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Abstract 

To achieve improved sensitivity in cardiac biomarker detection, a batch incubation magnetic 

microbead immunoassay was developed and tested on three separate human protein targets: 

myoglobin, heart-type fatty acid binding protein, and cardiac troponin I. A sandwich 

immunoassay was performed in a simple micro-centrifuge tube allowing full dispersal of the 

solid capture surface during incubations. Following magnetic bead capture and wash steps, 

samples were analyzed in the presence of a manipulated magnetic field utilizing a modified 

microscope slide and fluorescent inverted microscope to collect video data files. Analysis of the 

video data allowed for the quantitation of myoglobin, heart-type fatty acid binding protein and 

cardiac troponin I to levels of 360 aM, 67 fM, and 42 fM, respectively. Compared to the previous 

detection limit of 50 pM for myoglobin, this offers a five-fold improvement in sensitivity. This 

improvement in sensitivity, along with the small sample volumes required, suggest the potential 

of this platform for incorporation as a detection method in a total sample analysis device. 

Introduction 

Due to their high sensitivity, biosensors have become a popular diagnostic tool for both early and 

rapid disease detection. Rapid detection is particularly important in cases of acute myocardial 

infarction (AMI) where prompt diagnosis is crucial for patient survival. The biomarker targeted 

by the biosensor is of key importance and the characteristics an ideal cardiac marker have 

recently been defined.
1 

These include both the rapid release of the biomarker into the blood for 

early detection and prolonged elevation for later assessment and confirmation, along with the 

quantitative assay possessing a high clinical sensitivity and specificity. The American College of 

Cardiology (ACC) and the American Heart Association (AHA) currently recognize a biomarker 

panel composed of myoglobin, cardiac troponins (cTnI), and creatine kinase MB (CK-MB) for 

the diagnosis of AMI.
2,3

 However, because CK-MB has a low sensitivity for AMI within six 

hours after an incident and cTnI is better at detecting  minor cardiac damage, it was not evaluated 

in this study.
2
 Instead, heart-type fatty acid binding protein (H-FABP) was included due to its 

early release following cardiac injury and potential when used as part of a panel with cTnI.
4-7

  

 Myoglobin is an oxygen-binding protein found in both cardiac and striated muscle, and is 

currently used as a routine biomarker for AMI.
8,9 

Its early release into the blood (increasing 1-3 

hours within the onset of myocardial necrosis), as well as relatively high plasma reference 

concentration (34 µg/L) illustrate several of the qualities desired in an ideal cardiac marker.
9 

However, because it may also indicate skeletal muscle damage, by itself myoglobin has shown a 

sensitivity of 75.9%, and a clinical specificity of only 25.0% for AMI diagnosis. In recent years 

H-FABP has also shown promise as an early cardiac injury marker in plasma.
4,7,10,11 

Owing to its 

lower concentration in skeletal muscle compared to myoglobin, rapid release into circulation, 

and potential to predict patient prognosis, H-FABP has received considerable attention.
5-7,12,13

 

Still, due to its release in other medical conditions, H-FABP alone shows only a 64% 

sensitivity.
5,14

 While no single marker has shown adequate diagnostic accuracy for AMI, a high 



sensitivity and specificity has been achieved using myoglobin and H-FABP as part of a 

biomarker panel along with cTnI.
5,8,10,12,14-16 

Even using biomarker panels, there still exists a 

need for more sensitive assays capable of analyzing multiple markers in a short time enabling 

serial measurements to be practically evaluated in a clinical setting. This capability would be 

beneficial not only in the diagnosis of AMI, but for the early detection of many diseases which 

could greatly improve prognosis.  

 Over the last few years a great deal of research has been devoted to the development of 

micro-immunoassay platforms allowing for the sensitive quantitation of varied target 

biomarkers.
17-25

 A particularly interesting subset of this research incorporates the use of magnetic 

micro- or nano-particles as the solid surface employed for primary antibody fixation and target 

trapping.
26-34 

Use of magnetic particles permits easy sample manipulation and separation from 

interfering species, as well as straightforward coupling to signal amplification and signal 

processing. 

