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Abstract

In this article, we study population dynamics of a general two-species discrete-time competition model
where each species suffers from strong Allee effects and scramble intra-competition. We focus on how
combination of intra-specific and inter-specific competition affect the extinction and coexistence of these
two competing species that are subject to strong Allee effects. We derive sufficient conditions on the
extinction, essential-like extinction and coexistence for such models. One of most interesting findings
is that competition can promote coexistence of these two species. This is supported by the outcome of
singe species models with strong Allee effects. In addition, we apply theoretical results to a symmetric
competition model with strong Allee effects induced by predator saturation where we give a completed
study of its possible equilibria and attractors. Numerical simulations are performed to support our
results.

Key words: Strong Allee effects, Competition, Essential extinction, Essential-like extinction,
Coexistence

1. Introduction

Competition both within and between species is an important topic in ecology, which can be a
powerful force affecting the growth, distribution, and abundance of populations in community ecology.
This has been supported by evidence from laboratory “bottle” experiments, field observations, and field
experiments (Valone and Brown 1995). Competition among members of the same species is known as
intra-specific competition, while competition between individuals of different species is known as inter-
specific competition. Competition for resources (e.g., food, space and mates) can range between two
extreme forms: contest competition where a limited number of individuals obtain a sufficient share of
resource while the excess individuals get nothing at all, and scramble competition where all individuals
obtain an equal share of the resource which may or may not be sufficient (Calow et al. 1998). The
expectation, from classical theory, is that the increasing of overall competitive pressure should generally
result in the decline of species coexistence (Vandermeer et al. 2002).

The Allee effect is a phenomenon in biology characterized by a positive interaction between population
density and the per capita population growth rate in small populations (Allee et al. 1949). A distinction
is made between a strong Allee effect, where a population exhibits a “critical size or density”, below which
the population declines on average, and above which it may increase, and a weak Allee effect, where a
population lacks a “critical density”, but where, at lower densities, the population growth rate rises with
increasing density (Stephens et al. 1999). A study by Schreiber (2003) indicates that a single species
subject to strong Allee effects may exhibit essential extinction (i.e., for a randomly chosen positive initial
condition, the population goes to extinction with probability one) even if its initial condition is above
the “critical density”. Both strong Allee effects and weak Allee effects have important consequences for
population dynamics and persistence, which can be induced by difficulties in finding a mate and predator
avoidance or defense (McCarthy 1997; Stephens et al. 1999; Schreiber 2003; Courchamp et al. 2009;
Kang and Yakubu 2011).
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Many species can experience both Allee effects and competitions with consequences that their popu-
lations do not grow optimally at low densities and individuals compete with one another at high densities
(Begon et al. 1996; Etiemme et al. 2002). Understanding how interactions between Allee effects and
competition affecting population dynamics can advance our understanding of the extinction and es-
tablishment of species in ecology communities, with implications for conservation programs (Zhou et
al 2004; Courchamp et al. 2009; Kang and Yakubu 2011). Recently, Kang and Yakubu (2011) study
how Allee effects affect population dynamics of two competing species in a discrete-time fashion. Their
study shows that weak Allee effects induced by predation saturations can promote coexistence of the
two competing species, which is supported by the outcome of two-species competition models without
Allee effects. In this article we investigate how inter-specific competition affect extinction, essential-like
extinction (i.e., one species go extinct and the other one has essential extinction in the limiting sys-
tem) and coexistence of two competing species, where each species is subject to strong Allee effects and
scramble intra-specific competition. One of the most interesting findings is that inter-specific competi-
tion can promote coexistence of two competing species at high densities. This result is surprising since
inter-specific competition, from classic theory, is expected to have a negative effect on fitness-related
characteristics of at least one of the species (Wiens 1989) and may increase local extinction rate in a
metapopulation system (Bengtsson 1989). Biological explanation of this finding may have significant
implications for conservation programs, and can be considered as a complement to the current studies on
populations dynamics in the presence of Allee effects (e.g., Dennis 1989 & 2002; Selgrade and Namkoong
1992; McCarthy 1997; Shigesada and Kawasaki 1997; Greene and Stamps 2001; Keitt et al 2001; Fagan
et al 2002; Wang et al 2002; Liebhold and Bascompte 2003; Schreiber 2003; Drake 2004; Zhou et al
2004; Petrovskii et al 2005; Taylor and Hastings 2005; Jang 2006; Aguirre et al 2009; Egami 2009&2010;
Thieme et al. 2009; Elaydi and Sacker 2010; Wang et al 2010; Liu et al 2011) as well as various models
in patchy environment (e.g., Amarasekare 1998a &1998b; Gyllenberg et al 1999; Ackleh et al 2007; Kang
and Lanchier 2010; Kang and Armbruster 2011).

The structure of the remaining article is as follows: In Section 2, we define a general discrete-time
two competing species population model and list important conditions that will be used in deriving
sufficient conditions on extinction, essential-like extinction and the coexistence of this general model. In
Section 3, we show that when these two competing species both suffer from strong Allee effects, a species
can not invade the other one at its low densities and both go extinct when their initial conditions are
below their Allee thresholds (Theorem 3.1). In Section 4, we give sufficient conditions on the extinction
and essential-like extinction for a symmetric two species model with strong Allee effects. Our analytic
results combined with simulations suggest that both competing species go to extinction for most initial
conditions in one of the following two cases: 1. The sum of inter-specific competition coefficient and intra-
specific competition coefficient is too large (Theorem 4.1). 2. Each species has essential extinction and
its inter-specific competition coefficient is great than its intra-specific competition coefficient (Theorem
4.2). In Section 5, we give sufficient conditions on the coexistence of a symmetric two species competition
model when each species has essential extinction (Theorem 5.1). Our result suggests that competition
may save endangered species from extinction. In Section 6, we apply all theoretical results from the
previous sections to a concrete symmetric competition model with Allee effects induced by predator
saturation. Moreover, we derive the sufficient conditions on all possible interior equilibria and attractors.
Our simulations support the fact that competition can promote coexistence when two competing species
have essential extinction in their single state. In the last section, we summarize our study and give the
potential future study.

