

DISTRIBUTED SERVICE-ORIENTED

SOFTWARE DEVELOPMENT

 FFIIRRSSTT EEDDIITTIIOONN SSEECCOONNDD EEDDIITTIIOONN TTHHIIRRDD EEDDIITTIIOONN

YYIINNOONNGG CCHHEENN AANNDD WWEEII--TTEEKK TTSSAAII

AARRIIZZOONNAA SSTTAATTEE UUNNIIVVEERRSSIITTYY

 ii

First Edition Copyright © 2008 by Kendall/Hunt Publishing Company

ISBN 978-0-7575-5273-1

All rights reserved. No part of this publication may be reproduced,

stored in a retrieval system, or transmitted, in any form or by any means,

electronic, mechanical, photocopying, recording, or otherwise,

without the prior written permission of the copyright owner.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

 iii

Preface .. ix

Chapter 1 Introduction to Distributed Service-Oriented Computing 1

1.1 Computer Architecture and Computing Paradigms .. 1

1.1.1 Computer Architecture ... 1

1.1.2 Software Architecture ... 2

1.1.3 Computing Paradigms .. 3

1.2 Distributed Computing and Distributed Software Architecture 5

1.2.1 Distributed Computing ... 6

1.2.2 N-Tier Architecture ... 7

1.2.3 Distributed Object Architecture .. 9

1.3 Service-Oriented Architecture and Computing .. 11

1.3.1 Basic Concepts and Terminologies .. 11

1.3.2 Service-Oriented Computing .. 15

1.3.3 Object-Oriented Computing versus Service-Oriented Computing 17

1.3.4 Service-Oriented Enterprise ... 18

1.3.5 Service-Oriented System Engineering ... 20

1.4 Service-Oriented Software Development and Applications 22

1.4.1 Traditional Software Development Processes ... 22

1.4.2 Service-Oriented Software Development .. 22

1.4.3 Applications of Service-Oriented Computing ... 25

1.5 Discussions.. 27

1.6 Exercises and Projects ... 31

Chapter 2 Distributed Computing with Multithreading ... 39

2.1 Introduction to C# and .Net .. 39

2.1.1 Getting started with C# and .Net ... 40

2.1.2 Comparison between C++ and C# ... 42

2.1.3 Namespaces and the using Directive .. 44

2.1.4 The Queue Example in C# .. 46

 iv

2.1.5 Class and Object in C# .. 48

2.1.6 Parameters: Passing by Reference with ref & out .. 51

2.1.7 Base Class and Base Calling Class Constructor ... 52

2.1.8 Constructor, Destructor, and Garbage Collection ... 53

2.1.9 Pointers in C# ... 53

2.1.10 C# Unified Type System .. 54

2.2 Memory Management and Garbage Collection .. 56

2.2.1 Static Variables and Static Methods .. 57

2.2.2 Runtime Stack for Local Variables .. 57

2.2.3 Heap for Dynamic Memory Allocation ... 60

2.2.4 Scope and Garbage Collection ... 60

2.3 General Issues in Multitasking and Multithreading .. 61

2.3.1 Basic Requirements ... 61

2.3.2 Critical Operations and Synchronization ... 62

2.3.3 Deadlock and Deadlock Resolving ... 64

2.3.4 Order of Execution .. 66

2.3.5 Operating System Support for Multitasking and Multithreading 66

2.4 Multithreading in Java.. 68

2.4.1 Creating and Starting Threads .. 68

2.4.2 Thread Synchronization ... 72

2.4.3 Synchronized Method ... 73

2.4.4 Synchronized Statements .. 78

2.5 Multithreading in C# ... 79

2.5.1 Thread Classes and Properties ... 79

2.5.2 Monitor ... 80

2.5.3 Reader and Writer Locks ... 91

2.5.4 Mutexes ... 95

2.5.5 Semaphore .. 95

2.5.6 Coordination Event ... 96

2.6 Exceptions Handling and Event-Driven Programming 99

2.6.1 Exception Handling ... 99

2.6.2 Event-Driven Programming ... 104

 v

2.7 Discussions.. 109

2.8 Exercises and Projects ... 111

Chapter 3 Getting Started with Service-Oriented Software Development 125

3.1 Overview of Service-Oriented Software Development Environments 125

3.2 Service Provider: Creating and Hosting Services .. 127

3.2.1 Using ASP .Net to Create Web Services .. 128

3.2.2 Program Your Services in C# ... 129

3.2.3 Testing Your Web Services ... 130

3.2.4 Hosting Your Web Services as a Service Provider ... 131

3.3 Service Brokers: Publishing and Discovering Services 133

3.3.1 An Ideal Service Broker with all Desired Features .. 134

3.3.2 UDDI Service Registry .. 137

3.3.3 ebXML Service Registry and Repository .. 145

3.3.4 Ad Hoc Registry Lists ... 148

3.4 Service Requesters: Building Applications Using Services 148

3.4.1 Creating a Web Application Project in ASP.Net .. 148

3.4.2 Creating GUI and Composing an Application Based on Remote Web

Services ... 150

3.5 Java-Based Web Service Development .. 158

3.5.1 Web Application Building Using AJAX programming 158

3.5.2 Java-Based Web Service Development and Hosting .. 160

3.6 Discussions.. 162

3.7 Exercises and Projects ... 165

Chapter 4 XML and Related Technologies ... 171

4.1 XML .. 171

4.1.1 XML versus HTML ... 172

4.1.2 XML Syntax ... 173

4.1.3 XML Namespaces .. 176

4.2 XML Processing ... 177

4.2.1 DOM: Document Object Model ... 178

4.2.2 SAX: Simple API for XML ... 180

4.2.3 XML Processing in Java ... 182

4.3 XPath .. 184

 vi

4.4 XML Type Definition Languages .. 187

4.4.1 XML Document Type Definition (DTD) ... 187

4.4.2 XML Schema.. 190

4.4.3 Namespace .. 192

4.4.4 Validation ... 194

4.5 Extensible Stylesheet Language ... 196

4.6 Discussions.. 201

4.7 Exercises and Projects ... 203

Chapter 5 Composition Languages for Service-Oriented Software Development 209

5.1 SOAP .. 210

5.1.1 SOAP Format ... 210

5.1.2 SOAP Over HTTP ... 212

5.1.3 Connecting Endpoint and Proxy .. 213

5.2 WSDL: Web Service Description Language ... 215

5.2.1 Elements of WSDL Documents .. 215

5.2.2 WSDL Document Example ... 216

5.3 BPEL ... 218

5.3.1 Overview of Composition Languages .. 218

5.3.2 BPEL Activities and Constructs ... 220

5.3.3 BPEL Process ... 220

5.3.4 WSDL Interface Definition of BPEL Process ... 223

5.3.5 BPEL Process ... 225

5.3.6 An Example Invoking Real Web Services ... 228

5.3.7 Stateless versus Stateful Web Services .. 235

5.3.8 BizTalk’s Singleton Object Approach ... 236

5.3.9 BPEL’s Correlation Approach ... 237

5.4 Frameworks Supporting BPEL Composition ... 240

5.4.1 Oracle SOA Suite ... 240

5.4.2 ActiveBPEL .. 242

5.4.3 BizTalk.. 243

5.5 WSFL: Web Services Flow Language ... 244

5.5.1 Overview of WSFL .. 244

 vii

5.5.2 Global Model .. 244

5.5.3 Flow Model ... 245

5.6 Service-Oriented Computing in Robotics Applications 247

5.6.1 Service-Oriented Robotics Applications .. 247

5.6.2 Even-Driven Robotics Applications ... 248

5.6.3 Developing Service-Oriented Applications in VPL .. 251

5.6.4 Developing Service-Oriented Robotics Applications 258

5.7 Other Composition Languages ... 263

5.7.1 OWL-S .. 263

5.7.2 SCA/SDO .. 264

5.7.2 Workflow Foundation ... 266

5.8 Discussions.. 267

5.9 Exercises and Projects ... 269

Chapter 6 Dependability of Service-Oriented Software .. 275

6.1 Basic Concepts ... 275

6.1.1 Dependability ... 275

6.1.2 Dependability Attributes and Quality of Service ... 277

6.1.3 Security Issues in SOA Software .. 277

6.2 Security Design in Web Applications .. 279

6.2.1 IIS and Windows-Based Security Mechanisms .. 279

6.2.2 Structure of Web Application and Security Management 281

6.2.3 Forms-Based Security ... 284

6.3 Windows Communication Foundation .. 290

6.3.1 A Comprehensive Service-Oriented Software Development Environment ... 290

6.3.2 WCF Service Endpoints .. 291

6.3.3 WS-Security ... 294

6.3.4 WS-Reliability .. 295

6.3.5 Transactions ... 297

6.4 Discussions.. 299

6.5 Exercises and Projects ... 301

Chapter 7 Database and Ontology in Distributed Service-Oriented Software 307

7.1 Databases in Service-Oriented Software ... 307

 viii

7.2 Relational Databases in Service-Oriented Software .. 309

7.2.1 Interface between Database and Software .. 309

7.2.2 SQL Database in ADO .Net .. 311

7.2.3 DataAdapter and DataSet in ADO .Net... 315

7.3 XML-Based Database and Query Language XQuery 318

7.3.1 Expressing Queries .. 319

7.3.2 Transforming XML Document .. 321

7.3.3 XQuery Discussions ... 323

7.4 Ontology Languages RDF and RDF Schema .. 323

7.4.1 Semantic Web and Ontology .. 323

7.4.2 RDF ... 324

7.4.3 RDF Schema ... 326

7.4.4 Reasoning and Verification in Ontology ... 333

7.5 OWL: Web Ontology Language .. 335

7.5.1 From RDF to OWL ... 335

7.5.2 The OWL Class and Property .. 336

7.5.3 Boolean Combinations of Classes... 337

7.5.4 Property Restrictions .. 337

7.5.5 Synopsis of OWL Lite, DL, and Full ... 338

7.7 Ontology Development Environments ... 340

7.8 Discussions.. 341

7.9 Exercises and Projects ... 343

Chapter 8 Service-Oriented Application Architecture .. 349

8.1 Introduction ... 349

8.2 Application Architectures ... 351

8.2.1 Dynamic Architecture via Dynamic Composition .. 353

8.2.2 Dynamic Re-Composition .. 354

8.2.3 Lifecycle Management Embedded in Operation Infrastructure 355

8.3 Examples of Service-Oriented Application Architectures 357

8.3.1 IBM WebSphere Architecture ... 357

8.3.2 Enterprise Service Bus .. 359

8.3.3 FERA Community Project .. 360

 ix

8.3.4 SAP NetWeaver ... 361

8.3.6 Service-Oriented Enterprise Model ... 362

8.3.7 User-Centric Service Oriented Architecture ... 365

8.4 Discussions.. 365

8.5 Exercises and Projects ... 367

Chapter 9 A Mini Walkthrough of Service-Oriented Software Development 373

9.1. Introduction ... 373

9.2 Sample Domain Model .. 377

9.2.1 Ontology Systems ... 378

9.2.2 Published Services ... 382

9.2.3 Published Workflows .. 385

9.2.4 Shipping Domain Collaboration Templates .. 387

9.3 Specific Requirements for a Project .. 388

9.4 A Worked Example ... 391

9.5 Discussions.. 399

9.6 Exercises and Projects ... 401

Appendix Tutorials on Component-Based and Service-Oriented Software

Development ... 403

A.1 Component-Based Movie and Game Programming... 403

A.1.1 Developing a Game in an Engineering Process ... 404

A.1.2 Basic Programming Concepts in Alice .. 405

A.1.3 Graphic Programming .. 407

A.1.4 Online Tutorials and Examples .. 409

A.2 Web Application Composition ... 410

A.2.1 Design of Graphical User Interface ... 410

A.2.2 Discovering Web Services Available Online ... 416

A.2.3 Access Web Services in Your Program: Cinema Service 418

A.2.4 Access Web services in Your Program: Weather Forecasting Service 423

A.2.5 Access Web Services in Your Program: USZip Service 426

A.3 Service-Oriented Robotics Applications .. 427

A.3.1 Getting Started with Microsoft Robotics Studio and VPL Programming 428

A.3.2 Programming Conditions in VPL .. 430

A.3.3 Programming Loop in VPL .. 431

 x

A.3.4 Programming a Robot in a Simulation Environment 432

A.3.5 Deploying the Program to a Real Robot .. 438

A.3.6 Programming the Arm of the Robot .. 439

A.3.7 Autonomous Robot in an Obstacle Course ... 442

A.3.8 Autonomous Robot Exploring a Maze .. 447

A.4 Exercises and Projects ... 455

References ... 459

Index ... 463

 xi

 Preface

Software development has evolved for several generations from imperative, procedural,

object-oriented, to distributed object-oriented paradigms. As the emergence of service-oriented

computing, distributed software development is shifting from distributed object-oriented

development, represented by CORBA (Common Object Request Broker Architecture)

developed by OMG (Object Management Group) and Distributed Component Object Model

(DCOM) developed by Microsoft, to distributed service-oriented development.

