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Abstract

In this Letter we report a method for enhancing mixing of a passive tracer in an electro-osmotic flow in a rectangular microchannel. A time-
periodic electric field across the microchannel, filled with an electrolyte solution, is applied in order to realize a well-mixed state. A random
perturbation to the time-periodic electric field is introduced in order to break the invariant tori of the system and achieve better mixing results.
It is shown that under such period-modulation the enhancement effect increases with the strength of the modulation, and it is much reduced as
diffusion is increased.
© 2007 Elsevier B.V. All rights reserved.

PACS: 47.61.Ne; 47.81.Lk; 47.52.+j; 47.51.+a
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1. Introduction

In recent years, flow in microfluidic devices has become
an active area of research. Current progress in fluid dynamics
at the micro-scale level [1,2], and the development of minia-
turized devices have been key factors in this increased in-
terest. Microfluidic devices have been widely used in chem-
ical processes [3,4], biomedical and pharmaceutical indus-
tries [5–8], aerospace technologies [9,10], electronic cooling
[11–13], etc.

From the range of microfluidic devices developed up-to-
date, considerable attention has been devoted to those using
electrolyte solutions for rapid medical diagnosis and chemi-
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cal and biological analyses, among other applications, since
they offer advantages over pressure-driven flows [2,14–16]. Ef-
ficient mixing of reagents in these systems is often difficult
to achieve because at small scales (typically < 100 µm), vis-
cous effects are very important and force the system to operate
in laminar regimes [17,18]. Under these circumstances, con-
ventional techniques for mixing and transporting fluids, which
require sufficiently large Reynolds numbers, become ineffec-
tive and/or complicated to use, and new alternatives are thus
necessary.

Several passive [18–20] and active [21–23] mixers have been
developed to achieve mixing in electro-osmotic flows in mi-
crochannels with encouraging results. In a previous work [24],
a combination of steady and time-periodic electric fields across
a microchannel filled with an electrolyte solution was pro-
posed to realize a well-mixed state. The longitudinal steady
electric field combined with constant surface electrical charges
on both top and bottom walls, drive the primary flow in the
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Fig. 1. Electrode arrangement for transverse electric field. A steady primary
flow is in the x-direction perpendicular to the yz-plane.

longitudinal direction. In addition, secondary time-dependent
external electric fields, orthogonal to the top–bottom steady
fields, were applied along the side walls of the channel, as il-
lustrated in Fig. 1, in an alternating on–off switching. It was
shown that, as a consequence of this simple on-and-off peri-
odic switching in the secondary transverse electric field, rapid
and efficient mixing could be achieved. An advantage of this
method, with respect to others proposed in the open litera-
ture, is that such operating condition could be implemented
in practice by placing two micro-electrode pairs on the lat-
eral walls of the channel (see Fig. 1), and turning on and off
each electrode pair for one half period. To fully implement
the aforementioned strategy, the effects of the side-walls of
the channel cross section should be considered. Those effects
were neglected in the slip-driven model of Pacheco et al. [24],
which is valid so long as the Debye length is small compared
to both (width and height) length-scales. Such limitation is re-
moved in the present work and the exact three-dimensional
electro-osmotic flow governing-equations, which include the
effect of the electric double layers, are used to study the mixing
process.

In this study we show that by introducing a random modu-
lation of the transverse electric field, mixing of a passive tracer
in an electro-osmotic flow through a microchannel can be im-
proved. The successful application of stochasticity to break
invariant tori (e.g., [25,26] to meso-scale flows) as well as res-
onant mechanisms to achieve uniform mixing (e.g., [27–29] in
the context of micro-scale flows), have been prime motivations
of the present analysis. When the applied electric field under-
goes randomization, the Kolmogorov–Arnold–Moser (KAM)
curves break up, the chaotic areas expand and the quasi-periodic
areas shrink. This mixing effect becomes more noticeable as
the strength of the perturbation and the period of the trans-
verse electric field are increased. The numerical results pre-
sented here suggest that the effectiveness of this randomization
protocol becomes less pronounced in the presence of strong dif-
fusion.
2. Problem description

We focus on the analysis of a three-dimensional electro-
osmotic flow in a long channel of rectangular cross section with
height 2H and width 2W .

