
This article was downloaded by: [Yun Kang]
On: 04 July 2011, At: 08:24
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Difference Equations and
Applications
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/gdea20

Pre-images of invariant sets of a
discrete-time two-species competition
model
Yun Kang a
a Applied Sciences and Mathematics, Arizona State University,
Mesa, AZ, 85212, USA

Available online: 1 June 2011

To cite this article: Yun Kang (2011): Pre-images of invariant sets of a discrete-time
two-species competition model, Journal of Difference Equations and Applications,
DOI:10.1080/10236198.2011.591390

To link to this article:  http://dx.doi.org/10.1080/10236198.2011.591390

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching and private study purposes. Any
substantial or systematic reproduction, re-distribution, re-selling, loan, sub-licensing,
systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation
that the contents will be complete or accurate or up to date. The accuracy of any
instructions, formulae and drug doses should be independently verified with primary
sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand or costs or damages whatsoever or howsoever caused arising directly or
indirectly in connection with or arising out of the use of this material.

http://www.tandfonline.com/loi/gdea20
http://dx.doi.org/10.1080/10236198.2011.591390
http://www.tandfonline.com/page/terms-and-conditions


Pre-images of invariant sets of a discrete-time two-species
competition model

Yun Kang*

Applied Sciences and Mathematics, Arizona State University, Mesa, AZ 85212, USA

(Received 16 September 2010; final version received 17 May 2011)

In this paper, we explore the structure of pre-images of invariant sets of a discrete-time
two-species competition model with singularity at the origin. We first show that this
competition model is persistent with respect to the total population of two species,
i.e. all initial conditions in R2

þn{ð0; 0Þ} are attracted to a compact set which is bounded
away from the origin. Then we study the properties of pre-images of this system and
give the explicit structure of all pre-images of invariant sets for this system under
certain parameter range. These results are analogous to the one-dimensional discrete
system. Our study is the first step to explore the structure of the basins of attractions of
interior attractors of a general discrete-time two-species model (e.g. the locally
asymptotically stable interior period-2 orbit). Finally, we discuss how our results give
useful insights on the future study for coexistence of the species and list some open
problems related to our system.

Keywords: basins of attraction; competition models; critical curves; invariant sets;
persistent; rank-k pre-images

AMS 2000 Subject Classifications: Primary 37B25; 39A11; 54H20; Secondary
92D25

1. Introduction

It is common that ecosystems have multiple attractors, in which the final densities of

species, or even the persistence of species, depend on their initial densities [8,12]. The

basins of attractions of attractors can measure the resilience of ecosystems and the possible

initial conditions allowing the coexistence of species. Thus, understanding the structure of

the basins of attractions of their attractors can provide important information on the

strategies for the sustainable management of such ecosystems [12]. Discrete-time

ecological models are known to exhibit multiple attractors including periodic and chaotic

attractors. However, except for a few exceptions (e.g. Elaydi and Sacker [4]), the

qualitative studies of the structure of the basins of attraction of these periodic and chaotic

attractors are rare. Since pre-images of invariant sets can define the boundaries of the

basins of attractions of attractors, we explore the structure of pre-images of invariant sets

of a discrete-time two-species competition model in this paper by using the properties of

critical curves of non-invertible maps. This novel approach can also be extended to general

discrete-time two-species interaction models.

Let xn and yn denote the population sizes of two competing species x and y at generation

n, respectively. Suppose that species x suffers from the extremes of contest intra-specific
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competitive interaction and species y suffers from the extremes of scramble intra-specific

competitive interactions [11], then a model of resource-mediated competition between

species x and y can be described as follows in the model (1), (2) [1,5,6]

xnþ1 ¼
r1xn

aþ xn þ yn
; ð1Þ

ynþ1 ¼ yne
r22ðxnþynÞ; ð2Þ

where all parameters r1, r2 and a are strictly positive. Franke and Yakubu [5,6] studied

global dynamics of general two-species competition models including system (1), (2).