Service-oriented computing and service-oriented software development have been adopted and

supported by all major computer companies, including BEA, Google, HP, IBM, Intel, Microsoft,

Oracle, SAP, and Sun Microsystems, and their technologies have been standardized by OASIS,

W3C, and ISO.

Before we start to introduce what this book is about, let us first clarify three fundamental

concepts: service-oriented architecture, service-oriented computing, and service-oriented

software development.

Service-Oriented Architecture (SOA) is a distributed software architecture, which

considers a software system consisting of a collection of loosely coupled services that

communicate with each other through standard interfaces and protocols. These services

are platform independent. Services can be published in public or private directories or

repositories for software developers to compose their applications. As a software

architecture, SOA is a conceptual model that concerns the organization and interfacing

among the software components (services). It does not concern the development of

operational software.

Service-Oriented Computing (SOC) refers to the computing paradigm that is based on the

SOA conceptual model. However, SOC goes a step further to include not only the

concepts and principles, but also the methods, algorithms, coding, and evaluation,

which are a large part of the software development process.

Service-Oriented Development (SOD) concerns the entire software development cycle

based on SOA concepts and SOC paradigm, including requirement, specification,

architecture design, composition, service discovery, service implementation, testing,

evaluation, deployment, and maintenance. SOD also involves using the current

technologies and tools to effectively produce operational software.

We use “Distributed Service-Oriented Software Development” as the title of the book to

compare with the widely used “Distributed Object-Oriented Software Development” approach,

and to emphasize the fact that service-oriented software development is distributed naturally.

 xii

Not only is the software under development distributed in different computers in different

locations, but also the development process is distributed, in the sense that the application

builders, service brokers, and service providers are developers working independently in

different locations, but following the same interfaces and standards. Furthermore, we have a

chapter (Chapter Two) to discuss distributed computing in general and how SOA, SOC, and

SOD fit into the framework of general distributed computing.

Recently, many SOA, SOC, and SOD books have been published in response to the growing

requirements in these areas. These books fall into one of the three categories:

(1) high-level concepts and principles in SOA;

(2) one of the aspects of the SOC, such as BPEL, Ontology, or XML;

(3) SOD using a specific platform, such as Visual Studio .Net, Oracle SOA Suite, Java EE,

or WebSphere. Most of these books are written by developers, and are largely focused

on the language, platforms, and tools.

Different from the existing books, this book takes a balanced approach to teach all three topics

of SOA, SOC, and SOD in one course, and covers a large portion of each topic in depth. The

main concern of the book is to teach the SOA/SOC concepts, principles, and methods.

However, concepts, principles, and methods are not only explained

in text and diagram, but also demonstrated in working code.

We believe that students can better understand concepts, principles, and methods, if they see a

piece of working code that implements them.

We also introduce the cutting-edge technologies and tools that can be applied to develop

operational software with reasonable size and functionality, such as an operational online

bookstore, trading site, or a robotics program manipulating a real robot to traverse a maze with

artificial intelligence. Such software can never be developed in a course assignment without the

latest development tools and without using the services and components made available by

professional service providers. Many exercises and at least one large project are given at the end

of each chapter of the book for students to practice SOA and SOC concepts and to develop

operational software.

This book covers SOA, SOC, and SOD topics

in breadth and depth.

The book is based on the materials taught by the authors in CSE445/598 (Distributed Software

Development) course in Computer Science and Engineering at Arizona State University every

semester since Fall 2006. The CSE445 session is for seniors and the CSE598 session is for

graduate students. The CSE598 also has an online session that is taught to students in the

executive master’s program in engineering. Many of these students are on the side of software

project management. A part of advanced materials of the text was also taught in CSE 565

 xiii

(Software Verification, Validation, and Testing). The objectives and outcomes of a course

based on the text can include:

1. To develop an understanding of the software engineering of programs using

concurrency and synchronization, with the following outcomes:

 * Students can identify the application, advantages, and disadvantages of concurrency,

threads, and synchronization.

 * Students can apply design principles for concurrency and synchronization.

 * Students can design and write programs demonstrating the use of concurrency,

threads, and synchronization.

2. To develop an understanding of the development of distributed software, with the

following outcomes:

 * Students can recognize alternative distributed computing paradigms and technologies;

 * Students can identify the phases and deliverables of the software lifecycle in the

development of distributed software;

 * Students can create the required deliverables in the development of distributed

software in each phase of a software lifecycle;

 * Students understand the security and reliability attributes of distributed applications.

3. To develop an ability to design and publish services as building blocks of

service-oriented applications, with the following outcomes:

 * Students understand the role of service publication and service directories;

 * Students can identify available services in service registries;

 * Students can design services in a programming language and publish services for the

public to use.

4. To build skills in using a current technology for developing distributed systems and

applications, with the following outcomes:

 * Students can develop distributed programs using the current technology and

standards;

 * Students can use the current framework to develop programs and web applications

using graphical user interfaces, remote services, and workflow.

This book is not for an introductory course in programming. Its main audiences are the seniors

and graduate students in computer science and engineering, or software engineers with

programming background. The readers are expected to be fluent in one of the object-oriented

 xiv

programming languages such as C++, C#, and Java. Furthermore, students are expected to have

understood basic software engineering principles.

The book consists of nine chapters and an appendix. Each chapter is a unit that can be taught in

six to nine lecture hours, depending on the level of the detail the instructor wants to cover. They

are

Chapter 1 Introduction to Distributed Service-Oriented Computing

Chapter 2 Distributed Computing with Multithreading

Chapter 3 Getting Started with Service-Oriented Software Development

Chapter 4 XML and Related Technologies

Chapter 5 Composition Languages for Service-Oriented Software Development

Chapter 6 Dependability of Service-Oriented Software

Chapter 7 Database and Ontology in Distributed Service-Oriented Software

Chapter 8 Service-Oriented Application Architecture

Chapter 9 A Mini Walkthrough of Service-Oriented Software Development

Appendix Tutorials on Component-Based and Service-Oriented Software Development

The dependency among the chapters is illustrated in the diagram below. Based on the

dependency, a subset of the chapters can be selected to satisfy a set of course requirements.

Chapter 1 Chapter 2

Chapter 3 Chapter 4

Chapter 5Chapter 6

Chapter 7
Strong

dependency

Weak

dependency

Chapter 8

Chapter 9Appendix

This book is not intended to be a research monograph, but an undergraduate text for teaching

senior and graduate students on SOA, SOC, and SOD. However, research students and working

professionals may still find this book useful, because of its comprehensive and in-depth

discussions of the state-of-the-art contents, cutting-edge technologies, and professional

development tools. The book is based not only on the teaching experiences of the authors in

these areas, but also on the understanding and expertise that the authors have accumulated in

their research in these areas.

As SOA, SOC, and SOD are new and dynamic, the technologies and tools are evolving rapidly.

Some of the materials may need to be updated soon after the print of the book. It is our intention

to cover the latest concepts and technologies, and we must cut in at some point in this process.

We have put more emphasis on the SOA and SOC concepts, principles, and methods, which are

 xv

relative stable compared to the SOD technologies and tools. We started to teach from the

material of the book in Fall 2006. Large part of the development examples are initially based

on .Net 2005. Now .Net 2008 is released. With little or no revision, we are able to test or convert

all the examples into .Net 2008 before the print of the book. We expect the examples to work for

the new editions of the tools in the future.

The tutorials in the appendix of the book are an important addition to the book. They provide

full detail of Web application development discussed in Chapter Three and the robotics

software development discussed in Chapter Five. On the other hand, the tutorials can be taught

independently of the main text to students with no programming experience. In fact, the

contents of the tutorials have been taught in a service-oriented computing course for high school

students.

We like to thank many of our sponsors, supporters and colleagues in this project including Prof.

Xiaoying Bai of Tsinghua University, Prof. Gary Bitter of Arizona State University, Prof.

Farokh Bastani of University of Texas at Dallas, Prof. Kuo-Ming Chao of Coventry University,

Dr. Shuyuan Chen of SAP, Dr. J. Y. Chung of IBM, Prof. Zhihui Du of Tsinghua University,

Dr. K. W. Hwang of IBM, Prof. Kane Kim of University of California at Irvine, Prof. Y. H. Lee

of Arizona State University, Prof. Yisheng Li of Fudan University, Prof. K. J. Lin of University

of California at Irvine, and Dr. Raymond Paul of DoD OSD NII, Dr. Mary White of Arizona

State University, Prof. S. S. Yau, Arizona State University, Prof. I-Ling Yen of University of

Texas at Dallas. They contributed to our understanding of the materials. We also acknowledge

the generous support from U.S. Department of Education and U.S. Department of Defense.

Without their support, this book will not be possible. We also thank the teaching assistants and

research assistants at Arizona State University involving Zhibin Cao, Calvin Cheng, Sandy

Chow, Jay Elston, Qian Huang, Sheng Liu, Zheng Liu, Wu Li, Xin Sun, Jingjing Xu, Xinyu

Zhou, and Peide Zhong. They validated many of the examples and assignments used in the book.

Finally, we would like to thank our families for their support and understanding of taking on

such a project while carrying out a full research and teaching load at the university.

Note for Instructors

All the homework assignments have been classroom-tested at Arizona State University.

Furthermore, all the code presented in this book has been developed and tested. Contact the

authors if you are interested in obtaining more materials in this book. This book also has a

corresponding website at http://asusrl.eas.asu.edu/share/services/book/ where you can

download resources related to this book. Instructor-only resources can be obtained by directly

contacting the authors at {yinong, wtsai}@asu.edu.

Yinong Chen

Wei-Tek Tsai

May 2008

 1

Chapter 1

Introduction to Distributed

Service-Oriented Computing

This chapter introduces computer architecture, different computing paradigms, and particularly,

the distributed computing paradigm and Service-Oriented Computing (SOC) paradigm.

1.1 Computer Architecture and Computing Paradigms

Software architectures and distributed software development are related to the computer system

architectures on which the software is executed. This section introduces the computer

architectures and various computing paradigms.

1.1.1 Computer Architecture

The computer architecture for a single-processor computer often refers to the processor

architecture, which is the interface between software and hardware or the instruction

architecture of the processor [Patterson 2004]. For a computer with multi-processors, the

architecture often refers to the instruction and data streams. Flynn’s Taxonomy [Flynn 1972]

categorized computer architecture into four types:

 Single Instruction stream and Single Data stream (SISD), which refers to the simple

processor systems;

 Single Instruction stream and Multiple Data streams (SIMD), e.g., the vector or array

computers;

 Multiple Instruction streams and Single Data stream (MISD), e.g., fault-tolerant

computer systems that perform redundant computing on the same data stream and

voting on the results;

 Multiple Instruction streams and Multiple Data streams (MIMD), which refers to the

systems consist standalone computer systems with their own memory and control, ALU,

and I/O units.