The electrolyte solution is considered to be Newtonian and
incompressible. The primary motion of the fluid is in the longi-
tudinal direction of the channel (along the x-axis), driven by a
constant electric field EL. The transverse motion of the fluid in
the yz-plane is driven by a secondary electric field ET (y, z, t)

transverse to the primary flow direction. This flow is governed
by the Navier–Stokes equations driven by electric body-forces
with no-slip boundary conditions on the walls of the rectangular
channel.

2.1. Governing equations

Assuming that: (i) the induced electric potential is small
compared to the thermal energy of the ions and (ii) the electric
double layer is thin, the governing equations in dimensionless
form are given as

(1)∇ · u = 0,

Re(St ∂tu + u · ∇u)

(2)= −∇p + ∇2u − K2ψ(CE i − ∇⊥φ − C0∇⊥ψ),

(3)∇2⊥ψ = K2ψ,

(4)∇2⊥φ = 0,

where u(x, y, z, t) is the nondimensional velocity vector, t is a
dimensionless time, p is the normalized pressure, and φ and ψ

are the normalized electric potentials due to an external electric
field and due to the electric charge at the walls, respectively. In
the set of equations, Re = ρUcLc/μ is the Reynolds number,
St = Lcω/Uc the Strouhal number, K−1 = (Lcκ)−1 is a di-
mensionless form of the Debye length, and C0 = ζ̂0/LcÊ0. The
constant CE = ÊL/Ê0, on the other hand, is a quantity which
measures the strength of the electric field along the channel ÊL,
to that of the transverse field Ê0, and determines the residence
time of the reagent.

The variables in Eqs. (1)–(4) have been scaled as follows:
space variables by the characteristic length Lc = 2H , veloc-
ity components by the characteristic velocity Uc = εÊ0ζ̂0/μ,
pressure by μUc/Lc, electric potential ψ̂ with ζ̂0, electric po-
tential φ̂ with LcÊ0, time with 1/ω. The electrical permittiv-
ity of the solution is ε, ζ̂0 is a constant zeta potential at the
walls, and ρ and μ are the fluid density and viscosity, ω is
a characteristic frequency of the transverse electric field, and
κ−1 the Debye length (used to describe the thickness of the
electric double layer). In Eq. (2) the last three terms in the right-
hand side correspond, respectively, to the normalized axial elec-
tric field EL, the transverse field ET (y, z, t) = −∇⊥φ, with
∇⊥ = j∂/∂y + k∂/∂z, and the induced electric field due to the
zeta potential ψ . Note that the electric field and fluid flow equa-
tions are decoupled due to assumptions (i) and (ii) above. Thus,
using the Debye–Huckel approximation, the electric potential
ψ(y, z) now satisfies a linearized form of the two-dimensional
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Poisson–Boltzmann equation (3). On the other hand, the elec-
tric potential φ(y, z, t) can be obtained by solving Eq. (4) along
with the boundary conditions of Fig. 1.

We can further simplify Eq. (2) by adding the C0K
2ψ∇⊥ψ

term to the pressure gradient to obtain a pseudo-pressure p̂ =
p − 1

2C0K
2ψ2. Thence, the transverse velocity field is solely

a function of the potential φ, whereas the longitudinal electric
field that drives the flow is a function of CE alone. In the limit
of small Reynolds number, the convective nonlinear term in the
Navier–Stokes equations is negligible, and Eq. (2) is reduced to
the following linear equation:

(5)Re St ∂tu + ∇p̂ = ∇2u − K2ψ(CE i − ∇⊥φ),

where the unsteady term on the left-hand side of Eq. (5) is sig-
nificant only for high-frequency unsteady flows.

