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An Interior Dispersion Relation Program for
Extracting Low Energy ¼N and ¼¼ Scattering

Parameters from ¼N Phase Shifts

G. E. Hite, R. J. Jacob & W. B. Kaufmann

Abstract

This memorandum contains the basic de…nitions and formalisms for inte-
rior dispersion relation (IDR) analyses of ¼N phase shifts for the purpose of
determining low energy ¼N and ¼¡¼ scattering parameters by extrapolation
of a discrepancy function to the threshold regions of the s and t–channels.
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I. Basic Kinematics

The Mandelstam variables s, u, and t have the usual connotations. The
pion mass is ¹, and the nucleon mass is m. In ¼N scattering, the s-channel
will be the direct channel and the t-channel will be the cross channel, rep-
resenting the reaction ¼ ¼ ! N N . In this channel, the ¼ ¼ ! ¼ ¼ reaction
threshold introduces a unitarity cut with branch point at t = 4¹2: We have

s+ t+ u = 2¹2 + 2m2 ´ § (1)

In what follows, all center-of-mass momenta will be labeled as pab, where
a and b are the particles occuring in the scattering state (initial or …nal)
together; thus, p¼¼, pNN , and p¼N . Finally, we use the convention º = s¡ u.

Interior dispersion relations (IDR) are “written” along a family of hyper
bolae1 in the (doubly) complex º¡t plane distinguished by a curve parameter
a and written parametrically as

(s¡ a)(u¡ a) = b(a) ´ (st ¡ a)(ut ¡ a) (2)

where st = (m +¹)2 and ut = (m¡ ¹)2: The curve parameter relates º and
t by the equation

º2¡ 4at = (4p¼¼pN ¹N)
2 (3)

= (t¡ 4¹2)(t¡ 4m2); (4)

º = +
p
(4p¼¼pN ¹N)2+ 4at : (5)

One can also write º in terms of its roots:

º2 = (t¡ t¡ (a)) (t¡ t+ (a)) (6)

where

t§ (a) = §¡ 2a§
q
(§¡ 2a)2 ¡ 16m2¹2: (7)

Furthermore,

s(t; a) = 1
2[§¡ t+ º(t; a)]; (8)

u(t; a) = 1
2
[§¡ t¡ º(t; a)]: (9)

1 Interior dispersion relations are a form of “hyperbolic dispersion relations” for elastic
reactions, such as ¼ ¡N scattering. Other hyperbolic trajectories can be formed by taking
b in Eq. 2 to be other values. Contributions to the s-channel integral in IDR will always
come from the physical region. For inelastic processes, such as pion photoproduction, the
curves along which the dispersion relations are written di¤er signi…cantly.
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For …xed a; negative t and the positive root for º; the curve described by
Eqn. 2 is a curve passing through the s-channel physical region along which
the s-channel laboratory scattering angle is constant:

cos µL = ¡ a+m2 ¡ ¹2

[a2 ¡ a§ + (m2 ¡ ¹2)2] 12
; a · 0: (10)

The s-channel center-of-mass angle is given by

cosµCM = (a+ s)=(a ¡ s): (11)

In particular, a = 0 corresponds to the backwards scattering boundary in
the s-channel. Indeed, a is related directly to the Kibble boundary function:

Á(s; t) ´
h
su ¡

¡
m2¡ ¹2

¢2i
t (12)

= ¡at2: (13)

The forward scattering boundary is, of course, described by t = 0:
Additional useful expressions are:

t(s; a) = ¡4sp2¼N=(s¡ a) (14)

= ¡ [s¡ (m+ ¹)2] [s¡ (m¡ ¹)2]
s¡ a ; (15)

(t0 ¡ t)(s0 ¡ a) = ¡(s0 ¡ s)(s0 ¡ u); (16)

where, in the last, t0 and s0(t0; a) are, say, integration variables with a …xed,
and t; s(t; a) and u(t; a) are set values. That is, in the t¡ s plane, (t; s) and
(t0; s0) are two points on the same curve speci…ed by a: Finally, we have

(ztp¼¼pN ¹N)
2 = (p¼¼pN ¹N)

2 + at=4; (17)

where zt = cos µt; the cosine of the t-channel center-of-mass scattering angle,
and

p2¼N =
1

4s

£
s¡ (m +¹)2

¤ £
s¡ (m¡ ¹)2

¤
: (18)
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II. Interior Dispersion Relations