2. A general competition model with Allee effects

Consider a discrete-time two competing species population model of the form

xt+1 = xte
r1(1−xt)−a1ytIx(xt) (1)

yt+1 = yte
r2(1−yt)−a2xtIy(yt) (2)
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where xt and yt be the population density of two competing species in season t, respectively; ri, i = 1, 2
represent the intrinsic growth rates which equal to intra-specific competition coefficients; ai, i = 1, 2 be
the inter-specific competition coefficients defining the equivalences between the two species and Ii, i = x, y
represents a positive density-dependent factor of species i that satisfies Condition H1:

Condition H1: Ii, i = x, y is smooth in R+ and

0 ≤ Ii(v) ≤ 1 with (Ii)′ > 0,

(
(Ii)′

Ii

)′
< 0, v ∈ R+, i = x, y.

where Ix = Iy = I in the symmetric case.
Let Ω = {(x, y) ∈ R2

+ : x > 0, y > 0},Ωx = {(x, y) ∈ R2
+ : y = 0} and Ωy = {(x, y) ∈ R2

+ : x = 0},
then the basic feature of (1)-(2) can be summarized as follows:

Lemma 2.1. The system (1)-(2) is positively invariant in R2
+, Ω, Ωx and Ωy. In addition, it is

bounded by [0, er1−1

r1
]× [0, er2−1

r2
].

2.1. Dynamics for single species models with strong Alllee effects

If xt = 0 or yt = 0, then system (1)-(2) can be reduced to the following one species population model

Nt+1 = Nte
r(1−Nt)I(Nt) (3)

where I = Ix, r = r1 for species x and I = Iy, r = r2 for species y.
Let u(N) = Ner(1−N/K)I(N) = Nh(N). We say that a species suffers from strong Allee effects if

there are two positive values Ai, i = 1, 2 such that u(Ai) = Ai and

h(N) < 1 for N ∈ [0, A1) ∪ (A2,∞); h(N) > 1 for N ∈ (A1, A2),

where A1 is also called the Allee threshold of (3). Define the following conditions:

H2: The growth function u(N) has a unique positive value C that leads to the maximum value
M = maxN≥0{u(N)} = u(C). Moreover, species suffers from strong Allee effects with A1 as its
Allee threshold and A1 < C < A2.

H3: The inequality M h(M) < A1 holds. In addition, the growth function u(N) has a negative

Schwartzian derivative (i.e., u′′′(N)
u′(N) − 3/2(u′′(N)

u′(N) )2 < 0) on the interval [A1,∞).

H4: The inequality M h(M) > A2 holds.

Assume that (3) satisfies Condition H2. Denote Ab = max{u−1(A1)}, then according to the classification
of Schreiber (2003), we can have the following two scenarios:

1. If u(N) satisfies Condition H2, H3 (see Figure 1(a)), then the dynamics of (3) exhibits essen-
tial extinction, i.e., for a randomly chosen initial condition in R+, the population of (3) goes to
extinction with probability one.

2. If u(N) satisfies Condition H2, H4 (see Figure 1(b)), then the dynamics of (3) exhibits bistability,
i.e., the population of (3) persists in [A1, Ab] and goes to extinction for initial conditions outside
this interval.

We define that the dynamics of two species competition model (1)-(2) has essential-like extinction if
for any initial condition taken in the interior of R2

+, the population of one species goes extinct and
the population of the other one exhibits essential extinction at its single state. Numerical simulations
suggest that when eqrefagx-(2) has essential-like extinction, then both species go extinct with probability
one for any initial condition taken in the interior of R2

+. In this article, we are interesting in sufficient
conditions on the extinction, essential-like extinction and the coexistence of two competing species in
(1)-(2) when the population model of each species satisfies Condition H1-H3 or Condition H1, H2,
H4 at the absence of the other species.
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(a) Condition H2-H3 (b) Condition H2, H4

Figure 1: The schematic diagrams when (3) satisfies Condition H2-H3 and Condition H2, H4 respectively.

3. Multiple attractors of competition models with strong Allee effects

In this section, we explore possible attractors of system (1)-(2) and their basins of attractions. If the
population model of each species satisfies Condition H1-H2, then the boundary equilibria of (1)-(2) are

(0, 0), (x1, 0), (x2, 0), (0, y1) and (0, y2)

where xi, i = 1, 2 are positive solutions of er1(1−x)Ix(x) = 1 and 0 < x1 < x2 < 1; and yi, i = 1, 2 are
positive solutions of er2(1−y)Iy(y) = 1 and 0 < y1 < y2 < 1. Let

ux(x) = xer1(1−x)Ix(x) and uy(y) = yer2(1−y)Iy(y),

then we have the following theorem:

Theorem 3.1. [Attractors of system (1)-(2)]Assume that each single species’ population model sat-
isfies Condition H1-H2. Then (0, 0) is always a attractor that has

B(0,0) = {(x, y) ∈ R2
+ : 0 < x < x1, 0 < y < y1}

contained in its basins of attractions. In addition, if ui (i = x or i = y) satisfies Condition H4, then
there is an attractor on x-axis where species x persists if i = x; or there is an attractor on y-axis where
species y persists if i = y.

Proof. Since the population model of each species in its single state satisfies Condition H1-H2, then

0 < er1Ix(0) < 1 and 0 < er2Iy(0) < 1.

The Jacobian matrix of (1)-(2) evaluated at (0, 0) is

J |(0,0) =

(
er1Ix(0) 0
0 er2Iy(0)

)
(4)

whose both eigenvalues are positive and strictly less than 1. Therefore, (0, 0) is locally asymptotically
stable. Define B(0,0) as follows:

B(0,0) = {(x, y) ∈ R2
+ : 0 < x < x1, 0 < y < y1}.
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We claim that:
lim
t→∞

max{xt, yt} = 0 if (x0, y0) ∈ B(0,0).

For any initial condition (x0, y0) ∈ B(0,0), according to Condition H2, we have

x1 = x0e
r1(1−x0)−a1y0Ix(x0) ≤ x0e

r1(1−x0)Ix(x0) < x0

y1 = y0e
r2(1−y0)−a2x0Iy(y0) ≤ y0e

r2(1−y0)Iy(y0) < y0.

Thus, by induction, we can conclude that {(xt, yt)}∞t=0 is a positively decreasing sequence that converges
to (0, 0).

Let Hx(x) = r1(1− x) + ln(Ix) and Hy(y) = r2(1− y) + ln(Iy), then

Hx(x) < 0 if 0 < x < x1; Hx(x) > 0 if x1 < x < x2

and
Hy(y) < 0 if 0 < y < y1; Hy(y) > 0 if y1 < y < y2.

Thus, according to Condition H1-H2, Hx having its unique maximum indicates that

dHx

dx

∣∣∣
x=x1

= −r1 +
(Ix)′

Ix

∣∣∣
x=x1

> 0.

Similarly, we have
dHy

dy

∣∣∣
y=y1

= −r2 +
(Iy)′

Iy
∣∣
y=y1

> 0.

If y0 = 0, then (1)-(2) is reduced to (3) with r = r1, I
x = I. Thus, according to the results in

Schreiber (2003), we know that if Condition H1, H2, H4 holds, species x persists on the interval
[x1, xb] where

ux(x) = xer1(1−x)Ix(x) and xb = max{(ux)−1(x1)}.