 2

The MIMD systems are often considered distributed systems, which have different areas of

concerns, as shown in Figure 1.1. Distributed computing is about the principles, methods, and

techniques of expressing computation in a parallel and/or distributed manner. Distributed

software architecture concerns the organization and interfacing among the software

components. Network architecture studies the topology and connectivity of network nodes. The

network communication deals with the layers of protocols that allow the nodes to communicate

with each other and understand the data formats of each other. Some studies use operating

systems to differentiate distributed systems and networks. Distributed systems have coherent

operating systems, while a set of network nodes has independent operating systems.

Distributed

Computing

Paradigm,

Parallelism and

distribution of

computing

Distributed

Systems

(MIMD)

Distributed

Software

Architecture

Client server,

Tiered,

Object orientation,

Service orientation,

Network

Architecture

(Topology)

Topology and

connectivity of nodes;

Star, ring, peer-to-

peer, shared links

Network

Communication

(Protocols)

Layers of protocols,

Signal & packet format,

Error correction

Routing, Flow control,

Session, Presentation

Figure 1.1 Distributed systems and networks

1.1.2 Software Architecture

The software architecture of a program or computing system is the structure, which comprises

software components, the externally visible properties of those components, and the

relationships between them [Bass 2003]. The design of software architecture does not mean to

develop the operational software. Instead, it can be considered a conceptual model of the

software, which is one of the development steps that enables a software engineer to:

(1) analyze the effectiveness of the design in meeting its stated requirements;

(2) consider architectural alternatives at a stage when making design changes is still

relatively easy;

(3) define the interfaces between the components;

(4) reduce the risks associated with the construction of the software.

It is important to design software architecture before designing the algorithm and implementing

the software, because software architecture enables the communication between all parties

(stakeholders) interested in the development of a computer-based system. The service-oriented

architecture (SOA), which is a main topic of the book, explicitly involves three parties -- service

providers, service brokers, and service requesters -- in the software architecture design, while

each party conducts its algorithmic design and coding independently.

 3

The software architecture highlights early design decisions that will have a profound impact on

all software engineering work that follows and on the ultimate success of the system as an

operational entity.

1.1.3 Computing Paradigms

Numerous programming languages have been developed in history, but only several thousands

of them are actually in use. Compared to natural languages that were developed and evolved

independently, programming languages are far more similar to each other. They are similar

to each other because of the following reasons. They share the same mathematical foundation

(e.g., Boolean algebra, logic). They provide similar functionality (e.g., arithmetic, logic

operations, and text processing). They are based on the same kind of hardware and instruction

sets. They have common design goals: to find languages that make it simple for humans to use

and efficient for hardware to execute. The designers of programming languages share their

design experiences.

Some programming languages, however, are more similar to each other, while some other

programming languages are more different from each other. Based on their similarities or the

paradigms, programming languages can be divided into different classes. In programming

language’s definition, paradigm is a set of basic principles, concepts, and methods of how

computation or algorithm is expressed. The major paradigms include imperative, OO,

functional, logic, distributed, and SOC.

The imperative, also called the procedural, computing paradigm expresses computation by

fully specified and fully controlled manipulation of named data in a step-wise fashion. In other

words, data or values are initially stored in variables (memory locations), taken out of (read

from) memory, manipulated in ALU (arithmetic logic unit), and then stored back in the same or

different variables (memory locations). Finally, the values of variables are sent to the I/O

devices as output. The foundation of imperative languages is the stored program concept

based computer hardware organization and architecture (von Neumann machine) (see for

example http://en.wikipedia.org/wiki/Von_Neumann_machine). Typical imperative

programming languages include all assembly languages and earlier high-level languages like

FORTRAN, Algol, Ada, Pascal, and C.

The object-oriented computing paradigm is basically the same as the imperative paradigm,

except that related variables and operations on variables are organized into classes of objects.

The access privileges of variables and methods (operations) in objects can be defined to reduce

(simplify) the interaction among objects. Objects are considered the main building blocks of

programs, which support the language features like inheritance, class hierarchy, and

polymorphism. Typical OO programming languages include Smalltalk, C++, Java, and C#.

The functional, also called the applicative, computing paradigm expresses computation in

terms of mathematical functions. Since we have been expressing computation in mathematical

functions in many of the mathematical courses, functional programming is supposed to be easy

to understand and simple to use. However, since functional programming is rather different

from imperative or OO programming, and because most programmers first get used to writing

programs in imperative or OO paradigm, it becomes difficult to switch to functional

programming. The main difference is that there is no concept of memory locations in functional

 4

programming languages. Each function will take a number of values as input (parameters) and

produce a single return value (output of the function). The return value cannot be stored for later

use. It must be used either as the final output or used immediately as the parameter value of

another function. Functional programming is about defining functions and organizing the return

values of one or more functions as the parameters of another function. Functional programming

languages are mainly based on the lambda-calculus that will be discussed in Chapter Four.

Typical functional programming languages include ML, SML, and Lisp/Scheme.

The logic, also called the declarative, computing paradigm expresses computation in terms of

logic predicates. A logic program is a set of facts, rules, and questions. The execution process

of a logic program is to compare a question to each fact and rule in the given fact and rulebase.

If the question finds a match, then we receive a yes-answer to the question. Otherwise, we

receive a no-answer to the question. Logic programming is about finding facts, defining rules

based on the facts, and writing questions to express the problems we wish to solve. Prolog is the

only significant logic programming language.

All these computing paradigms support both “programming-in-the-small” and “programming-

in-the-large.” The former emphasizes the development of program components or modules

using basic programming constructs such as sequential, conditional branching, and looping

constructs. The latter emphasizes developing large applications. Large applications often

require more people and effort, and they are used in critical applications such as banking,

e-business, embedded systems, e-government.

Another important paradigm is component-based computing. This paradigm emphasizes

composing large applications based on pre-programmed components or modules. Components

or modules are often pre-compiled program units, and they are linked into the application prior

to the execution. Conceptually, component-based computing is not new. OO computing is

widely considered to be component-based computing, where each class or object is a

component. A namespace (a group of classes) can be considered a component, also. However,

both of these views are tightly coupled with the specific definition of “class.” Component-based

computing can have a broader meaning, which allows any unit or module to be considered a

component, and thus, can be consider a distinct paradigm different from OO computing. A

component can be as small as an object and can be as large as an application, and a component

is often well encapsulated. Thus, for some, SOC is really component-based computing, as

services can be components. In their mind, SOC is essentially component-based computing but

each component is specified using open standards.

Distributed computing involved computation executed on more than one logical or physical

processors or computers. These units cooperate and communicate with each other to complete

an integral application. The computation units can be functions (methods) in the component,

components, or application programs. The main issues to be addressed in the distributed

computing paradigms are concurrency, concurrent computing, resource sharing,

synchronization, messaging, and communication among distributed units. Different levels of

distribution leads to different variations. Multithreading is a common distributed computing

technique that allows different functions in the same software to be executed concurrently. If

the distributed units are at the object level, this is distributed OO computing. Some

well-known distributed OO computing frameworks are CORBA (Common Object Request

 5

Broker Architecture) developed by OMG (Object Management Group) and Distributed

Component Object Model (DCOM) developed Microsoft.

Service-oriented computing (SOC) is another distributed computing paradigm. SOC differs

from distributed OO computing in several ways:

 SOC emphasizes on distributed services (with possibly service data) rather than

distributed objects;

 SOC explicitly separates development duties and software into service provision,

service brokerage, and application building through service consumption;

 SOC supports reusable services in (public or private) repositories for matching,

discovery and (remote or local) access;

 In SOC, services communicate through open standards and protocols that are platform

independent and vendor independent.

Figure 1.2 summarizes the features of different computing paradigms.

It is worthwhile noting that many languages belong to multiple computing paradigms. For

example, C++ is an OO programming language. However, C++ also includes almost every

feature of C. Thus, C++ is also an imperative programming language, and we can use C++ to

write C programs.

Java is more an OO language, that is, the design of the language put more emphasis on the

object orientation. However, it still includes many imperative features. For example, Java’s

primitive type variables use value semantics and do not obtain memory from the language heap.

Lisp contains many non-functional features. Lisp and Scheme are functional programming

languages, but they also contain many non-functional features such as sequential processing

when input and output are involved

Prolog is a logic programming language, but its arithmetic operations use the imperative

approach.

In summary, these computing paradigms often overlap with each other. For example, OO

computing languages are often also imperative programming languages, and SOC languages

such as C# and Java are also OO programming languages. Thus, a single programming

language can be used to write programs in different computing paradigms. See [Chen 2006] for

an introduction to these computing paradigms using C, C++, Scheme, and Prolog.

1.2 Distributed Computing and Distributed Software Architecture

In distributed computing, computation is distributed over multiple computing units (processors

or computers), rather than confined to a single computing unit. Virtually, all large computing

systems now are distributed, as the multi-core processor design is introduced.

 6

Service-Oriented Computing

Emphasis on service (results)

delivered by the components

Platform and vendor-

independent

Separation of development

duties of services, brokerage,

and application building

Open standards and protocols

Repository of reusable services

Internet-searchable services

Automated discovering and

binding

Collaboration negotiation

Dynamic re-composition

Support both stateless and

stateful services

Enforced composition of

application based on reusable

services

Support traditional databases

and XML-based databases

Ontology-based reasoning

Workflow composition

Support sequential actions and

parallel actions.

Object-Oriented

computing

Abstract data types

Encapsulation

Inheritance

Dynamic binding

Functional

computing

Stateless

Side-effect free

Enforced modular

design

Logic

computing

Database

Relations

Query and matching

Reasoning

Multi-threading

Parallel processing

Synchronization

Resource sharing at

function level

Imperative

computing

Fully specified and

control manipulation of

named data

Step-wise manipulation

Distributed

object-oriented

computing

Distributed computing

at object or component

level, e.g., CORBA and

DCOM

Figure 1.2 Features of different computing paradigms

1.2.1 Distributed Computing

Software architecture describes the system structure and functionality allocation over a number

of logical or physical computing units. Having the right architecture for an application is

essential to achieve the desired quality of service.

Distributed computing often has to deal with multiple dimensions of challenges, including

complexity, communication and connectivity, security and reliability, manageability, and

unpredictability and nondeterministic behaviors. These challenges are well expressed in the

following eight fallacies of distributed computing, proposed by Sun Microsystems fellows

[http://en.wikipedia.org/wiki/Fallacies_of_Distributed_Computing]:

1. The network is reliable.

2. Latency is zero.

3. Bandwidth is infinite.

 7

4. The network is secure.

5. Topology does not change.

6. There is one administrator.

7. Transport cost is zero.

8. The network is homogeneous

The first four fallacies, called the fallacies of networked computing, were proposed by Bill Joy

and Tom Lyon in 1991. Peter Deutsch added the next three, which are often referred to as

Deutsch’s seven fallacies. James Gosline added the eighth fallacy in 1997.

1.2.2 N-Tier Architecture

Similar to the OSI seven-layer network architecture, distributed software architecture often

has a layered structure, in which components are organized in layers and refers to N-Tier

Architecture. For example, complex business software can be organized in the following

five-tier model:

1. Presentation tier: The layout of the Graphic User’s Interface (GUI);

2. Implementation of the presentation tier: Program the GUI in certain programming

language;

3. Business logic tier: Implementation of the business objects, rules, and policies;

4. Data access tier: Interfaces from the business logic to the databases;

5. Data tier: Databases.

The tiered design is well suited for distributed computing, with one tier or a number of adjacent

tiers residing on one node of the distributed system. Another advantage is the flexibility in

maintaining the system; the tiers can be modified relatively independently. For example, if tier

2, the implementation of the presentation, must be changed, none of the other tiers has to be

changed from the logic point of view. The user can still use the same interfaces and the business

logic can remain unchanged. From the programming point of view, the tier above may need to

be changed if different user interfaces are offered at the modified tier.