Since the electro-osmotic flow considered here is solely
driven by the electrical body force term in the right-hand side
of Eq. (5), which can be computed independently of the ve-
locity field, then we can decompose the velocity vector u into
the sum of two contributions: the primary electro-osmotic flow
along the longitudinal direction of the channel uL = u(y, z)i,
and the transverse flow uT = v(y, z, t)j + w(y, z, t)k, driven
by the transverse electrical field. These two velocity fields are
decoupled in the limit of small Reynolds numbers considered
here, so that Eq. (5) can be re-written as

(6)
∂p̂

∂x
i = ∇2⊥uL − K2ψCE i,

(7)Re St ∂tuT + ∇⊥p̂ = ∇2⊥uT + K2ψ∇⊥φ.

Note that the velocity field is a function of y and z only.
The equations above have to be solved together with the

continuity equation (1) for each velocity uL and uT , and for
the electrical potential equations (3) and (4), subject to no-slip
boundary conditions for the velocity on all walls, given as

y = 0,1: uL = uT = 0;
(8)z = 0, a: uL = uT = 0,

where a = 2W/2H is the width-to-height aspect ratio, along
with prescribed values of the electrical potential ψ on the walls:

y = 0,1: ψ = 1;
(9)z = 0, a: ψ = 0.

2.2. Stochastic switching protocol

We now discuss the switching protocol that will make use
of stochasticity to enhance the quality of mixing of this electro-
osmotic flow. Due to the fact that the unsteady transverse flow
ET is a function of the electric potential φ, the linearity of the
problem for φ allows us to write

φ(y, z, t) = φ1(t)F1(y, z) + φ2(t)F2(y, z)

(10)+ φ3(t)F3(y, z) + φ4(t)F4(y, z),

where the functions Fi(y, z), for i = 1,2,3,4, are solutions of
the Laplace equation (4), with Dirichlet boundary conditions
Fig. 2. Switching protocol α when random modulation is introduced. T = 20
and ε = 1.

chosen such that φj = δij ; that is, the function F1 is obtained
from solving Eq. (4) with (φ1, φ2, φ3, φ4) = (1,0,0,0), F2
from the solution of Eq. (4) with (φ1, φ2, φ3, φ4) = (0,1,0,0),
and so on.

Following the strategy proposed in [24], we define the
switching scheme in terms of amount of time the φi ’s (φ1, φ2,

φ3, φ4) are on and/or off as follows: let (φ1, φ2, φ3, φ4) =
(0,1,0,0) for α > 0, and then switch to (φ1, φ2, φ3, φ4) =
(0,0,1,0) for α < 0, where α represents a time-like interval
of variable length, and is defined as

(11)α = sin

(
2πt

T
∓ γ

)
± εβ.

In Eq. (11), β is a random number whose numerical value
lies between ±1 and acts as a vertical shift that modifies the
values of α above and below zero, whereas γ = arcsin(εβ) is a
phase shift as shown in Fig. 2. In the figure, the value of σ is
related to the phase shift γ by σ = 1/2 − γ /T , and represents
the fraction of the period T in which the value of α > 0. By
symmetry, an equivalent protocol could be applied reaching the
same results by letting (φ1, φ2, φ3, φ4) = (1,0,0,0) for α > 0,
and then switching to (φ1, φ2, φ3, φ4) = (0,0,0,1) for α < 0.

In the proposed scheme, we ensure that within the period T ,
φ2 and φ3 are on/off only once. This is achieved by setting the
value of the shift 0 � ε � 1. Clearly, a small value of ε will
provide a small strength of the perturbation β . Also note that
Eq. (11) does not modify the period T as shown in Fig. 2, and
by setting εβ = 0 the boundary conditions for φ reduce to those
of [24], i.e., φ2 and φ3 are on or off for half the period. As will
be shown next, the key parameter for achieving chaotic mixing
is demonstrated to depend on both the period T as well as the
strength of the stochastic modulation εβ .