 This work describes the development of a micro-immunoassay platform allowing for 

extremely sensitive quantitation. This system directly and indirectly addresses many the six 

metrics of an optimized immunoassay: increased sensitivity, reduced analysis time, reduced cost, 

lower sample volumes, ability to multiplex and operational simplicity.
35

 While the studies here 

are performed on an AMI biomarker panel composed of myoglobin, cTnI and H-FABP, this 

format is easily adaptable to the detection of limitless targets and may be incorporated as a 

detection method into a micro-total analysis system (µTAS) for the parallel detection and 

quantification of biomarker panels. 

 

Experimental 

Myoglobin Detection Antibody Conjugation to Fluorescein-5-EX, Succinimidyl Ester 

50 µg (50 µL; 1 mg/mL) of polyclonal rabbit anti-human myoglobin reconstituted in DI H2O 

(LSBio, Seattle, Washington) was added to 50 µL of 1 M sodium bicarbonate in a 1.5 mL 

capped vial. One milligram of fluorescein-5-EX, succinimidyl ester (FEXS, Invitrogen) was 

dissolved in 0.1 mL dimethyl sulfoxide (DMSO) and added dropwise to the polyclonal antibody 

(Pab) solution at room temperature. This was reacted in darkness at room temperature for 3 hours 

on a stir plate (Corning) and then placed at 4°C to continue the reaction overnight. The crude 

reaction mixture was added to a purification column with a 15,000 Dalton molecular weight cut-

off (Invitrogen). The fluorescently labeled antibody was separated on-column from unbound dye 

using 10 mM PBS with 0.15 M NaCl and 0.2 mM NaN3, pH 7.2 and collected in a single 

fraction. The purified FEXS-Pab solution was analyzed for absorbance measurements at 280 and 

494 nm (BioTeck Synergy HT Multi-Mode Microplate Reader). These measurements were used 

to determine the quantity of antibody present and extent of FEXS conjugation.
36

 

 

cTnI and H-FABP Detection Antibody Conjugation to NHS-Fluorescein 



250 μg (250 μL; 1 mg/mL) of polyclonal goat anti-human cTnI and 100 μg (100 μL; 1 mg/mL) 

polyclonal rabbit anti-human FABP were used as purchased in PBS buffer (cTnI: 0.1% NaN3; 

FABP: 0.02% NaN3, 0.1% BSA), pH 7.2. NHS-Fluorescein (Thermo Scientific) was dissolved in 

DMSO to a concentration of 10 mg/mL and added dropwise to the Pab solutions at room 

temperature (24 μL and 40 μL, respectively). This was reacted in darkness at room temperature 

for two hours on a shaker (Southwest Science LabMini MiniMixer). The crude reaction mixtures 

were added to dialysis cups (Thermo Scientific) with a molecular weight cut-off of 3,500 

Daltons. The labeled protein was dialyzed in 100 mM PBS with 0.02% NaN3 and 0.1% Tween 

20, pH 7.2 overnight. The dialyzed NHS-Fluorescein-Pab solutions were analyzed for 

absorbance measurements utilizing the same method as for anti-human myoglobin Pab. 

Preparation of Capture Antibody and Particles 

Biotinylated anti-myoglobin Mab (bMab; 100 μL; 1.4 mg/mL; LSBio) was incubated with 3 μL 

of BioMag paramagnetic particles having an average diameter of 1.6 μm and ranging in diameter 

from 1.0-2.0 μm (Quagen, Inc.). The total reaction volume was diluted to 300 μL with PBS at pH 

7.2 containing 5% BSA, 0.1% Tween-20, and 0.1% NaN3. This was incubated for 3 hours on a 

shaker (Southwest Science LabMini MiniMixer) at room temperature and then stored at 4°C 

until used. Biotinylated anti-cTnI Mab (50 μL, 2 mg/mL, LSBio) and biotinylated anti-FABP 

Mab (45 μL, 2.33 mg/mL, LSBio) were prepared in the same way. 

Sandwich Immunoassays 

Purified human myoglobin (7.33 mg/mL) was purchased from MyBioSource, LLC (San Diego, 

California). Standards ranging in concentration from 0.62 fg/mL to 25 ng/mL (36 aM to 1.5 nM) 

were created through serial dilution of the stock myoglobin. Following sample preparation 30 µL 

of each Mb standard was mixed with 30 µL of the bMab-BioMag colloid and incubated at room 

temperature on a shaker for 1 hour. Following the incubation, 4 µL of the detection polyclonal 

antibody-FEXS solution was added to each sample and incubated in the dark at room 

temperature for 1 hour with shaking. After the incubation, samples were washed 3 times using 60 

µL of PBS buffer and then exchanged to a final volume of 30 µL. Three separate 10 μL droplets 

were analyzed for each sample, with a total of ten analyses performed for each concentration. 