Two-tier architecture and three-tier architecture are the most widely used distributed

architecture. In the two-tier architecture, also known as client-server architecture, the

application is modeled as a set of services that are provided by servers and a set of clients that

use these services. Clients know of servers but servers do not need to know of clients. Both

clients and servers are logical processes, which can reside on the same computer or on different

computers. Figure 1.3 shows an example of the client-server architecture. The servers can form

a federation, which backs each other up to provide dependable services to their clients. The

federation is often transparent to the clients. Data services provided by databases are important

to most business applications and the databases are part of the server in this architecture.

The client-server architecture can be further classified into thin-client and fat-client

architectures. In the thin-client architecture, all of the application processing and data

management are carried out on the server. The client is simply responsible for running the

presentation software.

 8

In the fat-client architecture, the software on the client implements the application logic and the

interactions with the system user. The server is responsible for data management (database)

only.

Server

2Server

1

Server

4

Server

3

Client

Federation

Server

database

A server also

manages the

database

Server

2Server

1

Server

4

Server

3

Client

Federation

Server

database

Server

database

A server also

manages the

database

Figure 1.3 Client-server architecture, with the federation among the servers

Three-tier architecture consists of three layers shown in Figure 1.4. Each layer is executed on

a separate processor. It is a more balanced approach, which allows for better performance than

a thin-client approach and is simpler to manage than a fat-client approach. Three-tier

architecture is a more scalable architecture -- as demands increase, extra servers can be added.

Presentation Layer (GUI)

Application Processing Layer (Business Logic)

Data Management Layer (Database)

Presentation Layer (GUI)

Application Processing Layer (Business Logic)

Data Management Layer (Database)

Figure 1.4 Three-tier architecture

Figure 1.5 shows an example of a three-tier Internet banking system, where the clients can

include GUI of ATM (Automated Teller Machine), POP (Point Of Purchase), and Web access

to the user account. The application-processing layer can reside in the bank’s IT center,

responsible for processing all the requests. The data, such as account information and balance,

are stored in a different server managing the databases.

Web Server

For Account

service

provision

Client

Client

Client
Database server

Customer

Account

database

HTTP

SQL requests

and responses
Web Server

For Account

service

provision

Client

Client

Client
Database server

Customer

Account

database

HTTP

SQL requests

and responses

Figure 1.5 Example of a three-tier Internet banking system

 9

The service-oriented architecture can be implemented as four-tier architecture, as shown in

Figure 1.6(a), which consists of presentation layer, application layer, service repository layer,

and data management. However, service-oriented architecture does not have to be tied to this

architecture, where only adjacent tiers can communicate with each other. Figure 1.6(b) and (c)

show two possible variations of implementing the SOA.

Presentation

Layer (GUI)

Application

Processing Layer

Service Repository

Layer

Data Management

Layer

Presentation

Layer (GUI)

Application

Processing Layer

Service Repository

Layer

Data Management

Layer

Data

Management

Presentation

Layer (GUI)

Application

Processing Layer

Service Repository

Layer

Data Management

Layer

(a) (b) (c)

Figure 1.6 Four-tier architecture and its variations

1.2.3 Distributed Object Architecture

Different from the N-tier architecture, where the clients and servers are explicitly differentiated,

the distributed object architecture makes no explicit distinction between clients and servers.

Each distributable entity is an object that provides service to other objects and receives services

from other objects.

Distributed object architecture is more generic in implementing different applications. However,

it is more complex to design and to manage than the tiered architecture, because it allows the

system designer to delay decisions on where and how services should be provided. In other

words, it is an open system architecture that allows new resources to be added to the system as

required. The system built on distributed object architecture is flexible and scalable. It is

possible (e.g., written in the same language) to reconfigure the system dynamically with objects

migrating across the network as required. As a logical model, distributed object architecture

allows developers to structure and organize the system. In this case, developers can focus more

on provision of the application functionality in terms of services and combinations of services.

The two major implementations of the distributed object architecture are CORBA (Common

Object Request Broker Architecture) developed by OMG (Object Management Group) and

Distributed Component Object Model (DCOM) developed by Microsoft.

In CORBA, object communication is through a middleware system called an Object Request

Broker (ORB), also called software bus, as shown in Figure 1.7.

 10

CORBA objects are comparable, in principle, to objects in C++, C#, and Java. The objects have

a separate interface definition that is expressed using a common language IDL (Interface

Definition Language), which is similar to C++. The interfaces of an object can be written in any

language. A program translator can be used to translate the interface code, for example, in C++

and Java, into IDL code, and thus the objects written in different programming languages can

communicate with each other. The ORB handles object communication through the stubs

written in IDL. A service provider will make their service ports known as the IDL stubs. If a

service requester calls a stub, the call will be translated to a call to the function of the service

provider.

Object Request Broker

Objects

IDL

Stub

IDL

Stub

Object Request Broker

IDL

Stub

IDL

Stub

Physical Network

Object Request Broker

IDL

Stub

IDL

Stub

Objects

Figure 1.7 CORBA architecture

DCOM (Distributed Component Object Model) is the Microsoft’s distributed software

development framework before Visual Studio .Net. DCOM allows software components to

distribute across several networked computers to communicate with each other. Initially, the

distributed software development framework was called OLE (Object Linking and Embedding),

a distributed object system. The framework evolved for several generations. It was extended

into “Network OLE” and then to COM (Component Object Model) in 1993, which provides the

communication capacity among objects. In Windows 2000, significantly extensions were made

to COM and it was renamed COM+, before it evolved into DCOM. All technologies in DCOM

were integrated into or replaced by Visual Studio .NET, which is an all-in-one OO, distributed,

and service-oriented software development environment.

Distributed object architecture is a predecessor of SOC. It has many characteristics of SOC. The

significant improvements and achievements made in SOC include:

 All major computer companies have agreed on the SOC standards, protocols, and

interfaces for creating interoperable services, which are platform and language

independent. In the case of distributed object architecture, CORBA and DCOM have

similar functionality and goals; however, the systems developed in the two

environments are not interoperable, and DCOM is also platform dependent.

 SOC has explicitly separated the duties of development: The service providers develop

services, the service requesters build the application using existing services, and service

brokers publish the services and facilitate the matching and discovery of services. In

distributed object architecture, there is no explicit separation of duties, and there are no

external mechanisms for service publication and discovery.

 11

 The Web service implementation of SOC makes use of the pervasive internet

infrastructure to deliver the services, while allowing using local area networks to build

private SOC applications using the same technologies and standards.

Multithreading is the basic distributed computing model, which allows the parallel computing

units to be specified by the programmer at the function and class levels, which are executed as

independent operating processes and are running on the same processor or on different

processors, depending on the operating system’s scheduling and dispatching. Communication,

resource sharing, and synchronizations among the threads are managed by the programmer.

Chapter Two will cover multithreading in detail.

1.3 Service-Oriented Architecture and Computing

1.3.1 Basic Concepts and Terminologies

A service is the interface between the service producer (or provider) and the consumer. The

producer (also called provider) of a computing service is the person who develops the computer

program (or the computer that runs or hosts the program) for others to use; while a service

consumer is a person or a computer program that uses a service. From the producer’s point of

view, a service is a function module that is well-defined, self-contained, and does not depend

on the context or state of other functions. These services can be newly developed modules or

just modules wrapped around existing legacy programs to give them new interfaces.

From the application builder or service consumer’s point of view, a service is a unit of work

done by a service provider to achieve desired results. Different from an application, a service

normally does not have the human user’s interface. Instead, it provides Application

Programming Interface (API) so that the service can be called (invoked) by an application or

another service. For human users to use a service, a user interface needs to be added. A service

with a user interface is an application.

The discovery of services by service consumers can be facilitated by service brokers. A service

broker allows a service producer to publish their service definitions and interfaces, and at the

same time allows a service consumer to search its database to discover the desired services.

An important feature of SOC is to divide the software development into three parties

(stakeholders): service requesters or consumers, providers, and brokers. This three-party

structure adds significant flexibility to the software system structure, and supports a new

approach of software development: composition.

Service-Oriented Architecture (SOA) is a distributed software architecture, which considers

a software system consisting of a collection of loosely coupled services that communicate with

each other through standard interfaces, such as WSDL (Web Services Description Language)

interface and via standard message-exchanging protocols such as SOAP (Simple Object Access

Protocol). These services are autonomous and platform independent. They can reside on

different computers and make use of each other’s services to achieve their own desired goals

and end results. Software in SOA should be developed and maintained by three independent

parties, service requester (application builders), service brokers, and service providers. Service

providers develop services and publish them in service brokers, while the service requesters

 12

discover the services via service brokers using the available services to compose their

applications. As the same services can be published by many service providers, the service

requesters can dynamically discover new services and bind them into their applications at

runtime, as better services are discovered.

Service-Oriented Computing (SOC) refers to the computing paradigm that is based on the

SOA conceptual model. SOC includes the concepts, principles, and methods that represent

computing in three parallel processes: service development, service publication, and

application composition using services that have been developed. The essential difference

between SOA and SOC is that SOA is a conceptual model that does not concern the algorithmic

design and implementation to create operational software, while SOC involves a large part of

the software development life cycle from requirement, problem definition, conceptual modeling,

specification, architecture design, composition, service discovery, service implementation, and

testing, to evaluation. As a result, SOA is more of the concern from the application builders

(service requesters), while SOC is concerned by all three parties of the SOC software

development.

Service-Oriented Development (SOD) refers to the entire software development cycle based

on SOA concepts and SOC paradigm, including requirement, problem definition, conceptual

modeling, specification, architecture design, composition, service discovery, service

implementation, testing, evaluation, deployment, and maintenance, which will lead to

operational software.

In the literature, SOA is often extended to include the meaning of the SOC, and thus, SOA and

SOC are used interchangeably, particularly when the specific differences between SOA and

SOC are not the concern of the discussion. On the other hand, SOC is often extended to include

the meaning of SOD, particularly when the specific differences between SOC and SOD are not

the concern of the discussion. Thus, in this book, we will use SOC for SOA and SOD as well,

to simplify the use of terminology, if the differences among them are not the concern of the

discussion.

Figure 1.8 illustrates the relationship between SOA, SOC, and SOD. The dotted circle shows

the coverage of this book.

SOD

SOC

SOA

Figure 1.8 SOA, SOC, and SOD

We use “Distributed Service-Oriented Software Development” as the title of the book to

contrast the widely used Distributed Object-Oriented Software Development approach, and to

emphasize the fact that service-oriented software development is distributed in nature. Not only

the software under development is distributed in different computers in different locations, but

also the development process is distributed in the sense that the application builders, service

brokers, and service providers are developers working independently in different locations, but

following the same interfaces and standards. Furthermore, we have Chapter Two to discuss

 13

distributed computing in general and how SOA, SOC, and SOD fit into the framework of

general distributed computing.

Web services (WS) are services accessible over the Web. Web services-based computing is a

specific implementation of SOC. It is perhaps the most widely known SOC example; however,

other SOC implementations are also possible. Web services support SOC, and have a set of

enabling technologies including WSDL, SOAP, and XML. XML is the standard for data

representation; SOAP enables remote invocation of services across network and platforms.

WSDL is used to describe the interfaces of services. UDDI (Universal Description Discovery

and Integration) and ebXML (electronic business eXtensible Markup Language) are used to

publish Web services, which enable publishing, searching, and discovery, manually and

programmatically. More standards and protocols are being included in the WS technology set

every day. Web services have several technical aspects:

 Services are functional building blocks. Multiple services can form a composite service

and the composite service becomes a new building block. However, the code of a Web

service does not need to be imported and integrated into the application. Instead, a

service runs at the service provider’s site and is loosely coupled with the application

using messages. Thus, the service does not have to been written in the same

programming language and does not have to be developed or running on the same

platform.