Similarly, if Condition H4 holds for species y at its single state, species y persists on the interval [y1, yb]
where

uy(y) = yer2(1−y)Iy(y) and yb = max{(uy)−1(y1)}.

We restrict our dynamics either on [x1, xb] or [y1, yb]. Now we study the external Lyapunov exponent
on these two positively invariant intervals by using the extended relative nonlinearity concept in Kang
(2011).

Define the following two functions:

F (x, y) = r1(1− x)− a1y + ln(Ix(x)) and G(x, y) = r2(1− y)− a2x + ln(Iy(y)).

Then we have

F (0, y2) < F (0, y1) < F (0, 0) < 0, G(x2, 0) < G(x1, 0) < G(0, 0) < 0

and

Fx(x, 0) = −r1 + (Ix)′

Ix , Fxx(x, 0) =
(

(Ix)′

Ix

)′
, Fy(0, y) = −a1, Fyy(0, y) = 0

Gx(x, 0) = −a2, Gxx(x, 0) = 0, Gy(0, y) = −r2 + (Iy)′

Iy , Gyy(0, y) =
(

(Iy)′

Iy

)′
.

Since

Fyy(0, y)− Fy(0, y1)Gyy(0, y)

Gy(0, y1)
= a1

(
(Iy)′

Iy

)′
−r2 + (Iy)′

Iy |y=y1
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and

Gxx(x, 0)− Gx(x1, 0)Fxx(x, 0)

Fx(x1, 0)
= a2

(
(Ix)′

Ix

)′
−r1 + (Ix)′

Ix |x=x1

,

thus, according to Theorem 3.1 in Kang (2011), the sign of the external Lyapunov exponent of [y1, yb]
can be determined by the sign of the following expression

F (0, y1) + Fyy(0, y)− Fy(0, y1)Gyy(0, y)

Gy(0, y1)
= F (0, y1) + a1

(
(Iy)′

Iy

)′
−r2 + (Iy)′

Iy |y=y1

which is negative since
(

(Iy)′

Iy

)′
< 0 (Condition H1). Then, we can apply Theorem 2.18 in the paper by

Hutson and Schmitt (1992) to conclude that [y1, yb] is an attractor in the sense that the stable manifold
of the omega limit set of [y1, yb] is a neighborhood of [y1, yb] in Ω. Similarly, we can show that [x1, xb]
is also an attractor.

Therefore, we have showed the statement.

A direct corollary from Theorem 3.1 can be stated as follows:

Corollary 3.1. [Multiple attractors of (1)-(2)]Assume that each single species’ population model
satisfies Condition H1-H2. If both ux and uy satisfy Condition H4, then system (1)-(2) has at least three
attractors: (0, 0), boundary attractor contained in [x1, xb] on x-axis and boundary attractor contained in
[y1, yb] on y-axis.

Note: If two competing species both suffer from strong Allee effects, Theorem 3.1 and its corollary 3.1
indicate that a species can not invade the other species at its low densities and both go extinct when their
initial conditions are below their Allee thresholds. This implies that competition can not save species
with strong Allee effects at their low abundances.

4. Extinction and essential-like extinction of symmetric competition models with strong
Allee effects

In this section, we are interesting in studying sufficient conditions that give the extinction and the
essential extinction of two competing species system (1)-(2). For convenience, we focus on the symmetric
case, i.e., r1 = r2 = r, a1 = a2 = a and Ix = Iy = I. Thus (1)-(2) can be rewritten as

xt+1 = xte
r(1−xt)−aytI(xt) (5)

yt+1 = yte
r(1−yt)−axtI(yt) (6)

where I satisfies Condition H1. Due to the symmetric property, each single species’ population dy-
namics can be described by (3). If u(x) satisfies Condition H2, then it has Ai, i = 1, 2 as the pos-
itive solutions of u(x) = x. Therefore, system (5)-(6) has the following five boundary equilibria:
(0, 0), (Ai, 0), (0, Ai), i = 1, 2 where 0 < A1 < A2 < 1 and the function h(x) is less than 1 for all
x ∈ [0, A1) ∩ (A2,∞) and is greater than 1 for all x ∈ (A1, A2). If the growth function u(x) has
a negative Schwartzian derivative on the interval [A1,∞) and the inequality u(M) = M h(M) < A1

holds (Condition H3), then each species has essential extinction in its single state. Otherwise, if
u(M) = M h(M) > A1 holds (Condition H4), then each species persists on [A1, Ab] in its single state.
In the rest of this section, we assume that the growth function u(x) satisfies Condition H1-H2.

Let us(x) = xhs(x) = xer−(r+a)xI(x) and Ms = maxx≥0{xhs(x)} = us(Cs) where I(x) satisfies
Conditions H1. We have the following proposition:
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Proposition 4.1. [Dynamics on y = x] Define Ωy=x as

Ωy=x = {(x, y) ∈ R2
+ : x = y},

then Ωy=x is an invariant set for system (5)-(6). For any initial condition (x0, y0) ∈ Ωy=x, (5)-(6) can
be reduced to the following 1-D system

ut+1 = ute
r(1−ut)−autI(ut) = ute

r−(r+a)utI(ut) (7)

where its basic dynamics can be summarized as follows:

1. If er−(r+a)xI(x) < 1 for all x ∈ [0, er−1

r ], then

lim sup
t→∞

ut = 0, for all u0 > 0.

2. If hs(Cs) > 1 for some 0 < Cs <
r

r+a , then (7) has two interior equilibria u∗i , i = 1, 2 such that

0 < A1 < u∗1 < u∗2 < A2 < 1.

If, in addition, us has a negative Schwartzian derivative on the interval [u∗1,∞) and us(Ms) < u∗1,
then (7) exhibits essential extinction; otherwise, if us(Ms) > u∗1, then (7) persists in [u∗1, ub] where
ub = max{u−1(u∗1)} and goes to extinction in [0, u∗1) ∪ (ub,∞).

Proof. If x0 = y0, then according to (5)-(6), we have

x1 = x0e
r(1−x0)−ay0I(x0) = x0e

r(1−x0)−ax0I(x0) = x0e
r−(r+a)x0I(x0)

y1 = y0e
r(1−y0)−ax0I(y0) = x0e

r(1−x0)−ax0I(x0) = x1.

Thus by induction, we have xt = yt for all t ≥ 0, i.e., Ωy=x is an invariant set for system (5)-(6). This
also implies that (5)-(6) can be reduced to (7) in the invariant manifold Ωy=x.

Since the compact set [0, er−1

r+a ] attracts all initial conditions u0 ≥ 0 for system (7) and

hs(x) = er−(r+a)xI(x) < 1 for all x ∈ [0,
er−1

r
],

thus, system (7) has no interior equilibrium except the extinction state 0. Let

m = max
0≤x≤ er−1

r

{hs(x)} < 1,

then
ut+1 = uths(ut) ≤ utm ≤ u0m

t+1 → 0 as t→∞.