Purified human cTnI (1.07 mg/mL) and H-FABP (2.2 mg/mL) were purchased from Life 

Diagnostics (West Chester, Pennsylvania). Standards ranging in concentration from 10 fg/mL to 

10 ng/mL (0.42 fM to 0.42 nM) for cTnI and from 1 fg/mL to 10 ng/mL (67 aM to 0.67 nM) for 

H-FABP through serial dilution of the initial stock solutions. Following sample preparation 

samples were prepared and analyzed in the same way as myoglobin.  

Data Collection 

Data were collected using an Olympus IX70 inverted microscope with a charge coupled device 

(CCD) camera connected to a computer capable of image-capture (Q-Imaging, Surrey, BC). 

Capture settings for the CCD camera were optimized for the observation of strong fluorescent 



signal clusters with minimal contribution from background pixels through studies utilizing 

biotinylated fluorescein (Sigma-Aldrich) as a positive control. Biotinylated fluorescein was 

chosen as a control due to the strong binding relationship between biotin and the streptavidin on 

the BioMag particles and a common fluorophore with the experimental immunoassays. Offset 

was adjusted to minimize background of a washed sample without reducing pixel intensity from 

signal, values between −1120 to 440 were tested. With the offset held constant at 100, gain 

values between 4.7 to 15.0 were explored to maximize the sensitivity of the assay without 

compromising the dynamic range. Optimal image quality was observed at an offset of 100 and 

gain of 13.8. Once established, capture settings were held constant for all experiments performed 

on cardiac targets. 

Multiple 10 µL-sized droplets were analyzed for each sample concentration using a 

microscope slide having a small hydrophilic zone encompassed by a hydrophobic Teflon coating 

(Tekdon Inc., Myakka City, Florida). A cylindrical rare earth magnet (2.5 cm diameter, 0.3 cm 

thick) placed 2 cm above the droplet was used to generate the magnetic field (Magcraft, Vienna, 

VA) and collect structures for ~30s. Supraparticle structures approximately 15 µm in length were 

observed. The magnet was secured to a DC motor by a 7 cm metal shaft allowing for rotation 

and controlled via a USB 4-motor stepper controller (Trossen Robotics). The controller was 

connected to the motor through a ribbon wire to protect it from fluids used during the 

experiment. The magnet was rotated at a constant velocity during assays (30 rpm), and 

illumination from a mercury lamp (Olympus) was passed through the appropriate filter cube and 

a LCPlanFl 40X/0.60 objective to excite the assay. Emitted fluorescence was collected using the 

QIACAM FAST cooled Mono 12-bit (QImaging) CCD camera and stored as video files. 

Data Analysis 

Video was analyzed using Image J (National Institute of Health, Bethesda, Maryland). The 

images (492 x 396) were captured at an exposure time of ~120 ms (gain, 13.8; offset, 100) which 

translates to a rate of  ~12 frames/s. Fluorescence intensity measurements were collected by 

manually selecting all rotors (areas of interest, ROI) within a video frame and summing the 

fluorescence intensity. This was performed for ten randomized frames per video and the resulting 

intensities were averaged to attain a single average fluorescence intensity value for a given trial. 

Ten trials per sample concentration were averaged per experiment. 

Results/Discussion  

Assay Optimization and Protein Detection 

Three human cardiac biomarkers, myoglobin, cTnI, and H-FABP, were quantified using a 

singleplex immunoassay detection system. Proteins were detected by adjusting the hardware 

settings such that images with visible, yet unsaturated, signal clusters with minimal background 

contribution were captured. Using an exposure time of 120 ms, signals generated from low 



concentrations of proteins (down to 36 aM of myoglobin) were detected above the background 

intensity (Figure 1).  

