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Abstract: Collaboration is an important problem-solving skill; however, novice collaboration 
generally benefits from some kind of support. One possibility for supporting productive 
conversations between collaborators is to encourage pairs of students to provide explanations 
for their problem-solving steps. To test this possibility, we contrasted individuals who were 
instructed to self-explain problem-solving steps with dyads who were instructed to jointly 
explain problem-solving steps in the context of an intelligent tutoring system (ITS). The 
results suggest that collaboratively developed explanations prompted students to remediate 
their errors in dialog, as opposed to relying on the ITS for assistance, which is provided in the 
form of on-demand hints. The paper concludes with a discussion about implications for 
combining proven learning interventions. 

 
Introduction 

As is evident to those who live and work in societies with advanced technologies, the world is not only 
becoming a smaller place, but the demands for collaboration are expanding across disciplinary (Schunn, 
Crowley, & Okada, 1998) and geographic boundaries (Friedman, 2006). Individuals are finding themselves 
collaborating in new ways that have been made possible by recent advances in high-speed networks and digital 
forms of communication. For individuals to stay competitive on a global scale, they need to develop their 
collaborative skills. The field of the learning sciences is uniquely positioned to provide recommendations for 
how to best optimize those collaborative skills. 

In the paper that follows, we attempt to develop the following argument. First, it is evident from the 
collaborative problem-solving literature that, when done “naturally,” collaboration is not much more effective 
for learning gains than solo problem solving (Hill, 1982). Attempts to optimize collaborative learning have 
included various scripting manipulations that increase learning gains (Rummel & Spada, 2005). However, 
novices generally do not use these effective modes of interaction to communicate their ideas; therefore, the 
interactions must be taught. Moreover, attempts to use computers to elicit improved collaboration via scripts 
have floundered because of their inability to understand natural language (Soller, 2004). The research problem 
addressed in the current paper is how to use computers to help increase learning during collaboration. 

Toward that end, the paper is organized into the following sections. First, we will highlight two 
effective learning situations: self-explanation and peer collaboration. Then we will introduce an intelligent 
tutoring system for physics, called Andes, which has also been shown to increase individual learning. After the 
background for the study has been presented, we will report on an experiment that contrasted self-explaining 
with peer explanation in the context of using the Andes physics tutor. Finally, we will conclude with a 
discussion about leveraging the impact of various learning interventions. 

Learning Alone: Self-explaining Worked-out Examples 
When enrolled in a course like physics, much of the learning that takes place outside the classroom is 

done individually. That is, students are generally responsible for learning the course material from a textbook, 
which often contains worked-out examples. On first inspection, worked-out examples tend to be fairly 
impoverished, in the sense that they typically omit information that needs to be supplied by the learner (Chi & 
Bassok, 1989). While examples may exclude some information, students prefer to learn from them, especially 
during the initial acquisition of a skill (Pirolli & Anderson, 1985). How do students learn from incomplete 
worked-out examples? One hypothesis is that students attempt to explain the examples, line-by-line, to 
themselves (Chi, Bassok, Lewis, Reimann, & Glaser, 1989). This study strategy goes by the name of the self-
explanation effect (Chi, 2000). 

Self-explaining is a constructive learning activity because the student is actively trying to make sense 
of the material from his or her own background knowledge. For instance, consider the following monolog from 
a student in a second-semester physics class (Hausmann & VanLehn, 2007). In this experiment, the student was 
asked to study an example after solving an isomorphic problem. The example was broken down into problem-
solving steps, which were related to the motion of a charged particle in a region of a uniform electric field. In 
this episode, the student had just watched a video-based example of a step where the solver drew a force vector 



in the opposite direction of the electric field vector (as per the vector equation F = qE, where F is the force due 
to the electric field; q is the charge on the particle, which is negative in this instance; and E is the electric field). 
The student is attempting to make sense of this step (see Table 1). 

Table 1: An example of a self-explanation (SE) episode. 
 

Line Code Statement 
1 Paraphrase Up until this step, we've just been putting in information that was given. But 

now we have to apply concepts of physics. Um, we take from paragraph we 
know that... or what we're trying to find is the force of the electric field. So you 
go over to your menu on the left-hand side. And click the force vector 
((inaudible)). Click and drag. Dialog box comes up. And you... the force is on 
the particle that we identified earlier due to an unspecified force. We know that 
it's electric. Um, we need to put what angle it is at. 

2 SE: meta-cognitive This is something I don't fully understand yet, 
3 SE: justification but they said you had to add whatever it was... two twenty plus one eighty to 

get two oh two. I guess that means it's in the opposite direction of the electric 
field. 