Thus, lim supt→∞ ut = 0, for all u0 > 0 if er−(r+a)xI(x) < 1 for all x ∈ [0, er−1

r ].
Since (3) satisfies Condition H2, thus we have erI(0) < 1 and there exits a unique positive value

C such that
u′(x) > 0 for x ∈ [0, C) and u′(x) < 0 for x ∈ (C,∞).

This indicates that there is only one solution C such that the following equality holds

u′(x) = (1− rx)er(1−x)I + xer(1−x)I ′ = 0⇒ I ′

I

∣∣∣
x=C

=
C

rC − 1
> 0.

Since

(
I ′

I
)′ < 0 and (us)

′ = (u(x)e−ax)′ = (1− (a + r)x) er−(r+a)xI + xer−(a+r)xI ′,
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Thus, there is a unique positive value Cs < C such that the following equality holds

(us(x))′ = (1− (a + r)x) er−(r+a)xI + xer−(a+r)xI ′ = 0⇒ I ′

I

∣∣∣
x=Cs

=
Cs

(r + a)Cs − 1
> 0.

The interior equilibria of (7) satisfy the following equation:

er−(a+r)xI(x) = 1⇒ − ln(I(x)) = r − (a + r)x

where

(− ln(I(x)))′ = −I ′

I
< 0 and (− ln(I(x)))′′ = −(

I ′

I
)′ > 0.

The inequality hs(Cs) > 1 indicates that

er−(r+a)CsI(Cs) > 1⇒ − ln(I(Cs)) < r − (a + r)Cs.

This combined the fact that hs(0) = erI(0) < 1, i.e., − ln(I(0)) < r, implies that the positive convex
decreasing function − ln(I(x)) has exactly two intercepts with linear decreasing function r− (a+ r)x in
the first quadrant. Therefore, (7) has two interior equilibria u∗i , i = 1, 2 with the following properties:

0 < A1 < u∗1 < u∗2 < A2 < 1.

The rest of Proposition 4.1 holds according to the classification results by Schreiber (2003).

Note: Proposition 4.1 indicates that if (3) satisfies Condition H1-H2, then (7) also satisfies Condition
H1-H2 under the condition that there is some Cs ∈ (0, r

r+a ) such that hs(Cs) = er−(r+a)CsI(Cs) > 1.
The proof of Proposition 4.1 also suggests that if (3) has no strong Allee effects, then (7) has no strong
Allee effects either.

Theorem 4.1. [Extinction/Essential-like extinction in (5)-(6)] Let (7) satisfy Condition H1. If (7)
has no interior equilibrium, then at least one of two competing species in (5)-(6) goes extinct. If, in
addition, (7) satisfies Condition H2-H3, then (5)-(6) has essential extinction in Ω.

Proof. If (7) has no interior equilibrium, then er−(r+a)xI(x) = 1 has no positive root. Since (5)-(6)
satisfy Condition H1, thus

er−(r+a)xI(x) < 1 for all x > 0.

According to Lemma 2.1, (5)-(6) is positively invariant in Ω and all initial conditions in Ω are attracted

to the compact set B = [0, er−1

r ]× [0, er−1

r ]. Thus, we can restrict the dynamics of (5)-(6) to B.

Let m = max
0≤x≤ er−1

r

{er−(r+a)xI(x)}, then we have m < 1. According to (5)-(6), we have

xt+1yt+1 = xte
r(1−xt)−aytI(xt)yte

r(1−yt)−axtI(yt)
= xte

r−(r+a)xtI(xt)yte
r−(r+a)ytI(yt)

≤ m2xtyt ≤ m2(t+1)x0y0

Thus,
lim
t→∞

xtyt = 0 as t→∞.

According to Lemma 2.1, (5)-(6) is bounded, thus, we have the following two scenarios:

1. Both species go extinct for all initial conditions taken in Ω.

2. Only one species goes extinct for all initial conditions taken in Ω.
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Without loss of generality, let us assume that species x goes extinct for all initial conditions taken in
Ω. Then the limiting dynamics of (5)-(6) can be reduced to (3). Thus, if (3) satisfies Condition H1-
H3, then it has essential extinction in R+. Therefore, we can conclude that (5)-(6) has essential-like
extinction in R2

+.

Note: Theorem 4.1 implies that if the sum of inter-specific competition coefficient and intra-specific
competition coefficient is too large (e.g., (7) has no positive equilibrium), then both species of (5)-(6)
may go extinct in Ω.

Theorem 4.2. [Essential-like extinction in (5)-(6)] Assume that (3) satisfies Condition H1-H3. If
r < a, then (5)-(6) has essential-like extinction in Ω \ Ωy=x.

Proof. Take an initial condition in Ω such that x0 < y0, then according to (5)-(6), we have

x1

y1
=

x0e
r(1−x0)−ay0I(x0)

y0er(1−y0)−ax0I(y0)
=

x0

y0

I(x0)

I(y0)
e(a−r)(x0−y0).

Since x0 < y0, r < a and Condition H1 holds, thus, the following inequality holds

x1

y1
<

x0

y0
.

By induction, we can conclude that {xt

yt
}∞t=0 is a strictly decreasing positive sequence bounded by x0

y0
.

Therefore, there exists some nonnegative number 0 ≤ b < 1 such that

lim
t→∞

xt

yt
= b for all (x0, y0) ∈ {(x, y) ∈ Ω : x < y}. (8)

Since (5)-(6) satisfy Condition H2, then erI(0) < 1 and (5)-(6) has nontrivial boundary equilibria (0, y1)
and (0, y2). The Jacobian matrix of (5)-(6) evaluated at these equilibria can be represented as

J |(0,yi) =

(
er−ayiI(0) 0

−ayi 1 + yi

(
I′

I |y=yi
− r
) )

(9)

which indicates that both equilibria (0, y1) and (0, y2) have stable manifolds points towards y-axis since
0 < er−ayiI(0) < 1, i = 1, 2.. Thus, there are some initial conditions in Ω such that

lim
t→∞

xt

yt
= 0.

This implies that b = 0 according to (8). Then according to the property of boundedness by Lemma
2.1, we can conclude that

lim
t→∞

xt = 0 for all (x0, y0) ∈ {(x, y) ∈ Ω : x < y}.

This indicates that the limiting dynamics of (1)-(2) can be reduced to (3). Thus, if (3) satisfies Condition
H1-H3, then it has essential extinction in R+. Therefore, we can conclude that (5)-(6) has essential-
like extinction in {(x, y) ∈ Ω : x < y} if r < a. Similarly, we can show that (5)-(6) has essential-like
extinction in {(x, y) ∈ Ω : x > y} if r < a. Therefore, the statement of Theorem 4.2 holds.