Control experiments were performed at a zero antigen concentration, exposing 

paramagnetic particles with immobilized capture antibody to fluorescently-labeled detection 

antibody. Dark structures resulted, with minimal diffuse fluorescence suggesting that little or no 

nonspecific binding is present. The average fluorescence intensity of the entire image was noted 

(including pixels from all areas, including diffuse fluorescence between rotors) since distinct 

signal clusters were not visible. This is a more stringent test for background quantification, since 

the noise from all pixels is included.  

At low sample concentrations, below 360 aM for myoglobin, the signal becomes highly 

variable and the uncertainty in the measurements was greater than 10%. When the uncertainty in 

a measurement falls below 10% the signal may not only be detected, but quantified with a 

reasonable level of certainty.
37

 This distinction is important as it differentiates a qualitative 

positive result from the ability to distinguish when a biomarker is present in concentrations that 

correspond to diagnostic cut-off values. For the optimization of a clinical assay it is the 

quantitation limit that is of interest. 

 



Figure 1 (A and B) Images showing fluorescence of high sensitivity immunoassays at the 

detection limit (below the limit of quantification) for 36 aM myoglobin (B) compared to 

background (A). (C and D) Surface plots illustrating the difference in fluorescence intensity 

between background (zero concentration, C) and signal clusters representing specific signal (36 

aM myoglobin, D). While the signal clusters are not as distinct as those observed for higher 

target concentrations, this represents the lower limit detectable above zero concentration. 

Quantitation Limit 

Measurements of cardiac targets permitted the quantitation of myoglobin to a minimal 

concentration of 360 ± 2.5 aM with an observed detection limit of 36 ± 2.5 aM, and a linear 

standard curve from 360 aM to 14 fM (R
2
 = 0.996; Fig. 2A). H-FABP and cTnI were quantified 

to limits of 67 ± 3 fM and 42 ± 0.01 fM, with linear standard curves from 67 fM to 67 pM and 42 

fM to 42 pM, respectively (R
2
 = 0.998; Fig. 2B and R

2
 = 1; Fig. 2C). The optimized collection of 

the video sets allowed for improvement in detection over several orders of magnitude compared 

to previously collected myoglobin data, from 50 pM to 36 aM (Table 1).
30

 The limits of 

quantitation observed in the present work compare favorably to the metrics of a fully optimized 

immunoassay, achieving detection on the same order of magnitude as fundamental limitations. 

At low numbers of molecules, quantification becomes impossible due to Poisson statistics.
37 

While targets may be observed below this limit, they may not be quantified due to high levels of 

uncertainty in the measurements made.  

 

 Previous 

Studies
30 

Commercial 

Techniques
38,39 

Present 

Work 

Optimized 

Values 

Plasma 

Concentration
40 

Myoglobin 50 pM
 

1.5 nM 36 ±2.5 

aM 

33 aM 2.5 nM 

H-FABP -- 6.7 pM 67 ± 3 aM 33 aM 110 pM 

cTnI -- 83 pM 42 ± 0.01 

fM 

33 aM 62.5 pM 

Table 1 Quantitation limits for immunoassay techniques. Optimized values represent the limit to 

immunoassay quantitation in a 10 μL sample volume. 

 

 Several differences exist in both the data acquisition and data analysis performed in this 

work that account for the observed improvement in quantitation ability compared to previous 

studies.
30

 In terms of data acquisition, previous work noted differences in signal strength 

depending on their location in the field of view, increasing variation in both signal and noise. 

The changes to optics and acquisition conditions eliminated this issue, producing rotors with 

similar signal intensities independent of their location. Optimizing acquisition conditions through 

control studies with b-Fluorescein resulted in an increase in exposure time from 50 to 120 ms, as 

well as reductions in gain (from 2000 to 13.8) and offset (from 2600 to 100).
30

 The increase in 

exposure time still allowed clear visualization of rotor rotation while reducing the impact on 

noise compared with a shorter exposure. With a lowered gain, the amplification of the image 



collected by the CCD camera is reduced. Since both the signal and noise are reduced, this 

lowered value will improve the signal-to-noise ratio (S/N) and reduce the background intensity 

and noise while specific signal remains visible. By contrast, reducing the offset allows lower 

intensity values for both specific signal and background fluorescence to be captured. While this 

increases both the background intensity and noise as well as signal intensity and noise, this 

minimal value assures that clusters from low signal concentrations may be observed. By 

improving the signal-to-noise ratio of the captured video files lower intensity signals may be 

differentiated from background noise, improving assay sensitivity.  

