference using EM parameter estimation on a Bayesian Net-
work with informative priors (uses deductive closure structure).

• base: Baseline: a single class label that is most popular in the training set.

Classifier Recall Precision F-measure

direct 0.4845 0.4534 0.4684
radius0 0.5034 0.4543 0.4776
radius1 0.5632 0.4120 0.4759
BNun 0.2517 0.0860 0.1282

BN 0.4948 0.5000 0.4974

Base 0.3897 0.3897 0.3897
Table 1. Performance of 6 classifiers on data07.

Classifier Recall Precision F-measure

direct 0.5138 0.5103 0.5120
radius0 0.4690 0.4690 0.4690
radius1 0.4713 0.3957 0.4297
BNun 0.2069 0.0787 0.1140

BN 0.4701 0.4707 0.4704

Base 0.3931 0.3931 0.3931
Table 2. Performance of 6 classifiers on data09.

The first observation is that the higher confidence dataset data09 did not result in
better performance of the Bayesian network classifier. We attribute this to the fact that
high confidence data contained very sparse observations that were insufficient to predict
the class label and to train the parameters of the network.

Second, the deterministic methods that take advantage of the deductive closure out-
perform the deterministic direct matching that does not use the deductive closure on both
the recall and precision (radius0), or just the recall while sacrificing the precision (ra-
dius1) (Table 1). Moreover the method that uses a neighborhood of the matching sub-
set of the deductive closure, radius1, has better recall (and a worse precision) than the
method that uses a just the matching subset of the deductive closure, i. e. radius0.

Third, the structure alone is insufficient to improve the precision, since the Bayesian
network that doesn’t learn parameters (using the default values), BNun, performs poorly
(worse than the majority baseline).

Lastly, the trained Bayesian network BN seems to be best overall, according to the F-
measure, at least when the symbolic representation was generated with a more permissive
threshold, as in data07. However the improvement is modest, and more investigation is
required to determine the behavior of the classifier on larger datasets.

5. Conclusion

From a pragmatic stand point, this work has shown that each increment in technology
has increased semantic classification accuracy. According to the F-measures, taking an
advantage of the graph of semantic relationships (deductive closure) improved the the
performance of the deterministic classifiers from 0.4684 (direct) to 0.4776 (radius0). A
Bayesian network that has been built on top of the deductive closure with its parameters
estimated via EM-based training outperformed the deterministic methods (with the score
0.4974) in the case when the mapping of the data onto the network is more permissive.
Incidentally, this disproved our hypothesis that the training data with higher confidence



in the labels (i. e. less permissive mapping onto the network) must necessarily result in
better performance. Finally, we demonstrated a feasibility of deriving of the Bayesian
network structure via deterministic formal methods, when the amount of training data is
insufficient for structure learning from the data. Although these results are encouraging,
they also indicate just how hard this particular classification problem is.

An interesting direction for future work would be to extend the Bayesian network
with the nodes representing uncertainty in observations, namely in semantic labels and in
symbolic representation. Eventually, we would like to incorporate the Bayesian network
in a framework that would guide the tutorial interaction, for example by generating a
tutorial action to maximize an information gain or a certain utility function, as in [9].
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