2.3. Convection-diffusion equation for the dispersion of a
solute

The miscible dispersion of a solute into a flowing fluid in a
non-uniform velocity field in a circular capillary was first an-
alyzed by Taylor [30,31]. A slug of solute with a shape of a
cylinder of the same diameter as the capillary was ‘inserted’
into the system while a solvent fluid was moving with a par-
abolic velocity profile. The major dispersion mechanisms for
this problem were found to be both axial convection and ra-
dial diffusion. The problem studied here is slightly different
from Taylor’s; the solute initially is a small blob located at the
center of the channel, instead of occupying the entire cross sec-
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tion. The governing equation for the dispersion of a solute in a
solution is the convection-diffusion equation. In dimensionless
terms, this is given as

(12)St
∂c

∂t
+ ∇ · (cu) = 1

Pe
∇2c,

where c is the reagent concentration and Pe = UcLc/Dm, rep-
resenting the ratio of the diffusion over the convection time
scales, is the Péclet number and Dm is the mass diffusivity.
For large Péclet numbers, convective-transport dominates over
diffusive-transport. Thus, by promoting transport by convec-
tion, dispersion of the reagent in the flow field can be enhanced.
In such diffusion-limited cases, the diffusion effects can be ne-
glected, so that the reagent just convects with the fluid along the
local instantaneous streamlines. Although much can be learned
from the study of the trajectories of passive tracer particles,
the results are only qualitative since diffusion is equivalent to
adding noise to trajectories, which changes completely the na-
ture of the system. Therefore, it is important to provide the
information on the dispersion of the reagent in the flow field
by solving Eq. (12).

2.4. Numerical methodology

Computer simulations of the flow in micro-scale systems
enable easy control of the flow parameters and extensive data
collection, while physical microchannel devices enable veri-
fication testing. In an experiment using an actual device, the
microchannel gap is typically of the order of 100 µm or less,
whereas the average velocity has a value of about 0.02 cm/s
[32,33]. Electric fields can be generated using platinum elec-
trodes placed on the sides of the walls taking the form of bi-
ased square waves. The periodic component of these waves,
usually varies at frequencies between 0.5 Hz and 10 Hz. The
kinematic viscosity of water ν at room temperate is approxi-
mately 10−6 m2/s; thence the value of the Reynolds number
(Re = U2H/ν) is then about 0.04. For typical applications such
as mixing in aqueous solutions, Péclet numbers in the range of
10 < Pe < 105 are common, where the larger value corresponds
to macromolecules such as proteins, as indicated by Stone et
al. [34]. On the other hand, it is also important to note that
in continuous-flow systems, the concept of distribution of res-
idence times is relevant [35,36]. In the context of the present
work, if the initial packets of reagent spread too much in the
longitudinal direction then cross sectional mixing may be of lit-
tle use. Thus, we calculate here the residence time as the time
required for a reagent parcel to pass from the entrance to the
exit of the microchannel. This residence time, RT , is then ap-
proximated as the ratio of the interior volume of the device to
the flow rate of the passing solution. A typical value for a chan-
nel of length of 500 µm and an axial velocity of 2.0×10−7 m/s
is RT = 2500 s.