 Services are software modules that can be identified by URL (Uniform Resource

Locator) and whose interfaces and bindings are capable of being defined, described, and

discovered as XML artifacts.

 Web services are often described by WSDL, accessed by the protocol SOAP over HTTP.

With an added human interface, a single service or a composite service can form a Web

application. Web services are normally accessed by computer programs, while Web

applications are accessed by human users using a Web browser.

Composition is a key concept in SOC, which uses available services to compose a composite

service or an application. Two composition methods are proposed and realized: Orchestration

and choreography. In orchestration, a central process, which can be a service itself, takes

control over the involved services and coordinates the execution of different operations. The

involved services communicate with the central process only. Orchestration is useful for private

business process. BPEL (Business Process Execution Language) is the major composition

language that supports orchestration. In choreography, there is no central coordinator. Each

service involved can communicate with any partners; choreography is useful for public business

process and allows dynamic composition. WS-CDL (Web Services Choreography Description

Language) is a composition language that supports choreography.

Service-Oriented Infrastructure (SOI): This term can have two meanings. The first meaning

refers to the hardware and software support for SOC, as SOC involves many new kinds of

operations not commonly used in traditional computing such as publishing, discovery,

policy-based governance, orchestration, and choreography. For example, if the number of

services is huge, the search algorithm needs to be efficient, with a good caching mechanism.

Otherwise, a significant amount of time will be spent on discovery. Another example is the

policy governance mechanism. As policies need to be enforced at runtime, the enforcement

mechanism needs to be efficient and run at the real time as the application is running. As some

 14

of the SOC operations can be quite expensive, it is quite logical that some of these operations

should be executed by hardware or supported by hardware to save cost and time. This is

particularly true if the SOC system needs to be used in mission-critical real-time systems.

Another meaning of SOI is that a hardware system can be organized in a service-oriented

manner like a software system. An example of this kind of SOI is now being developed by Intel

in their SOI group. The principal idea is to treat computing components, memory components,

and networking components as virtual services. Essentially they are treating these hardware

components as services like software services, and they control these hardware services like

software services in a service-oriented manner. Intel calls this PaaS (Platform as a Service) so

to compare the SaaS (Software as a Service) concept. In this way, a hardware system can be

composed and re-composed like a software system, and managed like an SOC system. Another

interesting implication is that once a hardware system is organized in an SOI manner, hardware

is constructed as re-composable services, which allow hardware components to be replaced or

upgraded without stopping the operation of the system. This means that current fault-tolerant

computing techniques can be seamlessly integrated into the architecture design. This will be a

research topic for the future.

Web 2.0 is the proposed next generation of Web or internet. The core concepts include users as

active contributors (rather than just passive observers), peer collaboration, collective

intelligence, moving the computing platform from desktop to the Web, user-centric computing,

and service orientation. One well-known example is the Wikipedia, where millions of user

participated in writing an online encyclopedia. This approach has been particularly successfully

as the Wikipedia has become a popular way for people to learn. Note that the Wikipedia

Company has only seven employees, yet it has produced millions of pages of knowledge, and

almost all the knowledge is contributed by users. This is an excellent example how massive

collaboration can create something that is of great value. This book has many citations to

Wikipedia, which is a witness that the materials in the Wikipedia are indeed useful. The

approach of conducting business using Web 2.0 is now called Wikinomics

[http://en.wikipedia.org/wiki/Wikinomics]. Numerous organizations are now trying to

duplicate this approach in creating something of great value.

Semantic Web. Semantic Web is defined by W3C, which provides a vision for the future of the

Web. The Semantic Web provides a common framework that allows data to be shared and

reused across application, enterprise, and community boundaries. The idea is to give

information explicit meaning, to make it possible for Web services to automatically process and

integrate information available on the Web. Semantic Web is now also called Web 3.0

[http://en.wikipedia.org/wiki/Web_3], as the name Web 2.0 has been used. However, Web 3.0

is currently more mature than Web 2.0 and may be formally deployed before Web 2.0. Semantic

Web has been a popular research area for a number of years.

Ontology. The word “ontology” comes from philosophy, where it means a systematic

explanation of being. In computer science, ontology is defined to be the formal specification of

the terms and objects in a domain and the relationships among them. One of the principal

relationships is classification. Often an ontology system defines a vocabulary of terms (words),

their meanings (semantics), their interconnections (e.g., synonym and antonym), and rules of

inference (reasoning), which is used in the semantic Web projects as the main means of

implementation.

 15

Service-Oriented Databases (SODB). As SOC became popular, the database technologies

also become relevant. SOC applications use XML-based data and message, which have

tree-structures, whereas traditional databases consist of tables of rows and columns. There are

several approaches to address the mismatch between data structures.

The first approach is to use traditional databases and an adapter to convert the XML-based data

and message to and from data of tables in the traditional databases. This is the current business

practice in this area.

The second approach is to encode data in the XML format and store the XML files as database.

The main challenge is to design and implement efficient XML-based query language to retrieve

data from, and store data into, the XML database. The XQuery language has been defined by

W3C to serve this purpose.

The third approach is to encapsulate the existing database management systems such as

relational database systems as service, and develop related services so that an SOA application

can talk to the database system. Those related services are called information services.

Ontology can also serve as a database for SOC applications. In fact, an XML database can be

viewed as a simplified ontology system.

1.3.2 Service-Oriented Computing

In traditional software development paradigms, the developer takes the requirements, converts

them into specification, and then translates the specification into the executable that meets the

requirements. Several approaches are available to translate the specification into an operational

system, including the waterfall model, incremental development, object-oriented computing

(OOC), and component-based computing. Each approach has its own engineering processes

and techniques.

SOC is a new paradigm that evolves from the OOC and component-based computing by

splitting the developers into three independent but collaborative parties: the application

builders (also called service requesters), the service brokers, (or publishers), and the service

developers (or providers). The responsibility of the service developers is to develop software

services with standard interfaces. The service brokers publish or market the available services.

The application builders find the available services through service brokers and use the services

to develop new applications. The application development is done via discovery and

composition rather than traditional design and coding. In other words, the application

development is a collaborative effort from the three parties.

Services are platform-independent and loosely coupled so that services developed by different

providers can be used in a composite service. Many standards have been developed to ensure

the interoperability among services. However, the competition is fierce. Only the best services

can survive because, for a given known service requirement, for example, password encryption

and “add-to-cart” services, many providers can implement and publish the same service for

application builders to use in their applications.

In SOC, individual services are developed independently based on standard interfaces. They are

submitted to service brokers. The application builders or service requesters search, find, bind,

test, verify, and execute services in their applications dynamically at runtime. Such a

 16

service-oriented architecture gives the application builders the maximum flexibility to choose

the best service brokers and the best services. Figure 1.9 shows a typical service-oriented

architecture, its components, and the process of registering and requesting a service. The

components and steps shown in the diagram are explained as follows:



Publishing
Find



Found

Registry

Service brokers

Registry



SOAP invocation



Results

Application builder
Service providers

Classes &
objects

Internet

Service

development:

Visual Studio .Net

Java EE / Eclipse

Object-Oriented

Programming

Languages:

C++, C#

Java

Application development platforms:

.Net, SOA Suite, WebSphere, and composition

languages: BPEL, OWL-S, WF

Directory services

UDDI or ebXML

Web and data service development

XML, RDF, OWL, WSDL

White Pages

Yellow Pages

Green Pages







Applications

Figure 1.9 A typical service-oriented architecture

1. The Web services providers develop software components, corresponding to classes and

objects in OOC to provide different services using programming languages such as C++, C#,

and Java. Service-oriented software development environments like .Net, J2EE, and the

Eclipse.

2. The service providers register the services to a service broker and the services are published

in the registry.

3. Current service brokers use UDDI or ebXML standards that provide a set of standard

service interfaces for registering and publishing Web services. For UDDI, the information

needed for registering a service includes: (1) White Pages information: Service provider’s

name, identification, for example, the DUNS number, and contact information. (2) Yellow

Pages information (business category): industry type, product type, service type, and

geographical location. (3) Green Pages information: technical detail how other Web

services can access (invocate) the services, such as APIs (Application Programming

Interfaces). UDDI’s White and Yellow Pages are an analogy to the telephone White and

Yellow pages. The UDDI standard supports directory only, while and ebXML supports both

directory and repository.

4. An application builder looks up, through the Internet, the broker’s service registry, seeking

desired services and instructions on how to use the services. The ontology and standard

taxonomy in the service broker can help automatic matching between the requested and

registered services.

5. Once the service broker finds a service in its registry, it returns the service’s details (service

provider’s binding address and parameters for calling the service) to the application builder.

 17

6. The application builder uses the available services to compose the required application.

This is higher level programming using service modules to construct larger applications. In

this way, the application builders do not have to know low-level programming. With the

help of an application development platform, the application code can be automatically

generated based on the constituent services. The current application development platforms

include like .Net, J2EE, SOA Suite, ActiveBPEL, and WebSphere from IBM, which can

support high-level composition of applications using existing services.

7. The code of services found through a broker resides in a remote site, normally in the service

provider’s site, or in the service broker if service repository is offered by the broker. SOAP

invocation can be used to remotely access the services.

8. The service in the service provider’s site directly communicates with the application and

delivers service results.

1.3.3 Object-Oriented Computing versus Service-Oriented Computing

SOC is different from Object-Oriented Computing (OOC) in many ways, even though SOC

evolves from OOC, and they may look similar. In the past, some mistakenly thought that OOC

is not much different from procedural computing, because traditional procedural languages

already have the concept of data abstraction such as structure, which is similar to class, and

procedures, which is similar to methods. Even though OOC may look similar to traditional

computing, the fact that designers think in terms of classes and objects fundamentally change

their way of thinking. As a result, many new concepts and methods emerge in OOC, such as

design patterns, inheritance, dynamic binding, polymorphism, design hierarchy, and UML

(Unified Modeling Language).

Similarly, SOC is different from OOC, because now designers will think in terms of services,

workflows, service publishing, discovery, application composition using reusable services, and

policy governance. These concepts are indeed different from OOC.

Furthermore, services can be available on the web or in a private repository, and an application

can use runtime search to discover new services and bind the service into the application. The

application builder may not need to buy and install the service component (the software that

provides the service); instead, the application can access the service component remotely and

pay for the service used. Software upgrade will become easy, because once the service

components are upgraded, the new services will be immediately available to the applications,

saving significant cost of un-installing and re-installing software on client computers. Software

will be charged based on the extent of use. Thus, users will not have to pay for unnecessary

software. In other words, SOC provides a new model of software application, instead of

buy-install-and-use, SOC provides a new model of use-and-pay.

The SOC also has a significant impact on the system structure, dependability attributes, and

mechanisms, such as system reliability, security, system reconfiguration, and re-composition.

These mechanisms will be drastically different from OOC. For example, instead of static

composition (with dynamic creation of objects and dynamic binding) in OOC, SOC allows

dynamic composition in real time and at runtime using services just discovered, and with

knowledge of the service interface only. Because new services will be discovered at runtime,

SOC also needs a runtime ranking and selection mechanism based on runtime interoperability

 18

evaluation, testing, and other criteria. In case of system failures or requirement changes, the

SOC also needs a distributed reconfiguration and re-composition strategies. Such strategies will

be rather different for OOC.

In OOC, it is necessary to develop the code manually, even though some forms of dynamic

binding can be used. The current OOC dynamic binding mechanism allows polymorphism, that

is, methods that belong to a family of classes can replace each other at runtime. Yet SOC allows

an unrelated service to replace an existing service as long as the new service has the same

WSDL specification.

In SOC, a faulty service can be easily replaced by another standby service by a DCS (Dynamic

Composition Service). The DCS is also a service that can be monitored and replaced. The key

is that each service is independent of other services, and thus, replacement is natural. Only the

affected services will be shut down. This approach allows the mission-critical application to

proceed with minimum interruption.