 
The episode opens with the student paraphrasing the material from the example (line: 1). This is nearly 

a verbatim representation of the step articulated in the video. In the second line, the student expresses some 
uncertainty about the step. This is coded as a “meta-cognitive” statement because the student is reflecting on her 
current state of understanding. In the last line, the student unpacks the calculation for determining the angle of 
the vector (i.e., 22 deg + 180 deg = 202 deg) and connects the addition of 180 deg to the concept of the force in 
the opposite direction of the given electric field. 

This episode is typical of self-explaining because it begins with a paraphrase (Magliano, Wiemer-
Hastings, Millis, Munoz, & McNamara, 2002), makes an identification of what is confusing, and then the 
confusion is remediated by supplying an additional piece of information (Chi, 2000; Chi & Bassok, 1989; Chi et 
al., 1989). The design of the experiment was also consistent with the observation that alternating between 
worked examples and solving problems is an effective method for acquiring a new cognitive skill, such as Lisp 
programming (Trafton & Reiser, 1993). Moreover, focusing self-explanations on individual steps of a solution 
has also been shown to be particularly effective in learning a meta-cognitive strategy, such as solving problems 
in Geometry (Aleven & Koedinger, 2002). 

Learning Together: Collaborative Peer Learning 
While generating explanations on one’s own has been shown to be effective in a number of different 

settings and domains, instructors also insist that students must learn to collaborate on projects as well. Peer 
collaboration can be an effective learning situation when it meets certain preconditions. For instance, peer 
collaboration seems to provide optimal learning outcomes when the students’ interactions are scripted or 
scaffolded. For example, in a simulated clinical task, students were asked to collaboratively develop a diagnosis 
and therapy plan for a psychological disorder. Collaborators in a scripted condition produced better joint 
solutions than the dyads in an unscripted condition (Rummel & Spada, 2005). This result suggests that the 
default collaboration behaviors that many students use may not be fully optimal for solving problems.  

Parallel evidence for this claim has also been found in a conceptual engineering task. Instead of 
scripting the dialog, students were given instructions at the beginning of the task to engage in elaborative 
dialogs. Participants in the control condition were given instructions on being responsive, but were not 
instructed to converse in any specific way. The results were fairly straight-forward. Students who were 
instructed to elaborate designed better optimized bridges and learned more deep knowledge than students in the 
control condition (Hausmann, 2006). In this particular study, the dialog was not heavily scripted. This suggests 
that effective collaboration can occur, even in lightly scripted learning situations. 

Andes: An Intelligent Tutoring System for Physics 
Thus, self-explaining and peer collaboration are both effective learning situations. Their estimated 

effect sizes are d = .74 – 1.12 for self-explaining (Chi et al., 1989; McNamara, 2004) and d = .21 – .88 for peer 
collaboration (Johnson & Johnson, 1992; Slavin, 1990). The effectiveness of intelligent tutoring systems falls 
between these two estimates, somewhere in the neighborhood of σ = 1.0 (Anderson, Corbett, Koedinger, & 
Pelletier, 1995). The Andes1 system, an intelligent tutoring system for physics, has also demonstrated 



comparable effect sizes (VanLehn et al., 2005). Andes has been in use at the U.S. Naval Academy since 1999. It 
covers nearly all of the topics (save thermodynamics and “modern physics”) from a two-semester introductory 
physics course. One of the reasons for its effectiveness is “coached problem solving,” in the sense that it offers 
instructional assistance at multiple levels of specificity. At the most general level, Andes provides instructional 
support in the form of “flag feedback” (see Fig. 1). Entries are flagged by turning correct entries green and 
incorrect entries red. The flags serve as unobtrusive indicators of progress as the student is solving the problem. 

Andes also offers on-demand hints to remind students when they need to apply certain steps and how to 
get around impasses. The hints are designed to assist students to take the next correct problem-solving step. 
Often during problem solving, a student will complete all the steps that he knows, at which point he lacks the 
knowledge to take the next appropriate step. Andes supports the student in this situation by prompting him with 
successive levels of help. At the terminal level, Andes gives a bottom-out hint that explicitly tells the student 
what to do. 

 

Flag Feedback 

Top-level Hint 

Bottom-out Hint 

 
Figure 1. A screenshot of the Andes physics tutor, showing a partially solved problem. Each student 
entry turns red/green to indicate its correctness. On-demand hints are shown in the lower-left area. 
 