The IDR are written for functions (usually quantum mechanical scatter-
ing amplitudes) that are even functions of º and are considered to be ana-
lytical functions in the Mandelstam variables with singularities given solely
by the dynamics of the interaction and the kinematics of reaction thresholds,
etc. That is to say, the functions are assumed not to have any spurious sin-
gularities. The IDR stem essentially from Cauchy’s integral formula for these
functions as expressed in the complex t-plane, and have the generic form

ReA(t; a) = AP(t; a) +
}

¼

Z ¡1

0

ImAs(t0; a)
t0 ¡ t dt0 +

+
}

¼

Z 1

t0

ImAt(t0; a)
t0 ¡ t dt0 (19)

´ AP(t; a) + Is(t; a) +D(t; a): (20)

Here, AP(t; a) is related to the residue of a known pole, and is usually refered
to as the Born term; } indicates a principal-value integral (of course, the
respective integral is treated as a principal-value integral only when the …xed
value of t lies within the integration range); As and At indicate the value of
the function in the s-channel and t-channel, resp.; t0 is the threshold value of
t in the t-channel of the reaction; Is(t; a) is the s-channel integral and D(t; a)
is called the discrepancy function. Throughout, we will assume that Is andD
refer to the amplitude at hand, and so will not use further identi…ers on these
symbols. The following form is a useful alternative for the …rst (s-channel)
integral in Eqn. 19:

}

¼

Z 1

(m+¹)2
ImAs (t0 (s0; a) ; a)

µ
1

s0 ¡ s +
1

s0 ¡ u ¡ 1

s0 ¡ a

¶
ds0: (21)

It is frequently useful to use a subtracted form of the interior dispersion
relation. These will be discussed as they appear in context.

The real º¡ t plane with physical region boundaries and a typical …xed-a
trajectory is shown in Figure a.
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Fig. a The real º ¡ t plane with s, u and t-channel physical regions. The
curve internal to the s-region represents a typical …xed-a trajectory.
(Adopted from G. Hoehler, Pion Nucleon Scattering, Springer

Publishing Co. In the …gure, º = (s¡ u) =4m:)

III. Invariant Amplitudes

Interior dispersion relations can be written for functions that are even
functions of º: The ¼N crossing-symmetric invariant scattering amplitudes,

A(+); A(¡)=º; B(+)=º; B(¡); C(+); C(¡)=º; D(+); D(¡)=º; (22)

are such functions. The sign in the superscript indicates the symmetry (+) or
antisymmetry (¡) of the amplitude under isospin crossing. We will indicate
such a crossing-symmetric amplitude with a tilde: ~A(+) ´ A(+); ~A(¡) ´
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A(¡)=º; etc. The C and D amplitudes are not independent, but are de…ned
in terms of the A and B amplitudes according to:

C(§) ´ A(§) +
mº

4m2 ¡ tB
(§); (23)

D(§) ´ A(§) +
º

4m
B(§): (24)

A. Born Terms

The s-channel Born terms are taken from the pseudoscalar or pseudovec-
tor ¼N Lagrangians. The so-called …xed-t Born terms for the invariant ampli-
tudes are the obtained by applying …xed-t dispersion relations to the nucleon
and pion pole contributions. These turn out to be the usual expressions
obtained directly from the Feynman diagrams, and are (for mp =mn )

~A(§)N (s; t) = 0; (25)

~B(+)N (s; t) =
g2

(m2 ¡ s)(m2 ¡ u) =
4g2

º2N ¡ º2 ; (26)

~B(¡)N (s; t) = g2
t¡ 2¹2

(m2 ¡ s)(m2 ¡ u) = 4g
2 ºN
º2N ¡ º2 ; (27)

~C (+)N (s; t) =
mg2

4m2¡ t
º2N

(m2¡ s)(m2¡ u) (28)

=
4mg2

4m2¡ t

µ
º2N

º2N ¡ º2
¶
; (29)

~C (¡)N (s; t) = mg2
t¡ 2¹2
4m2¡ t

1

(m2¡ s)(m2¡ u) (30)

=
4mg2

4m2¡ t

µ
ºN

º2N ¡ º2
¶
; (31)

~D(+)N (s; t) =
g2

m

µ
º2N

º2N ¡ º2
¶
; (32)