Although SOC shares certain concepts and technologies with OOC, such as component design

and component reuse, the innovation in SOC is significant. Figure 1.10 contrasts the main

technologies and the development methodologies between the two paradigms.

OOC Languages OOC IDE

Object
orientation

Inheritance

Polymorphism

Dynamic

binding

Objective C
C++
C#
Java

Simula
Smalltalk

CORBA

UML

MS .Net

JDK

GCC

OOC Development Cycle

Specification/Modeling

Verification/Model checking

Design / Coding

Validation / Testing

Operation

Maintenance

SOC IDE

Service
orientation
Loosely
coupled
Remote
binding

Dynamic
composition

Standard
interfaces

SOC Three-Party-Development Cycles

Service development in OOC

Interface wrapping

Service registration

Application specification

Service search

Composition

Remote binding

Remote invocation

Re-composition

MS. Net

MS Biz Talk

Oracle SOA Suite

Jdeveloper

Java EE

WebSphere

ebXML

UDDI

SOC Protocols/Languages

Directory

Repository

Ontology

Matching

XML

WSDL

SOAP

RDF

OWL

BPEL

SCA/SDO

PSML

OOC Concepts

SOC Concepts

Figure 1.10 OOC and SOC concepts and technologies

Table 1.1 elaborates the comparison between OOC paradigm and SOC paradigm in terms of

major features in the software development process.

1.3.4 Service-Oriented Enterprise

A Service-Oriented Enterprise (SOE), proposed by Intel researchers and standardized by

OASIS, is a stack of technologies that implement and expose the business processes through an

SOA system. SOE provides a framework for managing the business processes across an SOA

landscape. At its core, the SOE is a system structure that supports core enterprise computing.

An enterprise is not just an individual system. In fact, it is more than all the systems within a

business unit, but across a large corporation. For example, a computer system for an army unit

 19

in a given state is not an enterprise system, but a DoD (Department of Defense) system that

controls and commands a major DoD function is an enterprise system. A supply chain system

for a major retail store, such as Wal-Mart or Target, is another example of an enterprise system.

Thus, an enterprise system is much larger than an individual system, and it may consist of

hundreds of systems residing in multiple states or nations. A SOE is a system that supports the

enterprise-wide operations.

Table 1.1 OOC versus SOC

Features Object-Oriented Computing Service-Oriented Computing

Methodology Many methodologies are

available to develop OO

programs.

In addition, SOC involve service discovery,

architecture, application composition, and

software monitoring.

Cooperation

among

developers

Development is by a single team

responsible for entire life cycle.

Cooperation is among software

engineers working on require-

ment, designers, coding, and

QoS.

Development is delegated to three

independent parties: application builder,

service provider, and service broker.

Cooperation is among these three parties.

Abstraction Abstract data type (class) and

encapsulation of data and

methods within a program.

Abstraction is at the service (including

workflows) and architecture levels.

Code reuse Inheritance allows code reuse

within one application or within

one platform. OO design

patterns and application

frameworks can be used to

promote software reusability.

Services can be shared to promote

reusability. Service brokers with ontology

information enable systematic sharing of

services.

Dynamic

binding

Associating names to variables

and methods at runtime.

Can dynamically allocate remote service

required through the service directory.

Re-

composition

Often it is necessary to

determine and import the

components at design time.

Can remove remote services, and find and

add newly available services through the

service directory.

Component

communi-

cation and

interface

Importation of component code

and integration at compilation

time. Often this is platform and

language dependent.

Remote invocation without importing the

code. Platform and language independent.

Open standard protocols ensure

interoperability from different vendors.

System

maintenance

Users need to maintain and/or

upgrade their hardware and

software regularly.

Hosting software needs to be maintained by

provider, but services may be maintained by

third parties.

Reliability Software reliability can be

obtained via testing and

Application reliability depends on the

reliability of application software as well as

 20

reliability modeling.

Fault-tolerant software can be

designed with redundant

components.

the reliability of services used, and possibly

also the reliability of involved service

brokers. Software reliability can be obtained

with collaboration and contributions from

all the parties. Fault-tolerant software can

be designed with redundant services.

As an enterprise-wide system, the traditional elements of SOA, that is, searching, discovery,

interfacing, and service invocation, are not the focus of SOE, even though they are the common

elements shared by the participating systems. These elements describe how to construct services

and how to use services. They do not describe how sets of services support enterprise business

processes or how atomic services function within an enterprise.

The central challenge facing the SOE is to design service-oriented business processes within an

enterprise in such a way that the process is visible and manageable end-to-end. As the number

of services available within the enterprise increases, the execution pattern becomes increasingly

difficult to define and to track. An SOE is still a relative young research area within SOC, which

itself is a young discipline at this time.

Figure 1.11 shows an example of the layers in an SOE with composite e-business applications

and Web services as its foundation. The top layer of SOE is the configurable business logic. The

next layer is the ebSOA (SOA for electronic business), which is a standard for service broker,

including both registration and repository. The next layer is the Service-Oriented Management

(SOM), which implements the non-functional features such as fault-tolerant computing,

reliability, security, and policies. Service-Oriented Infrastructure (SOI) provides virtual

services that represent the services that can be provided by hardware components. For example,

Intel is developing this layer to map its hardware layer resources, including computing

resources, memory resources, networking resources, devices, sensors, and actuators, to the

service-oriented above architectures. The bottom layer is the hardware devices that perform the

required tasks.

 21

Web Services

Service-Oriented Enterprise (SOE)

ebSOA (E-Business SOA)

Services, Discovery, Composition

SOI (Service-Oriented Infrastructure)

Virtualized Computing, Memory, Networking Resources

Hardware

Processors, Memory, IO, Devices, Sensors, Actuators

Configurable Business Logic

Composite Electronic Business Applications

SOM (Service-Oriented Management)

Reconfiguration, Reliability, Security, and Policies

Figure 1.11 SOE Framework

1.3.5 Service-Oriented System Engineering

Service-Oriented System Engineering (SOSE) is a combination of system engineering,

software engineering, and service-oriented computing. It suggests developing service-oriented

software and hardware under system engineering principles, including requirement, modeling,

specification, verification, design, implementation, testing (validation), operation, and

maintenance. Current research and practice on SOC are largely focused on functionality and

protocols of SOC software. As SOC moves into mission-critical applications, as well as the

entire computing and communication infrastructure moves to SOC, SOSE issues need to be

addressed.

Table 1.2 lists typical SOSE techniques in each development phase. Many of the techniques are

collaborative. For example, test cases may be contributed in a collaborative manner by all three

parties. The service provider can provide sample unit test cases for the service broker and

service requestors to reuse. The service broker can provide its own test cases via

specification-based test case generation tool, and the broker may even make the tool available

for all the parties. The application builder can examine the sample test cases by the service

broker, apply the test case generation tool provided by the service broker, and even contribute

its own application test cases.

 22

Table 1.2 Different SOSE techniques

Development phase SOSE techniques

Collaborative

Specification & modeling

Service specification languages, model-driving architecture,

ontology engineering, and policy specification.

Collaborative Verification Dynamic completeness and consistency checking, dynamic model

checking, and dynamic simulation.

Collaborative Design Ontology engineering, dynamic reconfiguration, dynamic

composition and re-composition, dynamic dependability

(reliability, security, vulnerability, safety) design

Collaborative

Implementation

Automatic system composition and code generation

Collaborative Validation Dynamic specification-based test generation, group testing,

remote testing, monitoring, and dynamic policy enforcement

Collaborative Run-time

Evaluation

Dynamic data collection and profiling, data mining, reasoning,

dependability (reliability, security, vulnerability, etc) evaluation

Collaborative Operation

and Maintenance

Dynamic reconfiguration and re-composition, dynamic

re-verification and re-validation

Even though we mainly use software to illustrate SOSE, the same can be applied to hardware

and networks. Major computer companies are developing SOI and SON (Service-Oriented

Networks) to support SOC applications at this time. They will need to develop the related SOSE

techniques.

While the basic engineering principles remain the same, the way they are applied will be

different in the SOC paradigm. Specifically, most engineering tasks will be done on the fly at

runtime in a collaborative manner. Because systems will be composed at runtime using existing

services, many engineering tasks need to be performed without complete information and with

significant information available just in time before application. In this way, SOSE in some way

may be drastically different from traditional engineering where engineers have complete

information about the system requirements and thorough analyses can be performed even before

system design is started.

SOC is a new paradigm for computing and thus new engineering techniques need to be

developed to make SOC software and hardware dependable, reliable, safe, and secure. SOSE

techniques are different from traditional system engineering techniques even though the basic

engineering principles such as mathematics remain the same. Due to the dynamic features such

as runtime composition and re-composition, new applications may not be evaluated by

traditional system engineering because many components may be dynamically discovered and

composed, and their source code may not be available. Thus, dynamic runtime system

engineering techniques need to be applied.

 23

1.4 Service-Oriented Software Development and Applications

1.4.1 Traditional Software Development Processes

Software development processes define the steps of development that leading to high quality

software. Several processes have been proposed and applied, including waterfall, iterative,

object-oriented, and component-based development processes. Object-oriented and

component-based software development processes are similar; Figure 1.12 shows a possible

process. Both development processes require to decompose the system to be developed into

components, to develop the code of the components first, and then to use the components to

build the applications. Object-oriented development process is a more specific approach than

the component-based approach, which is defined by a set of specific features, such as

encapsulation, inheritance, polymorphism, and dynamic binding. General speaking,

object-oriented development is certainly component-based. However, component-based

development may or may not be object-oriented.

1.4.2 Service-Oriented Software Development

Traditional computing paradigms affect mainly the design (algorithms) and implementation

(programming) phases in the software development process. SOC affects the entire software

development process as well as the cycle of the software. To better understand the impacts, let

us first examine the unique features of SOC software:

 Self-contained and self-describing: Services are published through service brokers and the

published services contain sufficient information for other services to discover, match, bind,

and invoke remotely and at runtime.

 Reconfigurable and Re-composable: A newly discovered service can be composed into an

existing service in two different ways: reconfiguration and re-composition.

 Reconfiguration: An existing service can be replaced by a new service satisfying the same

function specification. Reconfiguration is performed when a service is faulty or becomes

unavailable.

 Re-composition: In a SOC system, the user could change the specification of a service at

runtime theoretically, resulting a re-composition; during which, new services could be

included in a composite service and existing services could be excluded.

 Dynamic verification: The dynamically modified specification must be dynamically

verified to assure the required properties of the specification.

 Dynamic validation: The dynamically reconfigured or re-composed service must be

dynamically validated (tested) to assure it meeting the specification.

 Dynamic evaluation: The dynamic reconfiguration and re-composition may lead to

structural change of a service and the attributes (reliability, security, safety, and

performance) must be dynamically evaluated.

 24

Requirement analysis

Component

development

Programmers

Problem decomposition

Component

testing

Class & object

testing
Component

library
Class
library

Class & object

development

Programmers

Application building

Testing

Deployment

Application builder

Class

search

Component

search

Figure 1.12 Object-oriented and component-based software development processes

In traditional software development process, the entire process is often managed by the same

organization of developers. The new service-oriented software development is divided into

three parallel processes: Service development, service publishing into the service brokers, and

application building (composition).

The services are of two kinds: atomic and composite. An atomic service is an object with

standard interface. Thus, the development of atomic services is not much different from that of

the object-oriented software development. The main difference is that an object normally needs

to be integrated into the application written in the same programming language; whereas an

atomic service can reside on a remote computer and can be invocated by applications written in

different programming languages. Thus, the interface of an atomic service must be designed

following certain predefined standards. The interface must contain the description of the

functions of the service and the technical detail of invocating the service, so that the service can

be discovered and can be properly invocated by other programs. WSDL (Web Service

Description Language) is major languages used to describe the interfaces of services and SOAP

(Simple Object Access Protocol) is used to transport messages between services. An atomic

service can either be developed from scratch or be a wrapped service from an existing software

component.