Method 

In the previous sections, we reviewed three learning interventions that have been shown to work 
effectively with individuals: self-explanation of example steps (Aleven & Koedinger, 2002; Atkinson, Derry, 
Renkl, & Wortham, 2000; Chi et al., 1989; Renkl, 1997); peer collaboration (Stahl, 2006), and intelligent 
tutoring systems (Anderson et al., 1995; Mitrovic & Ohlsson, 1999; VanLehn et al., 2005). The hypothesis that 
we tested is as follows: If all of three aforementioned, effective learning situations are used as the context for 
collaboration (instead of other contexts, such as computer-supported collaborative learning), then collaboration 
will be more effective than individual self-explaining. 

Participants 
Thirty-nine undergraduates (N = 39), enrolled in a second semester physics course, were randomly 

assigned to one of two experimental conditions: self-explanation (individuals; n = 11) or joint-explanation 
(dyads; n = 14). Volunteers were recruited from several sections of a second semester physics course, which 



covered Electricity and Magnetism. Participants were recruited during the third week of the semester, with the 
intention that the experimental materials would coincide with their introduction in the actual physics course. The 
participants were paid $10 per hour. To ensure that the participants’ motivation remained high during the entire 
two-hour session, they were offered an incentive of an additional $10 for doing well on the tests. All of the 
students received the bonus. 

Materials 
The materials developed for this experiment were adapted from an earlier experiment (Hausmann & 

VanLehn, 2007). The domain selected for this experiment was electrodynamics with a focus on the definition of 
the electric field, which is expressed by the vector equation: F = qE. This particular topic is typically covered 
within the first few weeks of a second-semester physics course. Thus, it is an important concept for students to 
learn because it represents their first exposure to the idea that a field can exert a force on a body. 

To instruct the participants, several materials were developed2. Four electrodynamics problems were 
created. These problems are representative of typical problems found in at the end of a chapter in a traditional 
physics textbook. The problems covered a variety of topics, including the definition of the electric field; 
Newton’s first and second law, the weight law, and several kinematics equations. Each of the four problems was 
implemented in Andes. Andes was chosen because its design allowed for both the presentation of video-based 
examples, as well as coached problem solving (Conati & VanLehn, 2000). The first problem served as a warm-
up problem because none of the students had any prior experience with the Andes user interface. In addition to 
the problems, three examples were created in collaboration with two physics instructors at the U.S. Naval 
Academy. The examples contained a voice-over narration of an expert solving the problems, and they were 
structured such that they were isomorphic to the immediately preceding problem. 

Procedure 
To illustrate the procedure, consider a hypothetical participant in the self-explanation condition. The 

first activity was to watch a short, introductory video on the Andes user interface. Afterwards, she reads 
instructions on how to self-explain, including an example. She then solves the warm-up problem using Andes. 
During the problem solving, the student has access to the flag feedback, the hint sequences, and the Equation 
Cheat Sheet. Once the student submits a final answer, she opens the next example and watches an expert 
solution of an isomorphic problem. At the conclusion of each step of the video-based example, she is prompted 
to self-explain. The participant then verbally generates an explanation, which typically contains meta-cognitive 
statements, inferences, or questions she may have about the solution procedure. Once she is done with her self-
explanation, she clicks a button to advance to the next step. Only the cover story and given values differ 
between the problem-solving and example problems. The student then alternates between solving problems and 
studying examples until all four problems are solved and all three examples are studied, or until two hours 
elapse. The participants in the joint-explanation condition followed the exact same procedure. The only 
difference was the instructions and prompts to jointly explain. 

Results 
The results section is broken down into two parts. First, the data from the participants’ problem-solving 

performance is presented. Second, an analysis of the dialog is discussed. 

Degree of Assistance During Problem-solving 
As stated previously, Andes will always coach a student through a problem to its completion. This fact 

has two implications for the present study. First, solution accuracy will not discriminate between the two 
experimental conditions because, eventually, everyone solves the problem. Second, hint usage, especially 
bottom-out hints, are a compelling indicator of the degree of assistance needed during problem-solving. 
Students who rely on them generally lack a full understanding of the problem solution. Bottom-out hints were 
selected as the metric to gauge the quality of problem solving. 

To assess the bottom-out hint usage, we counted the number of bottom-out hints per problem, then 
divided by the total number of student entries made for that problem. This metric is the rate of bottom-out hint 
usage. The self-explanation condition (M = .16, SD = .17) demonstrate a higher rate of bottom-out hint requests 
than the students in the joint-explanation condition (M = .05, SD = .07) (see Fig. 2). A one-way ANOVA was 
used to test the effect of condition on the total mean number of requested bottom-out hints, collapsing across all 
problems. There was a reliable effect of condition on the total number of bottom-out hint requests, F(1, 23) = 
4.896, p < .037, d = .93. When a repeated measures ANOVA was used, all but one problem (Problem 2) were 
reliably different. 