~D(¡)N (s; t) =
g2

m

µ
ºN

º2N ¡ º2
¶
: (33)

where ºN = º(s = m2; t) = t ¡ 2¹2 and g is the ¼N-coupling constant:
g2=4¼ ' 14:5: We have also used the identity

º2N ¡ º2 = 4
¡
m2¡ s

¢ ¡
m2¡ u

¢
(34)
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= 4
¡
m2¡ a

¢
(t¡ tN) : (35)

Applying IDR to the same pole contributions results in minor changes
only in ~A(¡); ~B(+); and ~C(¡);where in some factors, t has been replaced by
tN = t(s =m2; a) = ¹2(4m2 ¡¹2)=(m2 ¡ a): The IDR Born terms are

~A(§)IDR;N(t; a) = 0 (36)

~B
(+)
IDR;N(t; a) = g2

1

(m2¡ a)(t¡ tN)
(37)

~B(¡)IDR;N(t; a) = g2
tN ¡ 2¹2

(m2¡ a)(t¡ tN)
(38)

~C (+)IDR;N(t; a) = mg2
(tN ¡ 2¹2)2
4m2 ¡ tN

1

(m2 ¡ a)(t¡ tN)
(39)

~C (¡)IDR;N(t; a) = mg2
tN ¡ 2¹2
4m2 ¡ tN

1

(m2 ¡ a)(t¡ tN)
; (40)

~D(+)
IDR;N(t; a) =

g2

4m

(tN ¡ 2¹2)2
(m2 ¡ a)(t¡ tN)

(41)

~D(¡)
IDR;N(t; a) =

g2

4m

tN ¡ 2¹2
(m2 ¡ a)(t¡ tN)

(42)

B. Partial Wave Expansions

The invariant amplitudes have the following s-channel partial-wave ex-
pansions (suppressing isospin indices):

A(s; t) =
4¼m

p2¼N

X

`

f f`+
£
(! +!q)P

0
` + (! ¡ !q)P 0`+1

¤

¡f`¡
£
(! +!q)P

0
` + (! ¡ !q)P 0`¡1

¤
g ; (43)

B(s; t) =
4¼

p2¼N

X

`

f ¡ f`+
£
(E +m)P 0` ¡ (E ¡m)P 0`+1

¤

+f`¡
£
(E +m)P 0` ¡ (E ¡m)P 0`¡1

¤
g ; (44)

C(s; t) =
8¼W

4m2 ¡ t
X

`

f (`+1)f`+ [(E +m)P`¡ (E ¡m)P`+1]

+`f`¡ [(E +m)P` ¡ (E ¡m)P`¡1] g : (45)
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Here, W =
p
s; ! = (º ¡ t)=4m is the pion lab energy, !q =

p
p2¼N + ¹

2 and
E =

p
p2¼N +m

2: In terms of the s-channel phase shifts and inelasticities,

f`§(s) =
1

2ip¼N

£
´`§ exp(2i±`§)¡ 1

¤
: (46)

The t-channel partial wave expansions are:

A = ¡ 4¼

p2
N ¹N

1X

j=0

(2j +1) (pN ¹Np¼¼)
j f f (j)+ (t)Pj(zt) ¡

³
mzt

.p
j(j+ 1)

´
f
(j)
¡ (t)P

0
j(zt)

o
; (47)

B = 4¼
1X

j=1

2j + 1p
j(j +1)

(pN ¹Np¼¼)
j¡1f(j)¡ (t)P

0
j(zt); (48)

C = ¡ 4¼

p2
N ¹N

1X

j=0

(2j +1) (pN ¹Np¼¼)
jf(j)+ (t)Pj(zt): (49)

In these expansions, the even j terms belong to the (+) amplitudes and the
odd j terms belong to the (¡) amplitudes. The expansions for the º-even
amplitudes ~A(¡), ~B(+) and ~C(¡) can easily be found by using the relationship
º = 4pN ¹Np¼¼zt:

IV. ¼N Threshold Quantities

Among the ¼N scattering parameters de…ned at or near the s–channel
threshold that possess theoretical importance, and therefore beg for reliable
determinations, are:

1. the pion-nucleon coupling constant, g:

2. the s–wave scattering lengths, a(§)0+ ; and e¤ective ranges, b(§)0+ :

3. the pion-nucleon sigma term, ¾¼N :

Each requires special attention to the selection of amplitude(s) used in
its extraction as well as the method of parameterization of the discrepancy
function in order to optimize con…dence in extrapolation to the position in the
º ¡ t plane at which it is de…ned. We present in the following the formalism
and adopted methodology for each.
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A. The Pion-Nucleon Coupling Constant

For …xed–a; the pion-nucleon coupling constant is de…ned in terms of the
residues of ~B(§)IDR;N(t; a); as given in Eqns. 37 and 38, at t = tN :We note that
~B(¡)IDR;N is reduced by a factor of (tN ¡ 2¹2) over ~B(+)IDR;N at the nucleon pole.