Notes: Theorem 4.2 indicates that (5)-(6) has no coexistence in Ω \ Ωy=x if each species has inter-
specific competition coefficient great than its intra-specific competition coefficient (i.e., r < a). Moreover,
essential-like extinction occurs when each species has essential extinction in the absence of the other
species. Numerical simulations suggest that when (5)-(6) has essential-like extinction, then both species
go extinct with probability one for any initial condition taken in the interior of R2

+.
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5. Coexistence of symmetric competition models with strong Allee effects

In this section, we focus on deriving sufficient conditions on the coexistence of two species in (5)-
(6) when (3) satisfies Condition H1-H3. In particularly, we would like to explore how inter-specific
competition can save endangered species subject to strong Allee effects from extinction.

Theorem 5.1. [Coexistence of (5)-(6) with strong Allee efects] Assume that (3) satisfies Condition
H1-H3 and (7) satisfies Condition H1, H2, H4 i.e., (7) persists in [u∗1, ub] ⊂ Ωy=x and goes to
extinction in ([0, u∗1) ∩ (ub,∞)) ⊂ Ωy=x. Then the invariant set [u∗1, ub] ⊂ Ωy=x is locally asymptotically
stable if

lim sup
t→∞

t∑
i=0

ln
∣∣∣1 + (

I ′

I

∣∣
u=ui

− r + a)ui

∣∣∣ < 0

where {ui}∞i=0 is any orbit of (18) with u0 ∈ [u∗1, ub] ⊂ Ωy=x.

Proof. Let ut = xt+yt

2 , vt = xt−yt

2 , then (5)-(6) can be rewritten as the following model:

ut+1 = 1/2ute
r−(r+a)ut

(
e(a−r)vtI(ut + vt) + e(r−a)vtI(ut − vt)

)
+1/2vte

r−(r+a)ut
(
e(a−r)vtI(ut + vt)− e(r−a)vtI(ut − vt)

)
vt+1 = 1/2ute

r−(r+a)ut
(
e(a−r)vtI(ut + vt)− e(r−a)vtI(ut − vt)

)
+1/2vte

r−(r+a)ut
(
e(a−r)vtI(ut + vt) + e(r−a)vtI(ut − vt)

) (10)

Thus, the invariant manifold Ωy=x of (5)-(6) is transferred to the invariant manifold Ωv=0 of (10) where

Ωv=0 = {(u, v) ∈ R2
+ : v = 0}.

If vn is very to close to 0, then (10) can be described as

ut+1 = ute
r−(r+a)utI(ut) + O(v2t )

vt+1 = vte
r−(r+a)utI(ut)

(
1 + ( I′

I

∣∣
u=ut

− r + a)ut

)
+ O(v2t )

(11)

Since (7) persists in [u∗1, ub], thus for any initial condition v0 = 0 and u0 taken in [u∗1, ub], we have vi = 0
for all positive integer i and the set defined by

Ωp
v=0 = {(u, v) ∈ R2

+ : v = 0, u ∈ [u∗1, ub]}

is a subset of Ωv=0 which is also positively invariant. Assume that {ui}∞i=0 is an orbit of (18) with
u0 ∈ [u∗1, ub], then due to that fact that (7) persists in [u∗1, ub], we have the following equality

∞∑
i=0

r − (r + a)ui + ln(I(ui)) = 0 (12)

According to (11), the external Lyapunov exponent of the invariant set Ωp
v=0 can be determined by the

sign of the following equations:

lim supt→∞
∑t

i=0 ln
(
er−(r+a)uiI(ui)

∣∣∣1 + ( I′

I

∣∣
u=ui

− r + a)ui

∣∣∣)
≤ lim supt→∞

∑t
i=0 r − (r + a)ui + ln(I(ui))

+ lim supt→∞
∑t

i=0 ln
∣∣∣1 + ( I′

I

∣∣
u=ui

− r + a)ui

∣∣∣ (13)

Thus, according to (12), we have

lim supt→∞
∑t

i=0 ln
(
er−(r+a)uiI(ui)

∣∣∣1 + ( I′

I

∣∣
u=ui

− r + a)ui

∣∣∣)
≤ lim supt→∞

∑t
i=0 ln

∣∣∣1 + ( I′

I

∣∣
u=ui

− r + a)ui

∣∣∣ (14)

Therefore, the statement of Theorem 5.1 holds.

10



Notes: Theorem 5.1 indicates that competition is not always a bad thing, in fact, it may be able
to prevent extinction and promote coexistence when their abundances are relative high. Biological
explanation for this interesting phenomenon is that single species has scramble intra-specific competition
(i.e., the high population density this season leads to low population density next season), inter-specific
competition can bring down the current population density such that it has a larger population density
which is above the Allee threshold in the next season. The concrete example and simulations for such
cases are illustrated in the next season.

6. Application: a symmetric competition model with Allee effects induced by predator
saturation

A symmetric competition model with Allee effects induced by predator saturation, i.e., I(x) = e−
m

1+bx ,
can be represented as following:

xn+1 = xne
r(1−xn)− m

1+bxn
−ayn (15)

yn+1 = yne
r(1−yn)− m

1+byn
−axn (16)

where r and a represent the intrinsic growth rate and the competition coefficient; m represent preda-
tion intensities and b represent the product of the proportional to the handling time and the carrying
capacities. Then the population of each species at its single state can be described as:

Nt+1 = Nte
r(1−Nt)− m

1+bNt (17)

whose basic dynamics can be summarized as follows:

1. The positive density-dependent factor I(N) induced by predator saturation satisfies Condition H1.

2. Let u(N) = Ner(1−N)− m
1+bN has a unique positive value C that leads to the maximum value

M = max
N≥0
{u(N)} = u(C).

3. If r < m and b < 1, then (17) has only extinction equilibrium 0.

4. If r < m and 1 < b < r2(b+1)2

4mr , then (17) has two positive equilibria Ai, i = 1, 2 where

A1 =
r(b− 1)−

√
r2(b + 1)2 − 4bmr

2rb
, A2 =

r(b− 1) +
√
r2(b + 1)2 − 4bmr

2rb
.

Moreover, this is the case when species suffers from strong Allee effects and u(N) has a negative
Schwartzian derivative on [A1,∞) based on the study by Schreiber (2003).