 
Figure 2. The mean (±SE) rate of bottom-out hint requests (number of hints/number of student 

entries) for each experimental condition. 
 

In addition to the bottom-out hints, we analyzed the total number of on-demand hints received. 
Collapsing across all four problems and averaging over students per condition, the findings are entirely 
consistent with the bottom-out hint results. The individuals in the self-explanation condition (M = 94.09, SD = 
51.92) requested nearly twice as many hints as the dyads in the joint-explanation condition (M = 48.57, SD = 
39.59). When the pattern of means was tested with a one-way ANOVA, the results were both statistically and 
practically significant, F(1, 23) = 6.20, p = .020, d = 1.05. Both the hint and bottom-out hint results suggest that 
the dyads were able to fix their incorrect entries and impasses with less assistance from the Andes help system. 

An Analysis of the Collaborative Interactions 
Why did the dyads ask for fewer hints? An analysis of the collaborative dialogs may offer an 

explanation of the disparate hint use. Instead of asking Andes for a bottom-out hint, dyads were able to interact 
with each other instead of the system. That is, dyads were able to draw upon the distributed expertise and extra 
cognitive resources to solve the problems with less explicit support. Consider the following exchange (see Table 
2). 

In this episode, the partners (Beth and Abby) attempted to apply the definition of the electric field (F = 
qE). They chose the correct principle to apply, but they chose the wrong form of the equation. That is, the 
equation F = qE can be expressed in three ways. It can be expressed in terms of its components (i.e., F_x = 
qE_x & F_y = qE_y), as a vector equation (i.e., F = qE), or in terms of its magnitude (i.e., F = abs(q)E). In the 
present case, the magnitude form of the equation is considered the correct expression. Therefore, the equation 
calls for taking the absolute value of the charge because the sign on the change is irrelevant to a magnitude, 
which is always positive by definition. Beth and Abby are forgetting that they need to use the absolute value 
(written as “abs” in the transcript). 

Table 2: An example of dyad exhibiting collaborative error remediation. 
 
Line Speaker Statement 

Second Opportunity to Apply F = abs(q)E 
1 Abby And then, E equals  
2 Beth q times 
3 Abby Er, no. Fg divided by  
4 Beth Force is q times field. 
5 Abby A-huh.  
6 Beth So then field is...a force q times field 
7 Abby So it's q divided by  
8 Beth q divided by For-, yeah, there you go. [Types: E=F/q and Andes colors it red] 
9 Abby M'kay. 



10 Beth Er, is it the other way around? q divided by force? [Types: E=q/F. Andes colors it red & 
pops up a hint] 

11 Abby [Reads hint:] "Units are inconsistent."  
12 Beth I think it's Force divided by q because it’s in Newtons per Coulomb.  
13 Abby Yeah.  
14 Beth So it was, it was, let's see what's wrong. 
15 Abby [Types: E=F/q] Hit enter. [Andes colors it red] 
16 Beth What's wrong?[Clicks on hint button, which displays, “Normally this equation is written 

using an absolute value.”] 
17 Both Oh! 
18 Abby So, abs  
19 Beth Okay.  
20 Abby And solve for... 

Third Opportunity to Apply F = abs(q)E 
21 Abby And then... 
22 Beth F equals q times E? 
23 Beth I remembered it this time. 
24 Abby Good job! 

 
In the first opportunity, Beth and Abby attempt to write the equation in terms of the electric field (i.e., 

E = F/q). However, when they write the equation, Andes flags the entry as incorrect (i.e., it turns it red) because 
they forgot to take the absolute value of the charge (q). They mistakenly interpret the feedback to suggest that 
their algebraic manipulation was incorrect (line: 10), and they attempt to fix it by swapping q for F. That brings 
up another error message that the units are inconsistent, which is an algebraic mistake (line: 11). This particular 
hint is a strong clue that they had it right the first time, so they retype their initial equation and ask for a hint 
(line: 14). The hint reminds them that they need to take the absolute value, and this hint is strong enough that 
they do not require the bottom-out hint. During the next opportunity to apply the same principle (lines: 21-24), 
they do so without error. This suggests that their impasse, plus the interaction between themselves and the top-
level hint, was enough for them to strongly encode this knowledge component. 

Another reason why dyads asked for fewer hints may be related to the way they processed the top-level 
hints. As stated previously, Andes offers hints in a graded fashion (see Fig. 1 for an example of a full hint 
sequence). The first hint is very general and is intended to cue the recall of an applicable step. If that does not 
help, then the student can ask for an addition hint that is more specific. Dyads may be in a better position to 
understand the hints because they can discuss them with a partner. To demonstrate this process, consider the 
following dialog (see Table 3). 