Furthermore, ~B(¡) contains the odd-isospin ½ pole in its t–channel partial
wave expansion. The extrapolation distance from the lowest s–channel data
point to tN varies with a: While it is not daunting, it is appreciable and
warrants more realistic parameterizations of the discrepancy function.

In each of the strategies for obtaining g described here, consistency must
be checked by testing the a–dependence of the result (which should, of course,
be constant in a:)

1. By using the expression,

(t¡tN)(m2¡a)
h
Re ~B(+)(t; a) ¡ Is(t; a)

i
= g2+(t¡tN)(m2¡a)D(t; a);

(50)
we obtain g2 by extrapolating the left-hand-side to t = tN :

2. We can subtract the IDR at t = 0; and extrapolate

tN(t¡ tN)(m2 ¡ a)
"
Re

Ã
~B(+)(t; a) ¡ ~B(+)(0; a)

t

!
¡ Is;SUB(t; a)

#

(51)
to t = tN ; where

Is;SUB(t; a) =
Is(t; a)¡ Is(0; a)

t
=
}

¼

Z ¡1

0

Im ~B(+)(t0; a)
t0 (t0 ¡ t) dt0 : (52)

V. ¼¼ Scattering Lengths

Between the two-pion threshold in ¼¼ scattering and the four-pion thresh-
old, unitarity provides the following relationship for

partial wave amplitudes:

Imf I;J¼¼!N ¹N =
p2J+1¼¼p
t
fI;J¤¼¼!¼¼ f

I;J
¼¼!N ¹N : (53)
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This implies that

±I;J
¼¼!N ¹N

(t) = ±I;J¼¼!¼¼(t) ´ ±I;J¼¼ ; 4¹
2 · t . 16¹2; (54)

where ±I;J = arg fI;J :
The scattering length and e¤ective range appear in the …rst two terms of

the expansion of cot±I;J :

(p¼¼)
2J+1 cot±I;J =

1

aIJ
+ 1

2r
I
J(p¼¼)

2+°(p4¼¼): (55)

In what follows, we will frequently suppress the isospin index, I; and set
p¼¼ = q; pN ¹N = p and J = j . From the t-channel partial wave expansions of
the invariant amplitudes (Eqns. 47 ¡ 49), we have for the …rst few terms:

p2

4¼
~A(+) = ¡f (0)+ +

15p
6
m(qp)2z2t f

(2)
¡ ¡ 5

2
(qp)2(3z2t ¡ 1)f(2)+ + ¢ ¢ ¢(56)

p2

3¼
~A(¡) = ¡f (1)+ +

1p
2
mf(1)¡ ¡ 7

6
(qp)2(5z2t ¡ 3)f(3)+

+
7

4
p
3
m(qp)2(5z2t ¡ 1)f(3)¡ ¡ ¢ ¢ ¢ (57)

p
6

15¼
~B(+) = f(2)¡ +

9

2
p
30
(qp)2(7z2t ¡ 3)f(4)¡

+
13

p
7

40
(qp)4(33z4t ¡ 30z2t + 5)f(6)¡ + ¢ ¢ ¢ (58)

1

6
p
2¼
~B(¡) = f(1)¡ +

7

2
p
6
(qp)2(5z2t ¡ 1)f(3)¡

+
11

p
15

24
(qp)4(21z4t ¡ 14z2t + 1)f(5)¡ + ¢ ¢ ¢ (59)

¡ p
2

4¼
~C (+) = f(0)+ +

5

2
(qp)2(3z2t ¡ 1)f(2)+

+
9

8
(qp)4(35z4t ¡ 30z2t +3)f(4)+ + ¢ ¢ ¢ (60)

¡p
2

¼
~C (¡) = 3f(1)+ +

7

2
(qp)2(5z2t ¡ 3)f(3)+

+
11

8
(qp)4(63z4t ¡ 70z2t + 15)f(5)+ + ¢ ¢ ¢ (61)

