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Abstract. Experimental data from a spatially explicit dynamic commons 
dilemma experiment is used to empirically ground an agent-based model. Four 
distinct patterns are identified in the data. Two naïve models, random walk and 
greedy agents, do not match the patterns. A more comprehensive model is 
presented that explains how agents make movement and harvest decisions. 
Using pattern oriented modeling the parameter space is explored to identify the 
parameter combinations that meet the four identified patterns. Less than 0.1% 
of the parameter space meets all the patterns. The resulting model can be used 
to design future experiments. 
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1   Introduction 

One of the main challenges for the use of agent-based modeling as a scientific method 
is to create empirically grounded models. Due to the stochastic and non-linear nature 
of agent-based models, calibration of models is a non-trivial task. The challenge of 
improving our methods for empirical grounding of agent-based models has been 
addressed in a number of recent papers [1,2,3]. Which approaches are appropriate 
depend on the specific research questions, available data and the dynamics of the 
candidate agent-based models. 

In this paper we will use experimental data, as we perform group experiments on 
commons dilemmas where participants make many decisions in a real-time dynamic 
environment representing a virtual common resource. We have a large amount of 
highly detailed data that captures each and every in-game decision made by our 
participants, presenting an interesting case study for exploring the challenge of 
developing empirically grounded agent-based models. Unlike traditional approaches 
in behavioral game theory we are not able to make use of maximum likelihood 
approaches since we do not know the underlying probability distributions of the 
models tested. Since the experiments illuminate patterns at different scales, we are 
testing the challenges of using pattern-oriented modeling for agent-based modeling of 
human behavior [1]. 



In the next section we will discuss the experiment and the patterns from the 
experimental data. We then compare the observed patterns with some naïve models. 
In the following section we discuss the agent-based model developed to mimic the 
observed patterns. We then calculate for a large set of parameter combinations 
whether the model fits observed patterns and define subsets of acceptable models.  

2   Spatially explicit commons experiments 

Many natural resource problems can be classified as commons dilemmas, a dilemma 
between the interest of the individual and the interest of the group as a whole [4]. A 
common-pool resource (CPR) is such a dilemma, where a resource is shared by 
multiple users. CPRs are characterized by the fact that it is difficult to exclude users, 
and units appropriated by one user are not available anymore for other users. 
Examples of CPRs include forests, pastures, irrigation systems, and fishing grounds. 

When individual interests dominate, a conflict on common resources may lead to 
the tragedy of the commons in open access situations [5]. However, many empirical 
studies have shown that people are able to govern common resources effectively [4]. 
A typical way to study the fundamental processes on how individuals are able to self-
govern themselves in such commons dilemmas are controlled laboratory experiments. 
In those experiments participants interact with an abstract resource during a number 
of rounds and derive monetary incentives. 

The experimental data used is part of a series of experiments performed to study 
how groups develop new institutional arrangements if they share common dynamic 
resources. For more information on the experimental design we refer to [6]. 

Participants were recruited from a large database of undergraduate students at 
Arizona State University during the Spring semester of 2007. The average age was 
21.4 years and 67% of the participants were male. Data used for this paper is a subset 
of the actual data, using only round two of the experiment. In the experiment, the 
participants first have a practice round on an individual plot, and the first round of the 
actual experiment is a one-person experiment. After round 2 participants are allowed 
to use text chat to coordinate their actions. We will use in the paper only data from 
round 2, before the participants start communicating. Data from 16 groups and 64 
individuals is used. 

In the experiment, groups of four randomly assigned participants share a renewable 
resource that grows on a 28 X 28 spatial grid of cells. Participants implicitly harvest a 
green token by moving their virtual avatar’s location on top of the token. They move 
their avatar by pressing the arrow keys (left, right, up, and down). There are two 
modes, implicit and explicit, that can be toggled by pressing the ‘M’ key.  In explicit 
mode one can move around without automatically harvesting tokens. When one 
wishes to harvest a token, they must press the spacebar when their avatar is on a cell 
with a token. 

The resource renewal rate is density dependent. The probability that a green token 
will appear on an empty cell increases as the number of green tokens neighboring that 
empty cell increases. The probability pt is linearly related to the number of neighbors: 
pt = p*nt/N where nt is the number of neighboring cells containing a green token, and 



N the number of neighboring cells (N = 8 because we use a Moore neighborhood). 
The parameter p is defined in such a way that the renewal of the resource is quick 
enough to be observed by the participants, but sufficiently slow that the participants 
experience a dilemma between immediate, individual benefits and longer-term, group 
benefits. If participants collect tokens as quickly as they can, there will soon be no 
tokens remaining on the screen. Once every token has been harvested, no further 
opportunity exists for any new tokens to be created.   

The participants have four minutes to collect tokens and each token is worth $0.02. 
Two treatments are considered: A low growth case with p equal to 0.01 and 25% of 
the cells initially populated with tokens, and a high growth case with p equal to 0.02 
and 50% of the cells initially populated with tokens. We have 6 groups for the low 
growth treatment and 10 groups for the high growth treatment. 