To illustrate the promising features of this enhanced mix-
ing approach, we consider typical values of the geometrical
and physical parameters of the microchannel and the electrolyte
solution, respectively, and use them along with the governing
equations to study the mixing enhancement of this electro-
osmotic flow when the proposed stochastic protocol is applied.
Thus, the rectangular cross section of the channel is chosen to
have an aspect ratio of a = 2. We set the dimensionless Debye
length K−1 = 0.01, and the transverse electrical field parame-
ter CE = 1/100. The dimensions of the channel are Lx = 5,
Ly = 1, Lz = 2. A 400 × 120 × 240 grid mesh is used, re-
spectively, in the x-, y-, and z-directions of the channel. Non-
uniform grids, which are stretched away from the vicinity of the
walls using a hyperbolic tangent function, are used in the chan-
nel cross section, whereas uniform grids are employed along
it. The unsteady governing equations have been considered in
a Cartesian coordinate frame and discretized on a staggered
mesh by central second-order accurate finite-difference approx-
imations. The resulting discretized system is then solved by a
fractional-step procedure with the Poisson equation for pressure
being inverted with a Multigrid method. The time advancement
of the solution is obtained by a semi-implicit scheme with the
Adams–Bashforth method for the explicit terms and the Crank–
Nicholson method for the implicit ones as described in [37],
where further details of the procedure can be found. We ob-
served that twelve mesh points inside the Debye boundary layer
were sufficient to achieve grid-independent results. The two-
dimensional elliptic equations for φ and ψ were solved using
the FISHPACK package [38]. During the computations the time
step value was decreased to ensure time-independent results.
In order to ensure the correct implementation of the numerical
scheme previously mentioned, the velocity fields were com-
pared to those obtained using a collocated arrangement of the
variables on the grid, as described in [39–41], producing iden-
tical results.

3. Results and discussion

Results of the application of this randomization protocol on
the mixing for systems with diffusion and for systems without
diffusion are presented next.

3.1. System with negligible diffusion effects

In systems with no accountable diffusion, passive tracer par-
ticles move along the instantaneous streamlines downstream the
channel; thus, chaotic dispersion can only occur in an unsteady
flow field. In this negligible-diffusion limit, Eq. (12) reduces to
a kinematic equation that can be written in a Lagrangian form
to track the motion of a single tracer particle. This Lagrangian
kinematic equation is

(13)St
d r
d t

= v(r, t),

where r(t) = x(t)i + y(t)j + z(t)k is the location vector of the
tracer particle, and v(r, t) is the local velocity field. Compu-
tationally, v(r, t) is obtained from a bilinear interpolation from
the nodal values of the Eulerian velocity u(r, t). Eq. (13) is then
advanced in time from a given initial condition of the tracer
particle position. The dynamical system given by Eq. (13) is
numerically integrated using an adaptive Runge–Kutta scheme
[42], so that errors in the trajectories of particles are mainly due
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to discretization errors of the Eulerian velocity fields. The loca-
tion of the particle at the end of each period is projected onto
the yz-plane to generate the so-called Poincaré maps [43]. Al-
though the reagent moves in a three-dimensional fashion, the
flow is independent of the x-component, and as such, all the
tools available to study two-dimensional flows are applicable to
the analysis of this electro-osmotic flow. Following this idea,
the Kolmogorov–Arnold–Moser (KAM) curves separate non-
chaotic areas (islands) from chaotic ones. If tracer particles
sample the entire cross section of the channel while moving
downstream, i.e., if the Poincaré map covers the entire cross
section, global chaotic mixing is then achieved. On the other
hand, Poincaré sections produced by the numerical integration
of Eq. (13) may produce spurious features, such as attractors if
the incompressibility condition is not preserved. To minimize
this potential problem, we have tested the numerical integra-
tion of the dynamical system Eq. (13) by reducing the time-
step.

In order to provide random modulation of the period, we
have to switch on and off the electrodes according to Eq. (11),
i.e., let (φ1, φ2, φ3, φ4) = (0,1,0,0) for α > 0, then switch to
(φ1, φ2, φ3, φ4) = (0,0,1,0) for α < 0. In what follows, we
present the locations of 10 000 passive non-diffusive particles at
t = 500 projected onto the yz-plane for various degrees of ran-
dom period-modulation ε and periods T = 3, 10 and 20. The
particles are initially located within a sphere of radius of 0.1
centered at (x, y, z) = (1.0,0.5,1.0).