Because they do not mix helicity eigenstates, we will deal solely with
~B and ~C in the following. We have included su¢cient terms in the above
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expressions to guarantee that we have achieved the proper expansions from
which to obtain the scattering lengths and e¤ective ranges. From Eqn. 17,
we see, to these orders, anyway, that are all polynomials in (ztqp)2 and (qp)2;
in other words, in a and (qp)2: This can be seen as true to all orders by
considering the properties of P 0j(zt) and Pj(zt)=zt for odd j and Pj (zt) and
P 0j(zt)=zt for even j: In the limit as a ! 0; z2t ! 1; so that in this limit these
functions are all …nite and independent of q2:

Furthermore, if P is a polynomial in z2t ; then, since

@P(z2t )

@a
= P0

@ z2t
@a

= P0
t

(2qp)2
;

any partial derivative of ~A with respect to a will have the z2t -polynomials in
~A replaced by q¡2 times quantities of the order of 1 in the a ! 0; q ! 0
limits. In particular,

2

5
p
6¼

@ ~B(+)

@a

¯̄
¯̄
¯
a=0

=
63

8
p
30
tf (4)¡ +

819

40
p
7
(qp)2tf (6)¡ + ¢ ¢ ¢ (62)

1

6
p
2¼

@ ~B(¡)

@a

¯̄
¯̄
¯
a=0

=
35

8
p
6
tf(3)¡ +

77
p
15

24
(qp)2tf (5)¡ + ¢ ¢ ¢ (63)

¡ p
2

4¼

@ ~C(+)

@a

¯̄
¯̄
¯
a=0

=
15

8
tf (2)+ +

45

4
(qp)2tf (4)+ + ¢ ¢ ¢ (64)

¡ p
2

4¼

@ ~C(¡)

@a

¯̄
¯̄
¯
a=0

=
35

8
tf
(3)
+ +

77

4
(qp)2tf

(5)
+ + ¢ ¢ ¢ : (65)

If we now write schematically for a º-even function,

~A =
X

n=0

(qp)2n f(j0+2n)(t)P2n(z
2
t ); (66)

where j0 is the smallest J-value in the sum for the particular amplitude,
P2n absorbs overall numerical constants and, if necessary a factor of p2; and
where we recall Im f(j) = Re f(j) tan ±(j)¼¼; we have

arg ~A = arctan
Im

P
n(qp)

2n f (j0+2n)(t)P2n(z
2
t )

Re
P

n(qp)
2n f (j0+2n)(t)P2n(z2t )

= arctan
Re

P
n(qp)

2n f(j0+2n)(t) tan ±(j0+2n)¼¼ P2n(z2t )

Re
P

n(qp)
2n f(j0+2n)(t)P2n(z2t )

: (67)
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A similar expansion for ~A=q2j0+1 would yield (recall that q is real in the range
of t being considered here)

arg
³
~A
´

q2j0+1
= arctan

°(j0)Ref (j0)(tan ±(j0)¼¼ =q
2j0+1) +°(q4)

°(j0) Ref (j0) + (qp)2Re f(j0+2)P2(z2) +°(q4) ; (68)

since tan ±(j)¼¼ =°(q2j+1): The coe¢cient °(j0) contains factors from the …rst
term in the polynomial P0 as well as, in the case of ~C(§); factors of p2: Were
it not for the second term in the denominator, factors would cancel and
tan ±(j0)¼¼ =q

2j0+1 would be available to second order in q. We could then use
Eqn. 55 to determine rJ : The trick is to rewrite the denominator of Eqn. 68
as ¡(j0)Re f(j0)(1+°(q2)); where the ration °(j0)= ¡(j0) is a known quantity.
Examination of Eqns. 62 - 65 indicates that we can write generally

@

@a
~A

¯̄
¯̄
q=0; a=0

= f (j0+2)P0j0+2 ¢ ¹2 +°(q2):

Thus, an appropriate amplitude whose leading term will be proportional to
f(j0) to °(q4) will be

~As ´ ~A¡ @ ~A

@a
¢
µ

Pj0+2
¹2P0j0+2

¶
(qp)2

¯̄
¯̄
¯
a=0

: (69)