The summary above implies that if r < m and 1 < b < r2(b+1)2

4mr , then sing species model (17) satisfies
Condition H1-H2. According to Proposition 4.1, the dynamics of (15)-(16) on the invariant manifold
y = x can be stated as the following corollary:

Corollary 6.1. [Dynamics on y = x] For any initial condition (x0, y0) ∈ Ωy=x, (15)-(16) can be
reduced to the following 1-D system

ut+1 = ute
r(1−ut)− m

1+but
−aut = ute

r−(r+a)ut− m
1+but (18)

where its basic dynamics can be summarized as follows:
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1. If r < m and b < 1 + a
r , then the population of (18) goes extinct for any initial condition, i.e.,

lim sup
t→∞

ut = 0, for all u0 > 0.

2. If r < m and 1 + a
r < b < (rb+r+a)2

4m(a+r) , then (18) has two interior equilibria u∗i , i = 1, 2 where

u∗
1 =

r(b− 1)− a−
√

(rb+ r + a)2 − 4mb(r + a)

2b(r + a)
, u∗

2 =
r(b− 1)− a+

√
(rb+ r + a)2 − 4mb(r + a)

2b(r + a)
.

3. Assume that (18) has two interior equilibria u∗i , i = 1, 2 as defined earlier. Let

hs(x) = er−(r+a)x− m
1+bx and Ms = max

0≤x≤ er−1

r

{xhs(x)},

then we have the following two situations:
a) if Mshs(Ms) > u∗1, then (18) is persist in [u∗1, ub] and goes to extinction in [0, u∗1);
b) if Mshs(Ms) < u∗1, then (18) exhibits essential extinction.

Proof. Let

f(u) = r − (r + a)u− m

1 + bu
=
−b(r + a)x2 + (rb− a− r)x + r −m

1 + bu
,

then if u∗i , i = 1, 2 are two roots of f(u), then we have

u∗1 + u∗2 =
r(b− 1)− a

b(r + a)
and u∗1u

∗
2 =

m− r

b(r + a)
. (19)

Thus if r < m and b < 1 + a
r , then u∗i < 0 according to (19). This implies that f(u) < 0 for all u ≥ 0,

i.e., ef(u) < 1 for all u ≥ 0. Therefore, according to Proposition 4.1, we can conclude that

lim sup
t→∞

ut = 0, for all u0 > 0.

Now if r < m and 1 + a
r < b < (rb+r+a)2

4m(a+r) , then we have u∗1 + u∗2 > 0 and u∗1u
∗
2 > 0. Thus f(u) has

two positive roots which can be represented as:

u∗
1 =

r(b− 1)− a−
√

(rb+ r + a)2 − 4mb(r + a)

2b(r + a)
, u∗

2 =
r(b− 1)− a+

√
(rb+ r + a)2 − 4mb(r + a)

2b(r + a)
.

6.1. Competition promotes coexistence

In this subsection, we apply the coexistence result of Theorem 5.1 to system (15)-(16) to have the
following corollary:

Corollary 6.2. [Coexistence in (15)-(16)] If

a < r < m, 1 +
a

r
< b < min{r

2(b + 1)2

4mr
,

(r − a)2(a + r + rb)2

4mr(r − a)
}

and (18) satisfies Condition H4, i.e., (18) is persist in [u∗1, ub], then the invariant set [u∗1, ub] is locally
asymptotically stable if

lim sup
t→∞

t∑
i=0

ln
∣∣∣1 + (

mb

(1 + bui)2
− r + a)ui

∣∣∣ < 0

where {ui}∞i=0 is any orbit of (18) with u0 ∈ [u∗1, ub].
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We give numerical examples to support that competition can promote the coexistence of (15)-(16)
when each species has essential extinction at its single state and their initial conditions are large enough
(e.g., above their Allee thresholds). From the study by Schreiber (2003), single species model (17) has
essential extinction when r = 4.5,m = 5, b = b∗ > 9 where b∗ is the threshold when (17) has essential
extinction for r = 4.5,m = 5. For example, when r = 4.5,m = 5, b = 10 > b∗, the single species has
essential extinctions due to strong Allee effects. However, the competition model (15)-(16) with the same
values of r,m, b has an interior attractor living on [u∗1, ub] ⊂ Ωy=x when the inter-specific competition
coefficient is a = 2.5 (Figure 6.1). Moreover, numerical simulations suggest that both species of (15)-(16)

go to extinction for almost all initial conditions when r = 4.5,m = 5, a = 2.5, b > (r+a)b∗

r where (r+a)b∗

r
is the threshold when (18) has essential extinction for r = 4.5,m = 5 (see Figure 3(h)).

(a) Interior Attractors (b) Basins of Attractions

Figure 2: The blue region in the left figure is the interior attractor and its basins of attractions are shown in the blue area
of the right figure when r = 4.5,m = 5, b = 10, a = 2.5 for system (15)-(16).

In addition, we would like to point out a result by Kang and Yakubu (2011) (Theorem 4.1) stating
that (15)-(16) has bistability if r < a, i.e.,

lim sup
t→∞

xt = 0 if x0 < y0; and lim sup
t→∞

yt = 0 if x0 > y0.

Thus, the introduced inter-specific competition should be less than its intra-specific competition in order
to save endangered species subject to strong Allee effects from essential extinction.

6.2. Multiple attractors

We denote x∗, y∗ as follows:

x∗ =
(r−a)(a−r+rb)−

√
(r−a)2(a+r+rb)2−4mbr2(r−a)
2rb(r−a) , y∗ =

(r−a)(a−r+rb)+
√

(r−a)2(a+r+rb)2−4mbr2(r−a)
2rb(r−a)

Then let i = 1, 2 and we define the following points:

E0,0 = (0, 0), EAi,0 = (Ai, 0), E0,Ai
= (0, Ai),

Eu∗i ,u
∗
i

= (u∗i , u
∗
i ), Ex∗,y∗ = (x∗, y∗), Ey∗,x∗ = (y∗, x∗).

(20)

Theorem 6.1. [Equilibria of (15)-(16)] System (15)-(16) can have one, four, five, six, seven and
nine equilibria. Their sufficient conditions on having these equilibria are as follows:

One equilibrium: If r < m and b < 1, then (15)-(16) has only extinction equilibrium E0,0.

Four equilibria: If r > m, then (15)-(16) has the only following four equilibrium:

E0,0, EA2,0, E0,A2 , Eu∗2 ,u
∗
2
.

13



Five equilibria: If r < m and 1 + a
r < b < r2(b+1)2

4mr , then (15)-(16) has the only following five
equilibrium:

E0,0, EAi,0, E0,Ai
, i = 1, 2.

Six equilibria: If max{a,m} < r < a + m and 1 + a
r < b < (r−a)2(a+r+rb)2

4mr(r−a) , then (15)-(16) has the

only following four equilibrium:

E0,0, EA2,0, E0,A2
, Eu∗2 ,u

∗
2
.