The development of composite services is different from that of traditional software

development process. Although traditional software development allows the construction of

larger components from smaller components, the construction is static and manual. The

construction of composite service can be static and manual. However, it can also be dynamic

and automatic, that is, a service can be composed at runtime when a required service does not

exist and need to be composed from the existing services. Existing services include those

services that are published through service brokers. Once a service is composed, the composite

service can be published as a new service for future service or application composition. An SOC

 25

application has little difference from a composite service. The former has a GUI for human

users to access, while the latter has programmatic interfaces exclusively for computer programs

(applications or services) to access.

The development processes in OOC and in SOC are elaborated in Figure 1.13. Typically, an

OOC application is developed by the same team in the same language (as shown on the left part

of the figure), while an SOC application is developed by using pre-developed services

developed by independent service providers. To find the required services, the application

builder looks up the service directories and repositories. If a service cannot be found, the

application can publish the requirement or develop the service in-house. Service providers can

develop services based on their own requirement analysis, or look up the requirement published

in the directories.

Class writing

Class testing

Service

directory /

repository

Application builder

Service requester

Service-Oriented Development Process with three independent parties

Service

wrapping

Service

hosting

Requirement analysis

Object-Oriented

Development Process

Problem decomposition

Class testing

Class library

Class writing

Application integration

Testing

Deployment

Service

discovery

Application

composition

Testing

Deployment

Requirement analysis

Problem decomposition

Requirement

discovery

Service broker Service provider

Invocation

Registration Service

registration

Requirement

registration

Figure 1.13 Object-oriented versus service-oriented software development process

Like traditional software development, SOC software development process starts with the

requirement analysis and definition. Figure 1.14 shows a typical requirement definition steps.

At the end of the requirement, the system to be developed will be more formally modeled and

specified in a modeling and specification language.

The rest of the application building process is significantly different from the traditional

software development. Application builders use the existing services published by service

brokers to build application. In this process, the application builder can focus on their business

logic, instead of programming tasks. If the existing services cannot meet an application’s

functional requirement, the application builder can construct a composite service to meet the

requirement. Figure 1.15 outlines the steps of software composition process from application

builder’s perspective.

 26

Requirement

elicitation

Requirement

analysis and

negotiations

Requirement

documentation

User needs

Domain information

Existing system information

Regulations & Standards

Requirement

document

Agreed-upon

requirements

Modeling & Specification

Requirement

validation

Figure 1.14 Requirement Development Process

In Figure 1.15, we separate the data and ontology specification from the functional specification.

In SOC, to facilitate the dynamic composition and re-composition, it is recommended to

separate data such as policies, rules, and configuration parameters from the functional

specification. Storing these data in an ontology or a configuration file allows them to be

modified and to take effect at runtime without stopping the program. Policy-based computing is

a good example of such separation.

The functional specification and data/ontology specification are verified using traditional

verification techniques, such as model checking. Test cases can be generated from the

specifications based on either the functionality or process flow in the specification.

Once the workflow is verified, the remote services need to be discovered or developed

separately if no existing services are available. Once all services are bound into the workflow,

the workflow becomes executable in the given environment, such as a simulation environment.

The application will be tested in the simulation environment before being deployed into the

field environment or a more realistic environment in which execution data can be collected for

various analyses. If semantic information, such as policies, is stored in the ontology, the

execution can be validated by the ontology or the policies. Based on the validation and

evaluation, the system can be reconfigured by binding to different services at runtime. The

requirement can be revised too. In this case, the system needs to be stopped to manually revise

the models and specifications.

1.4.3 Applications of Service-Oriented Computing

As a general-purpose computing paradigm, SOC can be applied in any domains where OOC can

be applied. Especially, OOC can be considered as a part of SOC. Every OOC application can be

theoretically considered as an SOC application. However, in many situations, SOC provides

unique advantages.

 27

Ontology
Verification

Service
binding

Test case
GenerationData and

Ontology
Model

Workflow
Specification

Workflow
Verification

Test Cases

R
eq

u
ir

em
en

t No

No

Testing
Simulation Pass?

No

No

D
ep

lo
y
m

en
t

Execution /
Simulation

Axiom & Policy
Enforcement &

Semantic Validation

Data collectionData Mining

Reliability modeling

Reconfiguration

Re-composition

Yes

Yes

Ontology

Feedback

Feedback

Requirement revision

Ontology Extension

Workflow
revision

Ontology
Revision

Service
discoveryPass?

Figure 1.15 Service-Oriented Application Development Process

Electronic business has been the stronghold of SOC, where many services are dynamic and have

to be remote and over the internet. For example, a travel agency has to remotely invoke the

services offered from the airliners, hotels, and car rentals. It is not doable to import the code of

the services into the local server of the travel agency. Similarly, building an online bookstore

requires to access the services from multiple parties, including banks, publishers, and freighters.

The other emerging application areas include banking, healthcare, and e-government, where the

services from different divisions are loosely coupled to provide collaborative services to their

customers.

Robotics and embedded computing are traditional application fields where control programs are

an integral part of the device. The introduction of SOC into this field makes it more flexible in

accomplishing the mission of a robot or an embedded system. Instead of preloading the entire

control program to the system, parts of the programs are implemented as remote services. The

modification of the remote services can change the behavior and the course of the application

without interrupting its execution. This feature is particularly attractive because the robot or the

embedded system may have been in a location that is not physically reachable.

Many manufacturing processes today are controlled by computers. The introduction of SOC

software in the processes makes the modification of the process much easier and more efficient.

Figure 1.16 shows a part of the SOC research and application projects at Arizona State

University. The development of SOC software and hardware is the core of the research and

applications. Concepts, principles, models, techniques, methods, tools, and frameworks have

been developed to support the applications in a number of areas, including e-business, industrial

 28

process control, command and control, embedded systems, robotics, bio/medical information

system, and ontology-based education systems.

Many of the topics will be covered in this book, not only at the conceptual level, but also at the

development and implementation levels.

Embedded Computing

Research and Curriculum

E-Business

Bio-

Informatics

Engineering

Command

and

Control

Systems
Robotics

Re-composable

Embedded

Systems

Service-

Oriented

Enterprise
Ontology

in education

Manufacture

process

control

Service-Oriented

System Engineering

Infrastructure

Modeling

Simulation

Testing

Reliability

Evaluation

Service-Oriented

Software and

Hardware

Development

sol1 soln sol1 soln sol1 soln sol1 soln sol1 soln

class

ch1 ch2 ch3 ch4 ch5

sec1 secn sec1 secn sec1 secn sec1 secn

q1 qn q1 qn q1 qn q1 qn q1 qn

Figure 1.16 SOC research and application at Arizona State University

1.5 Discussions

While SOC/SOA has been under developed for the last ten years and has been adopted by all

major computer and software companies such as BEA, HP, IBM, Microsoft, Intel, Oracle, Sun

Microsystems, and SAP, as well as government agencies such as US Department of Defense,

British Healthcare System, multiple Canadian provincial governments, and the State of Arizona.

Many felt that SOA is relatively young and much work is needed. Specifically, SOA critics have

pointed out several issues for improvement. For example, one issue is that SOA lacks of a

commonly agreed definition. Some people felt that SOA is not well defined and thus it is

difficult to characterize SOA. For example, at Wikipedia, the following definition is stated for

SOA [http://en.wikipedia.org/wiki/Service-orientation]:

• “Service-oriented Architecture (SOA) is an architectural design pattern that concerns

itself with defining loosely-coupled relationships between producers and consumers.

While it has no direct relationship with software, programming, or technology, it is

often confused with an evolution of distributed computing and modular programming.”

 29

This definition is not good enough for SOA, because this description also fits OO computing.

An OO program can also be loosely coupled. In fact, loose coupling is one of the principal

attributes of OO software. Furthermore, OO computing can be distributed computing and

certainly it is one of common modular programming techniques. Some key SOA attributes,

such as separation of definition from implementation, have also been used in OO software, as

a class interface definition has been separated from its implementation. In fact, the concept of

separating definition from implementation has been attempted for over 30 years in the

computing history, including data abstraction and procedural abstraction. Thus, this concept is

certainly not new or unique. No wonder that in the same page, the collective authors state:

• “There is no widely agreed upon definition of SOA other than its literal translation. It is

an architecture that relies on service-orientation as its fundamental design principle. In

an SOA environment, independent services can be accessed without knowledge of their

underlying platform implementation. These concepts can be applied to business,

software and other types of producer/consumer systems.”

In other words, even thousands of authors around the world who are active in SOA could not

agree on the SOA definitions, as Wikipedia is edited and contributed by their active readers.

Some SOA definitions are are based the common SOA protocols used. For example, if a

software program uses XML, WSDL, OWL, BPEL and/or other protocol or standards, then it is

an SOA software. This definition is still not good enough, because these SOA protocols are

constantly being updated and revised. It is even possible that later versions of these protocols

will have little resemblance to previous versions, as the SOA history certainly can testify that

several SOA protocols have been completely replaced by newer protocols. Specifically, BPEL

has replaced several SOA composition languages before.

Some SOA authors also use SOA properties as definitions. However, this is not good enough

either, specifically, because some often touted SOA properties are actually not available at this

time. For example, dynamic composition is often an important characteristic of SOA. However,

this feature is not available in a practical SOA environment yet. In other words, it is still a

research topic. Most of the SOA tools today actually use static composition, that is, selecting

services at the design time rather than at runtime dynamically. Thus, defining SOA by dynamic

composition is not appropriate at this time. Furthermore, as SOA progresses, other SOA

characteristics will emerge, defining SOA by current SOA properties will prove to be too

restrictive.

Some defines SOA software as a collection of services. However, this definition is too loose. If

so, what is the definition of a service? Does a service have a state? Is a service passive,

autonomous, thin, or fat? Some people say that a service should be a fat service, that is, a service

has many supporting facilities and tools, and it can be even more autonomous like a software

agent. This definition looks interesting and makes a software service more intelligent and

probably more useful than a traditional “passive” service. However, this definition actually

makes the current SOA infrastructure almost invalid, as they do not support “intelligent”

services yet. The current SOA infrastructure does not support those common SOA operations

such as composition, deployment, governance, modeling and interoperability, on this kind of

“intelligent” or autonomous services. Unless a new SOA infrastructure framework is developed,

it is difficult to support those autonomous services using the current SOA infrastructure.

 30

We prefer the definition from OASIS. According to the SOA reference model specification,

SOA is a paradigm for organizing and utilizing distributed capabilities that may be under the

control of different ownership domains. It provides a uniform means to offer, discover, interact

with, and use capabilities to produce desired effects consistent with measurable preconditions

and expectations. The SOA reference model specification bases its definition of SOA around

the concept of “needs and capabilities,” where SOA provides a mechanism for matching needs

of service consumers with capabilities provided by service providers.

OASIS also has a definition of service. A mechanism to enable access to one or more

capabilities, where the access is provided using a prescribed interface and is exercised

consistent with constraints and policies as specified by the service description. Moreover, a

service has service description, visibility, interaction, real-world effect, execution context, and

contract and policy. However, this definition is too loose, because it can fit a passive or thin

service, as well as fat and intelligent service.

Using these definitions, SOA approach essentially allows a person to publish software

components following some standards, and allows others to discovery and reuse. Note carefully

that the above definition does not say that only software services can be published and

discovered. In fact, numerous things such as workflows, collaboration templates, application

templates, data, data schema, policies, test scripts, and user interfaces can be published,

discovered, and reused by others, as listed in Table 1.3.

Table 1.3 SOA Publishable Items

Reusable artifacts Description

Methods (or

Services)

Basic building blocks in SOA, and allows software development by

composition.

Workflows
They specify the execution sequence of a workflow with possibly

multiple services. They allow rapid SOA application development.

Application

templates

These specify entire applications with their workflows and services.