3   Patterns 

We discuss four different patterns discovered in our data analysis. These are the 
patterns we wish to replicate with our agent-based model. The first pattern is the 
number of tokens on the screen over time. Figure 1 shows the mean as well as the 
range (+/- standard deviation) for both the low and high growth conditions. 
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Fig. 1. Average number of tokens on the screen every five seconds for round 2. Left is the low 
growth case and right is the high growth case. The max and min refer to the average +/- one 
standard deviation. 

The second pattern is the relative inequality of tokens collected within a round.  
We calculated the share of tokens collected by participant i compared to the group 
total. Then we calculated the gini coefficient for each group. If all participants collect 
equal numbers within their group, the gini coefficient would be 0. If one participant 
takes everything, the gini coefficient would be 1.0. We find that the gini coefficient 
for the low growth rate experiments is higher on average compared to the high growth 
rate experiments: 0.23 vs 0.11. This means that there is more inequality when 
resource regrowth is low. 

 
 
 



Table 1: Average gini coefficients and standard deviations of groups, as well as the lower 
and upper boundaries used for the pattern oriented modeling. 

 Mean Stdev Lower value Upper value 
Low growth 0.2323 0.1294 0.1029 0.3617 
High growth 0.1124 0.0563 0.0561 0.1787 

 
 The average number of tokens collected by groups during the four minutes of the 

experiment is obviously lower for the low growth rate treatment compared to the high 
growth rate treatment. This information is used as the third pattern. 

 
Table 2: Average number of tokens collected per person, as well as the lower and upper 

boundaries used for the pattern oriented modeling. 
 Mean Stdev Lower value Upper value 
Low growth 274.0 63.75 210.25 337.75 
High growth 743.1 114.1 629.0 857.2 

 
The fourth pattern originates from our observation that participants have a 

tendency to continue in the direction they are moving instead of changing direction. 
There is a slight cost of changing direction (hitting a different key on the keyboard). 
Since we record every in-game action of every participant we can analyze how often a 
participant moves in the same direction until (s)he changes direction. In both 
treatments we observe that participants move in straight lines more often than they 
would if they were simply making random directional choices.In our pattern oriented 
analysis we clamp the number of moves in the same direction to ten straight moves, 
so any additional moves past the first ten is disregarded.. 
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Fig 2. Round 2 data for low growth rate (left) and high growth rate (right) for number of 

straight moves. As a reference we include the relationship when participants make random 
moves. 

 
Besides these four patterns we would like to explain, we extracted two patterns 

from the data that we will use as inputs: speed of movement and the use of explicit 
mode.  

First, we determine the percentage of participants that use the explicit mode. With 
the higher growth rate fewer participants use the explicit mode. In the model we 
assume an exogenous fraction of agents using the explicit mode during the round. 
More in depth analysis shows that participants do not frequently change their mode 



during the round. As a result we will use 30% explicit mode for the low growth 
treatment, and 15% for the high growth treatment. 

To determine the base speed of the participants, we calculated the average speed 
per second between 10 and 70 seconds. We ignored the first 10 seconds, since 
participants needed to get up to speed when the round started, and after 70 seconds 
some resources started to be depleted. Figure 3 shows that the distribution of the 
average number of movements per second can be approximated by a normal 
distribution with a mean of 3 and a standard deviation of 0.8.  

Given the mean number of key presses per second, we assume a normal 
distribution of speed variation per second. The data shows a higher standard deviation 
when the number of key presses per second is higher: stdev = 0.384 * Mean 
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Fig. 3. Distribution of average clicks per second (left). Relation between standard deviation 

and the number of clicks per second (right). 

4   Some naïve models 
We will compare the comprehensive model with some simple, naïve models. If naïve 
models can explain the observed patterns well, there is no need for a more 
complicated model. The naïve models we use are: 

- Random walk: agents are in implicit mode and randomly move around on 
the resource. 

- Greedy agents: agents always move towards one of the nearest tokens. 
We see in the Figure 4 that the random walk agents lead to a much lower number 

of tokens collected and therefore a much higher number of tokens in the resource. On 
the other hand, greedy agents rapidly reduce the resource size, much faster than 
within the range of observed patterns.  
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Fig. 4. Results of naïve model in relation with the empirical patterns. On the left side the 

low growth case and on the right the high growth case. 



The naïve models cannot explain the other patterns either. The random agents 
collect too few tokens (73 for low growth case and 173 for high growth case). The 
greedy agent is within the observed pattern of the low growth case (223), but too low 
for the high growth case (513). The agents change direction more frequently for both 
the random and the greedy agents compared to observed distributions. 

5   Model description 

The model simulates the token regeneration as has been implemented in the 
experimental software using time steps of 1 second. For high growth rate cases p is 
equal to 0.02 and for low growth rate cases p is equal to 0.01. Agents cannot pass 
through the borders. In the initialization, we allocate 392 (50%) or 196 (25%) tokens 
randomly on the unoccupied cells, for high and low growth respectively.  