Seven equilibria: If r < min{a,m} and 1 + a
r < b < min{ r

2(b+1)2

4mr , (r−a)2(a+r+rb)2

4mr(r−a) }, then (15)-(16)

has the only following seven equilibrium:

E0,0, EAi,0, E0,Ai
, Eu∗i ,u

∗
i
, i = 1, 2.

Nine equilibria: If a < r < m and 1 + a
r < b < min{ r

2(b+1)2

4mr , (r−a)2(a+r+rb)2

4mr(r−a) }, then (15)-(16) has all

nine equilibria listed in (20).

Proof. According to (15)-(16), all the possible equilibria are (0, 0) and the eight nonnegative roots of the
following two equations:

y =
r(1− x)

a
− m

a(1 + bx)
(21)

x =
r(1− y)

a
− m

a(1 + by)
(22)

which are listed in (20) and can be classified as follows:

1. EAi,0 and E0,Ai
are boundary equilibria where Ai, i = 1, 2 are positive solutions of

r(1− x)

a
− m

1 + bx
= 0.

The necessary and sufficient conditions for the existence of these four boundary equilibria are

r < m and 1 < b <
r2(b + 1)2

4mr
.

If r > m, then we have

A1 + A2 =
−r + rb

rb
and A1A2 =

m− r

rb
< 0.

This implies that the only possible positive boundary equilibria are EA2,0 and E0,A2 .

2. Eu∗i ,u
∗
i
, i = 1, 2 are symmetric equilibria where u∗i , i = 1, 2 are positive solutions of

r − (r + a)x− m

1 + bx
= 0.

The necessary and sufficient conditions for the existence of these two interior symmetric equilibria
are

r < m and 1 +
a

r
< b <

(r − a)2(a + rb + b)2

4mr(r + a)
.

If r > m, then the only positive interior symmetric equilibrium is Eu∗2 ,u
∗
2
.
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3. Ex∗,y∗ and Ey∗,x∗ are asymmetric equilibria which satisfy (21) with x∗ 6= y∗. Since

x∗y∗ = −a + rb

rb2
+

m

(r − a)b
,

thus, the necessary and sufficient conditions of the existence of positive x∗, y∗ are

a < r < a + m and 1 +
a

r
< b <

(r − a)2(a + r + rb)2

4mr(r − a)
.

Based on the discussion above, we can conclude that if r > m, then (15)-(16) has at least the following
four equilibria

E0,0, EA2,0, E0,A2 , Eu∗2 ,u
∗
2
.

If, in addition, the following inequality hold

a < r < a + m and 1 +
a

r
< b <

(r − a)2(a + r + rb)2

4mr(r − a)
,

then (15)-(16) has additional two asymmetric interior equilibria Ex∗,y∗ and Ey∗,x∗ .

If r < m and 1 < b < r2(b+1)2

4mr , then (15)-(16) has at least the following five equilibria

E0,0, EAi,0, E0,Ai
, i = 1, 2.

If, in addition, the inequalities

a < r and 1 +
a

r
< b <

(r − a)2(a + r + rb)2

4mr(r + a)
,

hold, then (15)-(16) has additional two asymmetric interior equilibria Ex∗,y∗ and Ey∗,x∗ . Thus, (15)-(16)
has exactly seven equilibria

E0,0, EAi,0, E0,Ai
, Eu∗i ,u

∗
i
, i = 1, 2.

If the following inequality hold

a < r < m and 1 +
a

r
< b < min{r

2(b + 1)2

4mr
,

(r − a)2(a + r + rb)2

4mr(r + a)
},

then (15)-(16) has all nine equilibria listed in (20).

Notes: Theorem 6.1 implies that (15)-(16) cannot have asymmetric interior equilibria if r < a which
is a sufficient condition for the extinction of one species of the competition model in Ω \ Ωy=x. Due
to the symmetric property of the model, (15)-(16) can not have only three interior equilibria, but it is
possible to have two, three or eight equilibria when the model is asymmetric. In addition, combining
analysis on the Jacobian matrices with numerical simulations, we can show that that equilibria points
EA1,0, E0,A1

, Eu∗1 ,u
∗
1
, Ex∗,y∗ , Ey∗,x∗ are always locally unstable.

A direct corollary from Theorem 3.1, Theorem 4.2 and Theorem 4.1 can be stated as follows:

Corollary 6.3. If r < m, then E0,0 = (0, 0) is always an attractor for (15)-(16) whose basins of
attractions contains the region

B(0,0) = {(x, y) ∈ R2
+ : 0 ≤ x ≤ A1, 0 ≤ y ≤ A2}.

If, in addition, (17) satisfies Condition H4 and the inequalities

1 < b <
r2(b + 1)2

4mr
and r < a

hold, then (15)-(16) has the following three attractors in Ω\Ωy=x: E0,0 and the interval [A1, Ab] on both
x-axis and y-axis.
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Proof. Since I(x) = e−
m

1+bx , then we have

I ′

I
=

mb

(1 + bx)2
> 0 and (

I ′

I
)′ = − 2mb2

(1 + bx)3
< 0 for x ≥ 0.

Thus, if the inequalities 1 < b < r2(b+1)2

4mr hold, then the single species model (17) satisfies Condition
H1-H2. Therefore, if (17) also satisfies Condition H4, then according to Theorem 3.1, the statement
holds.

Theorem 6.2. [Attractors of (15)-(16)] System (15)-(16) can have one, two, three and four attrac-
tors. Their sufficient conditions on having one, three, four attractors are as follows:

Extinction: If r < m and b < 1, then the only attractor of (15)-(16) is E0,0.

Essential-like extinction: If 1 < b < r2(b+1)2

4mr and r < min{a,m} and (17) satisfies Condition H3,
then (15)-(16) has Essential-like extinction in Ω \ Ωy=x.

Three attractors: If conditions in Corollary 6.3 are satisfied, then (15)-(16) has the following three
attractors in Ω \ Ωy=x: E0,0 and the interval [A1, Ab] on both x-axis and y-axis.

Four attractors: If conditions in Corollary 6.2 satisfy, then (15)-(16) has the following four attractors
in Ω: E0,0, the interval [A1, Ab] on both x-axis and y-axis and the interval [u∗1, ub] in Ωy=x.

Proof. If r < m and b < 1, then according to Theorem 6.1, system (15)-(16) has only extinction
equilibrium E0,0. This indicates that

r(1− x)

a
− m

a(1 + bx)
< y and

r(1− y)

a
− m

a(1 + by)
< x for all (x, y) ∈ Ω.

Therefore, (15)-(16) has only extinction attractor E0,0, i.e.,

lim
t→∞

max{xt, yt} = 0.