Along with the changes made to data acquisition conditions, the process of data analysis 

has also been altered to increase the signal power obtained from each sample.
30

 In previous work 

a small region of each image (150 x 120 pixels), containing roughly two of the 10-15 signal 

clusters present overall, was analyzed. Additionally, while signal clusters contributed to less than 

30% of the region selected, the average pixel intensity was calculated for the entire selected area, 

including both signal and noise.
41

 Signal processing studies performed on this data conclude that 

by calculating pixel intensity for the entire image selection, and by only two of the signal clusters 

contributing to target quantification, a large portion of the signal power is lost while the noise 

power is increased.
41

 By manually segmenting data and selecting all rotors in each frame (492 x 

396 pixels) as was done in this work, both issues observed with previous analysis methods are 

solved. The overall noise power is reduced while signal power is increased.
41

 This, coupled to 

the increase in S/N through optimal data acquisition conditions, allowed for a five-fold 

improvement in assay sensitivity.  

In terms of the mass action equilibrium and detection, sensitivity is maximized by using 

an excess of both primary and secondary antibodies, and heavy labeling of secondary antibodies 

(average among all targets of 4 labels per antibody). Given that the paramagnetic particles have a 

binding capacity of 8.2 nmol/mL (manufacturer specifications), the binding capacity for the 

primary antibody preparation is 82 nM. Using fundamental relationships from basic immunology 

the equilibrium reaction between the protein and primary antibody can be described as 

 

𝐾𝑒𝑞 =  
[𝐴𝑔𝐴𝑏1]

[𝐴𝑔][𝐴𝑏1]
  (1) 

 

where [AgAb1] is the concentration of bound antigen, [Ag] is the concentration of antigen, [Ab1] 

is the concentration of primary antibody, and Keq is the equilibrium constant. Given a Keq of 10
9
 

M
-1

, the equilibrium concentration of bound antigen for a myoglobin sample at a concentration 

of 3.6 fM is 0.3 pM, about one hundred times the concentration of target present. A similar 

calculation can be performed for the reaction of bound antigen with secondary antibody, giving 

an equilibrium concentration of [AgAb2] in the nM range. With these experimental conditions it 

can be determined that nearly all antigen is bound in the sandwich immunoassay, resulting in a 

linear response for the portion of the sigmoidal immunoassay curve examined.  

 At myoglobin concentrations below 36 aM, uncertainty is too high in the measurement 

achieve satisfactory quantitation. Although the lowest concentrations detected could not be 



quantified due to high variations in signal, the potential exists to improve quantitative sensitivity 

through coupling to available signal processing approaches.
41

 Using this approach, the detection 

limit of previously published data has been improved by a factor of 100. If the same factor of 

improvement and reduction in uncertainty for a given sample was realized for the data collected 

in this work, quantitation of the lowest sample data collected would be possible. 
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Figure 2 Standard curves showing fluorescence intensity data for the sandwich immunoassays 

performed on cardiac biomarker targets. a. Plot showing the quantitation of Myoglobin down to 

a minimal concentration of 360 aM. Inset shows the linear range to 14.7 fM. b. Plot showing the 

quantitation of h-FABP to a minimal concentration of 67 fM with inset showing the linear range 

to 67 pM.  c. Plot showing the quantitation of cTnI to a minimal concentration of 42 fM with 

inset showing the linear range to 42 pM. 

Repeated experiments exhibit a similar result. Figure 3 shows the average fluorescence 

intensity of data collected from four separate experiments with independent dilutions of a 

myoglobin stock sample. Error bars show the standard deviation of each data set. Differences in 

overall fluorescence intensity were observed between experiments, due to aging of the mercury 

lamp used to illuminate samples. Even when differences in fluorescence intensity were observed 

between days, the same linear relationship was observed. 
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Figure 3 Standard curve showing the average fluorescence intensity versus concentration for the 

myoglobin sandwich immunoassay for four different experiments using the target protein. The 

inset shows the lower concentrations on the standard curve, error bars represent the standard 

deviation among data sets. Fluorescence intensity has been normalized to the background 

intensity (zero concentration) for each data set. 