Our experimental data tells us that some agents make, on average, more moves 
than others, and that an agent makes more moves in some seconds than other seconds 
as defined in the previous section. 

For every move the agent must decide where to go to. This module is based on [7], 
who developed an empirical model for a similar experimental environment. The basic 
idea is that each agent defines the value of each token at the screen as a target to move 
to. This value is built up by four components. 

- the closer a token is to the agent, the more valuable 
- the closer a token is to the current target, the more valuable 
- the more competing agents close to a token, the less valuable 
- tokens that are straight ahead in the current directional path of the agent are 

more valuable. 
As such we formulate the value of a token at location (i,j) as follows: 
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where agent density is the number of agents in radius RP3 around the potential 
target.  

One of the tokens will be drawn based on the relative value among all the tokens. 
When the agent reaches this position, it will select a new target. An agent in explicit 
mode does not consider a token in its same cell to be part of the eligible set of tokens. 

 
Using probabilistic choice, the probability of having a token at location (i,j) as the 

target is defined as 
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where β is the parameter that defines how sensitive agents are to differences in the 
value of the tokens.  

Based on the chosen target, the agent defines the direction of the target and decides 
to go up, down, left, or right. When a move is made, and the agent is on a cell with a 
token, the agent automatically collects the token when in implicit mode. However, 



when in the explicit mode, the agent needs to decide whether or not to collect the 
token. We assume that agents are more tempted to take the token when more tokens 
are around the cell, and the probability to collect the token is defined as 
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where x is the number of tokens in the eight cells of the Moore neighborhood 
divided by 8. The parameters a and b define at what density the probability is 50% 
(x=a) and how steeply the probability increases with higher values of x. 

Next to a few parameters we directly relate to the observations (speed and mode) 
we have eight parameters that we use for the calibration: P1, P2, P3, P4, RP3, β, a, b 

6   Models that meet patterns 

Pattern oriented modeling argues that acceptable models are those that are able to 
match all observed patterns. Given the stochastic nature of the models, matching 
observed patterns is defined as generating average statistics that are within defined 
ranges for the patterns. This is a somewhat subjective exercise, but since we 
performed a number of experiments, averages and standard deviations of the patterns 
can be determined. We simply assume that the acceptable level of generated averages 
of patterns lies between the average +/- standard deviation. 

The model is implemented in Mason [8] and we ran the model one hundred times 
for each parameter combination. For each of the eight parameters we vary the model 
for four different values, leading to 48 = 65536 parameter combinations (Table 3): 

 
Table 3: Parameter values used in exploring the parameter space for matching the four 

patterns. 
Parameter Description Parameter values 
P1  Weight of tokens nearby 0.1; 0.4; 0.7; 1.0 
P2  Weight of tokens nearby current target 0.1; 0.4; 0.7; 1.0 
P3  Weight of other agents nearby token 0.1; 0.4; 0.7; 1.0 
P4  Weight of clicking straight direction 0.1; 0.4; 0.7; 1.0 
Β Agent sensitivity to differences in values for tokens 1; 4; 8; 13 
A [explicit] parameter affecting threshold 0.1; 0.4; 0.7; 1.0 
B [explicit] Steepness of curve 1; 4; 8; 13 
Radius Radius to determine the number of agents nearby 

token 
1; 4; 7; 10 

 
Patterns 2 and 3 are not discriminating. However, pattern 4, the straight line 

movements of the avatars is met by only about 10% of the parameter combinations 
(Table 4). For the low growth case 2457 parameter combinations meet all four 
patterns, while only 90 parameter combinations meet all four patterns for the high 
growth case. 37 parameters combinations meet all patterns in both data sets. In those 
cases P1 is 0.7, P2 is 0.1, P3 varies between 0.4 and 1, P4 is 0.4, the radius is 10, β is 8, 
a and b vary between 0.1 and 1, and between 1 and 10, respectively. This indicates 
that agents tend to select targets based on the number of tokens around the target cell 
and the number of agents in the neighborhood. Since explicit mode is used by only a 



small fraction of the agents, the parameters a and b are not found to be discriminating. 
When 2 or more agents are in the radius of 10 around a token, this token is not 
appealing as a target, except when the token is one or two cells from the avatar. 

 
Table 4: The number of parameter combinations that meet the patterns for the low and high 

growth conditions. 
 Pattern 1 

Tokens left 
Pattern 2 
inequality 

Pattern 3 
Tokens collected 

Pattern 4 
Direction 

All 
patterns 

Low growth 29098 65530 47902 4264 2457 
High growth 7133 33029 39459 7296 90 

7   Conclusions 

In this paper we apply pattern-oriented modeling [1] to identify parameter 
combinations that meet empirical patterns from a number of human subject 
experiments. We find that less than 0.1% of the parameter space meets all of the 
patterns, and as such it helped to successfully narrow down the parameter space of 
acceptable parameter combinations. 

Although pattern oriented modeling has mainly been used in ecology, we think that 
this approach is also suitable for the empirical analysis of agent-based models in the 
social sciences.  
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