The inequalities

1 < b <
r2(b + 1)2

4mr
and r < m

indicates that (17) satisfies Condition H1-H3. Thus each species has essential extinction in its single
state. Since r < a, then two species of (15)-(16) can not coexist in Ω \ Ωy=x according to Corollary
6.3. Thus, for any initial condition taken in Ω \ Ωy=x, the limiting system is reduced to (17) which has
essential extinction. Therefore, (15)-(16) has essential-like extinction in Ω \Ωy=x according to Theorem
4.2.

The other two cases are directly followed from Corollary 6.3 and Corollary 6.2.

Note: If conditions in Corollary 6.2 satisfy, and in addition, (17) satisfies Condition H4, then (15)-(16)
has at least two attractors in Ωy=x: E0,0 and an attractor contained in [u∗1, ub] ⊂ Ωy=x. If r < a, then
(15)-(16) has at most three attractors: E0,0 and [A1, Ab] on both x, y-axis. Numerical simulations also
suggest that (15)-(16) has at most four attractors, i.e., the asymmetric equilibria Ex∗,y∗ and Ey∗,x∗ are
always unstable.

The numerical simulations on the existence of different attractors are shown in Figure 6.2 when
r = 4.5,m = 5, a = 2.5 and b varies from 2 to 13. Notice that there are some strange structures of the
basins of attractions of x,y-axis (see Figure 3(c), 3(d) and 3(e)): the basins of attractions of [A1, Ab] on
x-axis consist of two regions in cyan color that are connected by a symmetric equilibrium Eu∗2 ,u

∗
2
; the

basins of attractions of [A1, Ab] on y-axis consist of two regions in black color that are also connected
by Eu∗2 ,u

∗
2
. This could be caused by the fact that each species suffers from scramble competition. The

detailed analysis can be our future study.
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(a) Three attractors when r =
4.5,m = 5, b = 2, a = 2.5

(b) Three attractors when r =
4.5,m = 5, b = 3, a = 2.5

(c) Three attractors when r =
4.5,m = 5, b = 5, a = 2.5

(d) Four attractors when r =
4.5,m = 5, b = 7, a = 2.5

(e) Four attractors when r =
4.5,m = 5, b = 8, a = 2.5

(f) Two attractors when r =
4.5,m = 5, b = 10, a = 2.5

(g) Two attractors when r =
4.5,m = 5, b = 12, a = 2.5

(h) One attractors when r =
4.5,m = 5, b = 13, a = 2.5

Figure 3: Basins of attractions of different attractors for system (15)-(16) when r = 4.5,m = 5, a = 2.5 and b varying from
2 to 13. The extinction region is in red; the coexistence region is in blue; the persistence of species x is in cyan and the
persistence of species y is in black.

7. Discussion

It is common that species suffer from both competition and Allee effects. The interaction between
these two ecological processes has great effects on extinction and coexistence of species in ecology commu-
nities. Previous study by Kang and Yakubu (2011) implies that weak Allee effects induced by predator
saturation may promote the coexistence of two competing species, we explore how competition affects
extinction, essential-like extinction and the coexistence of species subject to strong Allee effects in its
single state in this article. One of our main finding is that inter-specific competition can save endan-
gered species subject to strong Allee effects from essential extinction at high densities. This result gives
a different point of view than the study by Wiens (1989) and Bengtsson (1989) where their results
suggest that inter-specific competition may have a negative effect on coexistence. The exact ecological
mechanisms as to why this pattern occurs are not transparent, but have to do with proper scramble
intra/inter-specific competition that allows population density of each species being above the Allee ef-
fect threshold in the next season in the presence of high densities in the current season. We summarize
our main findings as follows:
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1. Theorem 3.1 provides sufficient conditions on multiple attractors of two species competing systems.
This result shows that when these two competing species both suffer from strong Allee effects, a
species can not invade the other species at its low densities and both go extinct when their initial
conditions are below their Allee thresholds.

2. Theorem 4.1 and 4.2 give sufficient conditions on the extinction and essential-like extinction for a
symmetric two species model with strong Allee effects. This study indicates that both competing
species go to extinction for most initial conditions in one of the following two cases: a. The sum
of inter-specific competition coefficient and intra-specific competition coefficient is too large. b.
Each species has essential extinction and its inter-specific competition coefficient great than its
intra-specific competition coefficient.

3. Theorem 5.1 gives sufficient conditions on the coexistence for a symmetric two species competition
model when each species has essential extinction. Our result suggests that competition may save
the endangered species from essential extinction.

4. We apply previous theoretical results to a symmetric discrete-time two species model where each
species suffers from strong Allee effects induced by predator saturation. The completed study
of all possible equilibria and attractors including coexistence attractor supports our finding that
inter-specific competition can rescue endangered species subject to strong Allee effects at high
densities.

Our study in this article and the work by Kang and Yakubu (2011) suggest the following scenarios:

• For a two-species discrete-time competition model, if both species have larger inter-specific com-
petition than their intra-specific competition, then there is no coexistence for both models with
or without Allee effects. This is consistent with the classical study of two-species continuous time
Lokta-Voltera competition models.

• At low densities, weak Allee effects is able to promote permanence of scramble competition systems.
This is due to the fact that weak Allee effects decreases the fitness of resident species such that
the other species is able to invade at its low densities.

• At hight densities, scramble inter-specific competition can rescue a species suffering from essential
extinction caused by strong Allee effects. This is due to the fact that single species has scramble
intra-specific competition, introducing proper inter-specific competition can bring down the current
population density such that it can have a larger population density which is above the Allee
threshold in the next season.

It is well-known dispersal is a fundamental ecological process that couples the dynamics within and
between populations which enables individuals to leave unfavorable habitat, avoid predation or compe-
tition, find new food resources, search for mates, evade inbreeding, and (re)colonize areas (Begon et al.
1996; Etiemme et al. 2002). Whether they are successful in doing so can be determined by the interplay
between dispersal and other ecological processes such as Allee effects and competition. Gyllenberg et
al (1999) study the two-patch metapopulation models subject to Allee effects and competition (both
intra/inter-specific competitions) and propose that the Allee effect, migration intensity, and non-local
competition should be considered jointly in studies problems like pattern formation in space and in-
vasions of spreading species. Etiemme et al. (2002) study how the interaction between dispersal, the
Allee effect and (intra-specific) scramble competition determines the establishment and persistence of a
population by using integrodifference models. It will be interesting to explore how different Allee effects
combined with intra/inter-specific competition affect extinction and coexistence of species in both patchy
models and integrodifference models and compare findings for these two different models. The possible
future study may includes the following ecological questions:
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1. How does fluctuated environment affect population dynamics of competition models with Allee
effects?

2. How to explain the basins attractions of each species that we observed (see Figure 3(c), 3(d) and
3(e))?

3. What are population dynamics when competing species subject to Allee effects has different growth
functions, e.g., Hassel’s model, Beverton-Holt model, Ricker’s model?
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