Table 3: An example of a dyad making sense of an on-demand hint. 
 

Line Speaker Statement 
1 Andes Do you really want the direction of that vector to be 1 degrees? 

Explain Further     OK 
2 Andes Think about how the direction of the electric force on the particle due to the unspecified 

agent is related to the direction of the electric field vector. 
Explain Further     OK 

3 Kip Okay, well, if the...is it gonna be moving in the same direction as the field? Like if the 
particle is negative, or will it move opposite the field? 

4 Rex Um…it will move in the direction of the field. 
5 Kip Okay, so I guess. 
6 Rex Wait! No, it should move opposite, shouldn't it? 
7 Kip /I always forget/ 
8 Rex /The line's / always going to the negative. 
9 Kip Okay, so it's a-, 

10 Rex So it should be opposite, shouldn't it? 
11 Kip Okay. 

 



The episode begins with the dyad asking Andes for help on drawing the electric force vector (line: 1-2). 
They are trying to figure out the direction of the force vector. The correct direction of the force vector is in the 
opposite direction of the electric field vector because the charge on the particle is negative. The dyad considers 
the hint very seriously and attempts to draw a relationship between the particle and the direction of the electric 
field vector. Kip poses the problem as a choice between two conflicting options (line: 3). He also poses the 
question as motion of the charged particle, which is interesting because the problem does not explicitly mention 
motion. Instead, he uses motion as a way to reason about the forces acting on the particle. Rex incorrectly 
answers the question by deciding that the motion of the particle should be in the direction of the electric field 
(line: 4). He then correct himself (line: 6), and he says it should be opposite. He hedges a little, which serves to 
invite additional input (“shouldn’t it?”). Kip does not offer much of a reply, but they jointly decide it should be 
opposite. Through this process, they did not request a bottom-out hint. 

Discussion 
While self-explaining worked-out examples, peer collaboration, and learning by solving problems with 

an intelligent tutoring system are each effective methods for improving learning, very few studies have made 
explicit comparisons across interventions. Our particular interest was attempting to decrease the variance in 
outcomes for collaborative dyads. Prior literature on peer collaboration suggests that the outcomes can be highly 
variable (Dillenbourg, Baker, Blaye, & O'Malley, 1995), and in sporadic cases, individuals outperforming 
groups (Hill, 1982). One method for increasing collaborative outcomes is to provide some sort of structure or 
scripting to the interactions. In the present case, we chose to structure loosely the interactions in two ways. First, 
we provided instructions for guiding the interactions while studying examples, which we called joint-
explanation. The second method for structuring the dialog was to use a step-based tutoring system. 

The problem-solving outcomes of the dyads suggest they were able to solve the problems with less 
instructional guidance by the intelligent tutoring system than the individuals. They requested fewer on-demand 
hints and fewer bottom-out hints than the individuals. One reason why they may have requested less assistance 
from the system is due to the dialog between the partners. That is, they helped each other make sense of the top-
level hints. This possibility was demonstrated in two dialog excerpts. 

Another possible explanation is that both the examples and the ITS helped focus the students on 
problem-solving steps. To gain the full benefit of learning from example-studying, however, the steps also need 
to be derived and explained. The ITS required the students to enter steps, but did not require any justification for 
them. Therefore, it was the individuals’ and dyads’ responsibility to determine why they should take a given 
step. We hypothesized that the pairs more frequently engaged in the sense-making activity of asking why. The 
outcome of this sense-making activity is a focus on a shared goal (i.e., explaining a step; doing a step), which 
then improved their collaboration. The pairs were better able to stay synchronized on the same goals; insuring 
that they jointly produced visible progress through the steps, and generally focused on coordinated, joint work. 
Future work will focus on a complete analysis of the verbal protocols generated by the individuals and dyads to 
see if our hypotheses about the learning processes are supported. 

In summary, the results from this experiment demonstrate large effect sizes, when proven learning 
situations are combined. Self-explaining worked-out examples, peer collaboration, and learning while solving 
problems with an intelligent tutoring system have each shown strong improvements over baseline learning 
conditions (i.e., textbooks). How we maximize learning, via the combination of effective learning strategies, 
will help us construct new learning environments that go beyond the independent contributions of each single 
learning strategy. 

Endnotes 
(1) To download a free copy of Andes, please visit: http://www.andes.pitt.edu/ 
(2) For a complete copy of the materials and instructions used in this experiment, please contact the authors. 
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