Fig. 3 corresponds to the results with period T = 3. As
shown in Fig. 3(a), when there is no period-modulation, i.e.,
ε = 0, the tracer particles are tightly confined to the neighbor-
hood of a well-defined symmetrical path, and there is hardly any
mixing occurring in the cross section of the channel. As the pe-
riod is randomly modulated with ε = 0.1, these particles spread
to a wider region, as is evident from Fig. 3(b). Further increase
in the strength of the period-modulation spread the particles to
even larger and further areas in the channel cross section, an
example of which is given in Fig. 3(c) for ε = 0.5. When the
random perturbation strength reaches ε = 1, Fig. 3(d) shows
that the particles nearly cover the entire yz-plane, and good
mixing is achieved.

The effect of random period modulation is shown for period
T = 10 in Fig. 4. As in the previously discussed case, in the
absence of period-modulation, ε = 0, there are two large holes
near the center of the yz-plane, as illustrated in Fig. 4(a), where
the particles cannot reach. As the period is randomly modulated
with ε = 0.1, Fig. 4(b) shows that these unreachable islands be-
come smaller and the particles spread into a much wider area in
the cross section. When the modulation strength ε is increased
to 0.5, these islands are nearly destroyed, and the particles are
now able to reach most of the previously unreachable areas, as
shown in Fig. 4(c). Finally, as was the case for T = 3, here a
further increase in the modulation strength to ε = 1 also fills
these holes with particles; though one can notice in Fig. 4(d)
the presence of very small holes in the channel cross section
because the particles are non-diffusive. Clearly stochasticity
acts as an effective diffusivity on the particle trajectories [44].
Thus, a strategy to fill up all these smaller holes would be to
Fig. 3. Effect of period modulation on mixing of 10 000 non-diffusive particles
for t = 500, Re = 0.04 and period T = 3.

stop the transverse motion and restart it after a short period of
time.

This stochastically-modulated-period scheme is further test-
ed for period T = 20 in Fig. 5. Clearly those areas unreach-
able when the period is not modulated, as seen in Fig. 5(a),
can be reached with a random period-modulation, as shown
in Figs. 5(b) and 5(c), where the increase in the modulation
strength ε improves the quality of mixing dramatically. The
random period-modulation acts as a random agitator on the pas-
sive particles and allows KAM curves to break. This stochas-
tic agitation is similar to a cross sectional diffusive transport
which intensifies as the modulation magnitude increases. Thus
a strong random period-modulation greatly enhances mixing in
these systems.
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Fig. 4. Effect of period modulation on mixing of 10 000 non-diffusive particles
for t = 500, Re = 0.04 and period T = 10.

3.2. System with accountable diffusion effects

A mixing measure that accounts for both diffusive and ad-
vective mixing effects can be defined by the normalized vari-
ance of the concentration [35,45], as

(14)Θ(t) = 〈c(x, t)2〉 − 〈c(x, t)〉2

〈c(x,0)2〉 − 〈c(x,0)〉2
,

where the spatial average 〈 〉 in Eq. (14) is carried out over the
entire domain. The quality of mixing Θ , is a positive function
of time t , and its value approaches zero if the final state is uni-
formly mixed. The slope of the Θ curve is a measure of the rate
at which particles in the solution mix; a steep drop in Θ is in-
dicative of a fast mixing rate. To study the interplay between
random period-modulation and molecular diffusion, we turn off
Fig. 5. Effect of period modulation on mixing of 10 000 non-diffusive particles
for t = 500, Re = 0.04 and period T = 20.

the primary flow and the diffusion along the channel, and ana-
lyze the transverse-electric-driven flow in the two-dimensional
cavity by means of the variance Θ .