They allow rapid SOA application development.

Data, data schema,

and data provenance

Data and associated data schema such as messages produced during

SOA execution can be published and discovered.

Policies
Policies are used to enforce SOA execution and can be published for

reuse.

Test scripts
Consumers, producers, and brokers can publish test scripts to be

used in verification by other parties.

Interfaces
GUI design can be used and linked at runtime to facilitate dynamic

SOA application with changeable interfaces.

 Thus, potentially SOA can publish and reuse not only software services, but also other software

artifacts such as workflow, policies, and data. Let us attempt a working definition of SOA:

 31

 An SOA is an approach for software construction, verification, validation, maintenance,

and evolution that involve specification, implementation, and publication of software

artifacts such as services, workflows, collaboration patterns, and application templates

following certain open interoperability standards. This approach develops software by

composition with reusable software artifacts.

This working definition excludes an agent to be a service, but allows centralized and distributed

SOA, as well as code to be mobile. This definition allows various web service protocols to be

used as a part of open interoperability standards, but it does not mention any specific protocols.

In this way, all kinds of protocols, including future protocols, can be included as a part of SOA.

Thus, various open interoperability standards for service specification (such as WSDL),

workflow language (such as BPEL), and collaboration specifications (such as CPP/CPA) can be

used. At the same time, as these standards can be updated or even replaced in future, while the

working definition does not need to be updated. Of course, the working definition of SOA can

be updated and be changed from time to time, as we understand SOA more in the future.

Many outstanding books and papers that cover SOA are now available. Most of them are more

suitable for working professionals. The standard organizations OASIS and W3C have

developed most SOA related standards and reference models. Furthermore, as SOA is started

mainly from computer industry, instead of from academia, one should search and navigate the

SOA websites from the major industry players, the most notable ones including BEA, HP, IBM,

Microsoft, Oracle, SAP, and Sun Microsystems. Readers can also find a large amount of SOA

materials at DoD sites and DoD conference proceedings as DoD is one of the earliest adopters

of SOA. Many DoD engineers and contractors have worked on SOA and they have gained

significant experience. Due the relative youth of SOA, many concepts and ideas are expressed

in white papers or web blogs.

Many universities around the world (mainly in Asia, Australia, America, Europe) also offer

SOA courses, but as SOA is a wide area, different topics are actually covered in them. Most of

these classes have offered their materials on the Web and readers can search their websites for

information.

 32

1.6 Exercises and Projects

1. Multiple choice questions. Choose one answer in each question only. Choose the best

answer if multiple answers are acceptable.

1.1 Which of the followings are fallacies of distributed systems?

(A) Latency is zero.

(B) Bandwidth is infinite.

(C) The network is secure.

(D) Topology doesn’t change.

(E) All of them of fallacies.

1.2 Generally speaking, a service is an interface between the

(A) service provider and the service broker.

(B) service requester and the service broker.

(C) Yellow Pages and the Green Pages.

(D) producer and the consumer.

1.3 What architecture is a tiered architecture?

(A) Client-server architecture

(B) CORBA

(C) Service-oriented architecture

(D) DCOM

1.4 What concept is least related coding?

(A) Service-oriented architecture

(B) Service-oriented computing

(C) Service-oriented software development

(D) object-oriented programming

1.5 What entity does not belong to the three-party model of SOC software development?

(A) Service provider

(B) Service broker

(C) Application builder

(D) End user of software

Name: ________________________

Date: ________________________

 33

1.6 What is the most significant difference between the Distributed Object Architecture (DOA)

(for example CORBA and DCOM) and the Service-Oriented Architecture (SOA)?

(A) SOA software has better modularity.

(B) SOA software does not require code-level integration among the services.

(C) DOA software has better reusability.

(D) DOA software better supports cross-language integration.

1.7 What concept is lest related to the application composition?

(A) BPEL

(B) choreography

(C) orchestration

(D) Code integration.

1.8 XML is

(A) an object-oriented programming language.

(B) a service-oriented programming language.

(C) a database programming language.

(D) a standard for data representation.

1.9 What protocol enables remote invocation of services across network and platforms?

(A) XML

(B) SOAP

(C) WSDL

(D) UDDI

1.10 Which of the followings is/are the proposed features of Web 2.0?

(A) Software as operational services.

(B) Users are treated as co-developers.

(C) Use loosely coupled and easy-to-use services to compose applications.

(D) Use services and data from multiple external sources to create new services and

applications.

(E) All above

2. What are SOA, SOC, SOD, SOE, SOI, and SOSE? Briefly state their definitions based on

your understanding.

Answer:

 34

3. What are the main differences between requirement analyses in the OOC paradigm and in

the SOC paradigm?

Answer:

4. What are the major benefits of separating an application builder from the service

providers?

Answer:

5. What are the main techniques in SOSE (service oriented system engineering)? For each

technique, write one or two sentences to describe its purpose.

Answer:

6. Compare and contrast the traditional software development process and the

Service-oriented software development process. For each step of the development, write a

paragraph to describe the purposes, responsibilities, functions of the step.

Answer:

7. What is a service registry? What is a service repository? What are their differences?

Answer:

8. An electronic travel agency needs to be developed. What is your responsibility if you are:

8.1 a service provider?

 Answer:

8.2 a service broker?

 Answer:

8.3 an application builder?

 Answer:

 35

9. You plan to invent a unique online game.

9.1 Describe what you must do as an application builder and what you can expect the service

providers to do for you.

9.2 Describe your invention idea and list everything you must do as an application builder.

9.3 List everything that you can possibly find through service brokers.

 Answer:

10. List a few application areas where you believe SOC is a better fit than OOC. State your

reasons and justifications.

Answer:

11. What are the impacts of SOC paradigm to the IT market and to computer science

graduates?

Answer:

12. This is an open problem. Search on the Internet to find a Web service testing tool.

Download their reports and white papers; and write a half page summary about the tool.

 36

A Service-Oriented Computing Workshop

As SOC is a young discipline, students will learn a great deal by doing their own research on

SOC. One way to facilitate the research is to organize a workshop within the class. Specifically,

each student needs to submit a paper to the workshop organized by the instructor and the

teaching assistants. A sample call-for-papers is given below.

CALL FOR PAPERS

Workshop on Introducing Service-Oriented Computing (WISOA)

Scope – Workshop on Introducing Service-Oriented

Computing (WISOA) serves as an initial meeting for

participants of distributed service-oriented software

development course at Arizona State University to

exchange results and visions on all aspects of

Service-Oriented Computing (SOC),

Service-Oriented Architecture (SOA), and

Service-Oriented System Engineering (SOSE).

Starting with this new paradigm and their realization

in Web Services (WS), WISOC covers all areas

related to architecture, semantics, language,

protocols, dependability, reliability, security,

discovery, composition, publishing, testing and

evaluation, interoperability, business process, as well

as the deployment and experience of real

service-oriented systems.

Topics of Interests – WISOC invites state-of-the-art

survey submissions on all topics related to

service-oriented computing, including (but not

limiting) to the followings:

 Service Orientation Concepts and Definitions

 Service Modeling and Specification

 Service Requirements Engineering

 Service Semantics and Ontology

 Services and Business Processes

 Services, Components, and Agents

 Service-Oriented Design Patterns

 Service-Oriented Development Processes and

Methods

 Service Publishing, Discovery, and Invocation

 Service Composition, Interoperability,

Coordination, Orchestration, and Chaining

 Service Reputation and Trust

 Intelligent Selection, Service Brokering, and

Service Level Agreement and Negotiation

 Services and Legacy Systems

 Service-Oriented Enterprise Architecture

 Service-Oriented System Implementation and

Deployment

 Service-Oriented Verification, Testing, and

Evaluation

 Service QoS, Dependability, Reliability and

Performance

 Service Policy Management

 Service Infrastructures

 Service Privacy, Confidentiality, and Security

 Service Oriented Real-Time and Embedded

Systems

 Service on Peer-to-Peer Network

 Service-Oriented embedded systems

 Service on Grid Network

This project consists of the following activities. The total number of points each student can

obtain is 100. Ten percent of the papers will receive 10 bonus points as the best paper award.

1. The paper: 80 points

The points will be awarded based on the instructor’s evaluation, as well as the peer evaluation,

according to following evaluation questions, with 10 points for each question:

1) The paper is relevant to one of the focus areas given in the call for papers.

2) The paper has well defined questions to address, and the materials are coherent and

consistent.

 37

3) The paper clearly presents the ideas, and is easy to read.

4) The paper is technically sound and correct.

5) The paper is interesting and informative, which makes the reviewers feel it is useful to

read.

6) The abstract and the summary, which summarize the paper well at the beginning and at

the end, are concise.

7) The paper effectively uses diagrams and/or tables to present the ideas.

8) The paper closely follows the IEEE conference paper format and the given guidelines in

the call for papers.

If the paper is a team work, the workload must be divided equally among the team members. It

must be made clear which sections are written by (the responsibility of) which member. The

reviewers may give different scores to different team members based on the sections and the

paragraph which the members are responsible for.

2. Peer Evaluation: 10 points

Each student will act as a reviewer and will review three papers and submit three review reports. The

quality of the review reports will be evaluated by the instructor. Up to 10 points will be awarded.

3. Improvement of the paper based on the review reports: 10 points.

The authors of each paper must improve the paper based on the comments in the review reports. The part

of changes made must be shown in “Track changes” in MS Word. You can turn on the track changes in

the Tool menu. Resubmit the paper after the revision. The instructor and the teaching assistants will check

if the improved paper addresses the comments given by the reviewers. A camera-ready copy must be

submitted and the papers will be published in an electronic form.

Previous workshop proceedings are available at the website:

http://www.public.asu.edu/~ychen10/teaching/cse445/index.html

 38

Typical Components of Technical Papers/Reports

Title

Author(s)

Affiliation(s)

Abstract

Summary, important issues and results, assuming the readers have not read the full report.

Introduction

This section may cover background information, related work, the purposes of this writing this

paper, outline of the paper, and so forth.

The main sections

They may contain several or all of the following components.

 Overview, including the architecture of the system;

 Model Development: explore a few models — model refinements, include graphic,

equations, and so forth;

 Procedure (the steps are you going to use to complete this design, assumptions);

 Design of experiment, simulation, implementation;

 Discussion of Results: the numerical and graphic results and from models, upper and

lower limits.

Summary/Conclusions

Summary of the work and the important results, assuming the readers have read the full report;

Acknowledgements

Who have helped the authors in preparing the research and on what issues?

References

List the all the references that you have based your work on, related to, referred to, and so on.

Each reference you have listed must be cited in the paper. List the references in IEEE

proceedings reference format.

Appendices (if any)

For example, Excel spreadsheet, diagrams, and extra explanations.

Other issues: Include page numbers, cite the reference where the content is based on, related to,

and referred to. Follow the required format.

 39

Review Form

Workshop on Service-Oriented Computing (WSOC)

Paper ID:

Paper Title:

1. Numerical Evaluation

Scale: (0-2) Strongly disagree, (3-4) Weakly disagree, (5-6) Marginal, (7-8) Weakly agree, (9-10) Strongly agree

Evaluation questions:

1) The paper is relevant to one of the focus areas given in the call for papers (0-10).

2) The paper has well defined questions to address and the materials are coherent and

consistent (0-10).

3) The paper clearly presents the ideas and is easy to read (0-10).

4) The paper is technically sound and correct (0-10).

5) The paper is interesting and informative, which makes the reviewers feel useful it is to read

(0-10).

6) The abstract and the summary, which summarize the paper well at the beginning and at the

end, are concise (0-10).

7) The paper effectively uses diagrams and/or tables to present the ideas (0-10).

8) The paper closely follows the IEEE conference paper format and the given guidelines in the

call for papers (0-10).

2. Detailed Comments

Please supply detailed comments to support each of your scores. You may also indicate any errors you have

found. The length of the comments must be between 15 and 30 lines.