Thus, h
Im ~A=q2j0+2

i
q=0

Re ~As

¯̄
¯
q=0; a=0

= tan ±(j0)¼¼ =q
2j0+1 +°(q4);

or

Ã
Im ~A

q2j0+1

!µ
1

aJ
+ 1

2
rJ q

2

¶
= Re

2
4 ~A+ ´q2 @

~A

@a

¯̄
¯̄
¯
q=0; a=0

3
5+°(q4) (70)

where

´ = ¡(p2=¹2)Pj0+2
P0j0+2

:

An expansion of both sides in q2 can then yield the desired quantities.
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As an example, consider …nding a00 from ~C(+): We have from Eqns. 60
and 64,

¡ p
2

4¼
~C(+)(a; t) = f (0)+ +

5

2

·
2(qp)2 +

3at

4

¸
f(2)+

+
9

8

"
8(qp)4 + 40(qp)2

µ
at

4

¶
+35

µ
at

4

¶2
#
f (4)+ + ¢ ¢ ¢ ;

¡ p2

4¼

@ ~C(+)(a; t)

@a

¯̄
¯̄
¯
a=0

=
15t

8
f (2)+ +

45t

4
(qp)2f (4)+ + ¢ ¢ ¢ :

where we have used Eqn. 17. From the second of these, we have

f(2)+ =

µ
¡ p

2

4¼

¶
8

15t

@ ~C(+)(a; t)

@a

¯̄
¯̄
¯
a=0

+°(q2);

so that,

Re f(0)+ = ¡ p
2

4¼

(
Re ~C(+)

¯̄
¯
a=0

¡ 8

3t
(qp)2

@ ~C(+)(a; t)

@a

¯̄
¯̄
¯
a=0

+°(q4)
)
:

Now, since

¡ p
2

4¼
Im ~C(+) = Ref (0)+ tan ±(0) + (qp)2P2 ¢ Re f(2)+ tan ±(2) + ¢ ¢ ¢

= Ref (0)+ tan ±(0) +°(q5);

we have

Im ~C (+)h
Re ~C(+) ¡ (8=3t)(qp)2@ ~C(+)(a;t)

@a

i
a=0

=
Ref (0)+ tan ±(0) +°(q5)

Re f(0)+ +°(q4)

= q

h
1
a00

¡ 1
2r
0
0q
2 +°(q4)

i¡1
+°(q4)

1 +°(q4)
=

qh
1
a00

¡ 1
2r
0
0q
2 +°(q4)

i ;
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or
µ
1

a00
¡ 1

2
r00q

2 +°(q4)
¶
Im ~C(+)

q
=

"
Re ~C(+) ¡ (8=3t)(qp)2@

~C(+)(a; t)

@a

#

a=0

:

In applying the IDR for this amplitude, we will reconstruct ~C(+) at the
t = 4¹2 point from the s-channel integral, I (a; t), the IDR Born term,
~C(+)IDR;N(a; t), and the discrepancy function, D(a; t); according to

~C (+)(0; 4¹2) = I(0; 4¹2) + ~C(+)IDR;N(0; 4¹
2) +D(0; 4¹2) :

We assume expansions:

I + ~C(+)IDR;N =
X

n

sn(a)(¡iq=¹)n;

D =
X

n

cn(a)(¡iq=¹)n ;

@ ~C(+)(a; t)

@a

¯̄
¯̄
¯
a=0

=
X

n

(s0n + c
0
n)(¡iq=¹)n :

Let · = ¡2p2

3

¯̄
¯
t=4¹2

: Then,

Re ~C(+) ¡ (8=3t)(qp)2@
~C(+)(a; t)

@a
= s0 + c0

+ [·(s00 + c
0
0) ¡ (s2 + c2)] (q=¹)2

¯̄
a=0
+°(q4);

ImD

q
=

Im ~C (+)

q
= ¡c1

¹
+
c3
¹3
q2+°(q4);

andµ
1

a00
¡ 1

2
r00q

2

¶µ
¡c1
¹
+
c3
¹3
q2

¶
=

£
(s0 + c0) + [·(s

0
0 + c

0
0) ¡ (s2 + c2)] (q=¹)2

¤

to order q4: Gathering terms, we …nally obtain

q0 : ¡ ¹a00 =
c1

s0 + c0ja=0
=

c1h
Re ~C(+)

i
q=0; a=0

; (71)

q2 :
¹

2
r00 =

1

c21
[c1·(s

0
0 + c

0
0)ja=0 ¡ c1(s2 + c2)ja=0 ¡ c3(s0+ c0)ja=0] :(72)

We note that a00 and r00 are independent of a if c1 and c3 are.
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