For purposes of studying the time-scale to obtain a suf-
ficiently homogeneous product, a circular blob of reagent of
initial concentration co = 〈c(y, z,0)〉 = 1, and radius 0.1, is
centered at (y, z) = (0.5,1). The quality of mixing Θ is then
computed for Péclet numbers 104 and 105 by solving the
convection-diffusion equation (12) for two different periods,
T = 10 and T = 20 (St = 0.6 and St = 0.3). The Reynolds
number is 0.04. The variance Θ is plotted as a function of
time t for three cases: (a) pure diffusion (no fluid motion),
(b) electro-osmotic motion and no period modulation, ε = 0;
and (c) electro-osmotic motion and strong period modulation,
ε = 1. In Figs. 6 and 7 the Péclet number Pe is set to 105 so that
diffusive effects are weak when fluid motion is present. From
the figures it can be seen that for pure diffusion, the value of Θ

decays monotonically. When electro-osmotic motion is present,
after the initial 10 time-units the value of Θ drops much faster
than that of the pure diffusion case (keep in mind that a lower
value of Θ indicates a more homogeneous state). The quality of
mixing in Fig. 6 shows the effect of the stochastic period mod-
ulation protocol. The period modulation effect manifests itself
when t � 100 with an accelerated drop in the variance when
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Fig. 6. Mixing quality Θ vs. time t , for T = 10; Re = 0.04 and Pe = 105.
(�) Pure diffusion; (!) no period modulation; (�) period modulation with
ε = 1.

Fig. 7. Mixing quality Θ vs. time t , for T = 20; Re = 0.04 and Pe = 105.
(�) Pure diffusion; (!) no period modulation; (�) period modulation with
ε = 1.

compared to the purely diffusive solution and to the stirring so-
lution without such random perturbation. On the other hand,
from Fig. 7 it can be seen that, when the period is increased to
T = 20, the randomization protocol is less effective. The sto-
chastic solution is essentially equivalent to the stirring solution
with ε = 0, although both solutions beat the purely diffusive
case. Since the shear in islands does enhance mixing over pure
diffusion, it is possible that the size of the islands in the present
case are small enough so that the effect of breaking them has lit-
tle impact on the quality of mixing. Also note that the increase
of the period T , acts as an artificial diffusivity for the fluid flow,
and decreases the time needed to achieve a fairly homogeneous
mixing.

In Figs. 8 and 9 the Péclet number Pe is set to 104 so that
diffusive effects are stronger than the case analyzed above. The
variance decay rate with and without stochastic modulation of
the period are almost the same, suggesting that the modulation
protocol is effective only above some threshold value of diffu-
sion. It is evident by comparing the quality of mixing of Figs. 6
Fig. 8. Mixing quality Θ vs. time t , for T = 10; Re = 0.04 and Pe = 104.
(�) Pure diffusion; (!) no period modulation; (�) period modulation with
ε = 1.

Fig. 9. Mixing quality Θ vs. time t , for T = 20; Re = 0.04 and Pe = 104.
(�) Pure diffusion; (!) no period modulation; (�) period modulation with
ε = 1.

and 8, that the lower the value of Pe the lower the amount of
time required to achieve a homogeneous mixing. A comparison
of the rate of decay of the variance for T = 10 and T = 20 for a
fixed Pe suggests that by increasing the period, a more efficient
mixing will be obtained. Figs. 6–9 show that for t > 10 the
quality of mixing Θ(t) decays exponentially with time. This
decay has been observed and discussed previously by Pierre-
humbert [25] and Antonsen Jr. et al. [46].

4. Summary

In this Letter, we have discussed the enhancement effect on
mixing induced by a random period-modulation in an electro-
osmotic flow of an electrolyte solution flowing inside a three-
dimensional channel. The basic mechanics of stretching and
folding of this active micro-mixer has been investigated using
the concepts of Poincaré sections and quality of mixing. It has
been shown that the degree of mixing as characterized by the
Poincaré maps, and the quality of mixing Θ , increases with the
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modulation strength. When the period is randomly modulated,
the KAM curves break up, the chaotic areas expand and quasi-
periodic areas shrink, thus providing a substantial enhancement
in the mixing. It has also been shown that as the frequency of
the transverse field decreases, the effectiveness of the random
period-modulation becomes more pronounced and it is much
reduced as diffusion is increased.
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