Assay Evaluation 

As has been noted previously, in static immunoassays background fluorescence is a serious 

concern that limits the ability to differentiate specific signal from noise. Signal processing 

strategies offer the potential to improve detection limits through the identification of specific 

signal generating surfaces and reduction of background elements to reduce the variation 

observed in signal intensity for low concentration samples.
41

 Surface localization is of use in 

image processing because it creates distinct signal objects that are easier to detect and quantify 

compared to signal spread over the entire field of view. Creating these distinct signal objects 

allows for segmentation of collected images and the quantitation of fluorescent species bound in 

the immunoassay without the influence of diffuse background fluorescence.  

The potential to optimize quantitation capabilities also exists through the use of new 

signal input patterns. Lock-in amplification is a commonly employed method to recognize a 

specific input signal in the presence of noise.
42

 This method allows an input signal modulated in 
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amplitude to be matched to a reference signal with the same periodicity and amplified while 

background noise is not recognized and is effectively removed. It has been used in previous work 

to achieve detection limits in the pM range.
30,32

 However, because the reference signal generated 

by lock-in amplification is a sine wave, its correlation with the input wave is imperfect and 

signal power is lost. This has been addressed in part by the development of a new signal 

processing method that maintains the input signal modulation but uses a new waveform as the 

reference signal.
37

 While this approach was successful in improving quantitation, using 

autocorrelation analysis to recognize more complicated input patterns could improve the 

distinction between signal and noise and increase the slope of the regression line at low sample 

concentrations.  

Other immunoassay techniques have worked on improving quantitative sensitivity for 

protein targets.
17,23-25,33,34

 Compared to those studies that were performed using traditional 

laboratory equipment,
23-25,33,34

 the assay investigated in this work achieved superior sensitivity 

(aM to fM range compared with typical nM sensitivity) using shorter incubation times. Another 

study discussed the development of a microchip-based immunoassay for cTnI detection.
17

 

Movement to the chip format allowed for shorter analysis times and easy adaptability to portable 

devices and multiplexed analysis. While offering an improvement over this work in terms of 

analysis time, the sensitivity achieved in this work was superior (fM compared with pM) using a 

comparable sample volume.  

 Many studies have reported on the improved sensitivity of cardiac diagnostic ability with 

the use of a biomarker panel as opposed to a single target.
5,8,10,12,14-16

 One consequence of this is 

that parallel detection of targets from a single sample is desirable. Along with the potential to 

optimize this immunoassay platform for sensitive analyte quantitation, the use of magnetic 

microparticles offers the ability to move from the batch incubation assay conducted within this 

work to one performed on a microchip as part of a total sample analysis system. Easy 

manipulation of the magnetic solid surface through an applied magnetic field allows for the 

containment of surfaces functionalized for the capture of different targets in separate regions of 

the microchip. Following target isolation on chip through separation science techniques, 

individual species may be flushed into appropriate detection chambers and quantified. The linear 

range of this technique may also be extended through the dilution of samples investigated, or use 

of smaller sample volumes, allowing the assay to be tailored to meet detection needs as required 

for diagnostic or disease monitoring purposes. 

Conclusions 

Dispersed magnetic beads were utilized in a batch incubation format to conduct sandwich 

immunoassays on three cardiac biomarker targets. Following sample preparation 10 μL droplets 

were manipulated through variations in an applied magnetic field, and the periodic change in 

observed fluorescence was captured as a video file. Analysis of video utilizing ImageJ allowed 

the superior detection of myoglobin (360 aM), H-FABP (67 fM) and cTnI (42 fM) compared to 

previous results.  



 Thus, a magnetic bead immunoassay platform was demonstrated utilizing simple batch 

incubation and a modified microscope slide. This platform has the potential to be incorporated 

into a full sample analysis chip as a quantification method for biomarker panels while 

maintaining sensitive detection capabilities, and offers the ability to couple results to more 

sophisticated signal processing approaches for the detection of low sample concentrations 

independently from background noise. In its current form this system directly addresses many of 

the six metrics of an optimized immunoassay. Incorporation of the assay into a μTAS could 

further these efforts by affording the ability to multiplex and reduce analysis times while 

maintaining the high sensitivity, low sample volume, and operational simplicity achieved herein.  
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