In particular, they (1991b) established an exclusion principle for discrete competition

models where the density-dependent growth functions are either all exponential or all

rational, and gave an example that such exclusion principle fails where two species can

coexist through a locally stable period-2 orbit. This phenomenon of coexistence has been

observed in other competition models [2,3,13,14] as well as in system (3), (4) which is the

case when a ¼ 0 for system (1), (2)

xnþ1 ¼
r1xn

xn þ yn
; ð3Þ

ynþ1 ¼ yne
r22ðxnþynÞ: ð4Þ

It is easy to check that for any a $ 0 and r1 – r2, system (1), (2) has only two

equilibrium points ðr1; 0Þ and ð0; r2Þ (i.e. no interior equilibrium point) with the following

property: one of them is transversally stable (i.e. the external Lyapunov exponent

evaluated at this equilibrium point is less than 1) and the other one is transversally unstable

(i.e. the external Lyapunov exponent evaluated at this equilibrium point is greater than 1).

The simulation suggests that under certain parameter range, system (1), (2) has locally

asymptotically stable interior periodic-2 orbits with heteroclinic orbits connecting two

boundary equilibria points. In addition, the basins of attractions of these interior periodic-2

orbits attract all interior points except all the pre-images of heteroclinic orbits. In order to

show this phenomenon observed from simulations, we need to understand the structure of

all pre-images of heteroclinic orbits first. However, it is very challenging to show this for

the general case rigorously. Thus, we focus on system (3), (4) which is the special case of

system (1), (2). We will extend the work to more general case a . 0 and other more

general models in the future study.

The structure of the rest of this paper is as follows. In Section 2, we give the basic

terminologies used in the paper and introduce the concept of critical curves. In addition,

we show that there exists a compact positively invariant set that attracts all points in R2
þ

(Theorem 6). In Section 3, we study the properties of the rank-1 pre-image of system

(3), (4) and give the explicit structure of all rank pre-images of any invariant set (Theorem

9). This result is analogous to Theorem 4.2 by [4]. In Section 4, we summarize the results

of our study and discuss how to apply these results to obtain the structure of the basins of

attraction for the interior attractors of system (3), (4). In the Appendix, we derive a major

technical lemma which will be used in proving the main results.

2. Definitions and compact positively invariant set

Let X be a metric space and H be a two-dimensional discrete system on X that is described

by (3), (4). Then H : X ! X is a discrete semi-dynamical system, where H 0ðj0Þ ¼ j0 ¼
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ðx0; y0Þ and H
nðj0Þ ¼ jn ¼ ðxn; ynÞ; n [ Zþ. Note that system (3), (4) has singularity at the

origin (0, 0); thus, its state space X can be defined as X ¼ ðx; yÞ [ R2
þ : 0 , xþ y , 1

� �
.

The local dynamics of (3), (4) can be summarized as follows:

Lemma 1 [Local Dynamics of (3), (4)].

1. If r1 – r2, then system (3), (4) has only two equilibria j* ¼ ðr1; 0Þ and h* ¼ ð0; r2Þ.
If r1 . r2, then j* is locally asymptotically stable and h

* is transversally unstable;

if r1 , r2, then j * is transversally unstable and h* is transversally stable.

2. If r1 ¼ r2 ¼ r, then all points in the line ðx; yÞ [ R2
þ : xþ y ¼ r

� �
are equilibria

of system (3), (4).

3. If system (3), (4) has an interior periodic-2 orbit Pi
2 ¼ ðxi1; y

i
1Þ; ðx

i
2; y

i
2Þ

� �
, then it

can be explicitly found as

xi1 ¼
s1 s1e

r22s1 2 s2ð Þ

s1er22s1 2 r1
; yi1 ¼

s1ðs2 2 r1Þ

s1er22s1 2 r1
;

xi2 ¼
r1x

i
1

s1
; yi2 ¼ yi1e

r22s1

where

s1 ¼ xi1 þ yi1 ¼ r2 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r22 2 r21

q
and s2 ¼ xi2 þ yi2 ¼ r2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r22 2 r21

q
:

The proof of Lemma 1 can be obtained from straight algebraic calculations; thus, we

omit the details. Lemma 1 indicates that system (3)–(4) is not permanent since it has no

interior steady state (Theorem 6.3, Hutson and Schmitt [7]). In the case that r1 – r2, the

system always has one boundary steady state that is transversally stable. However, it can

have a locally asymptotically stable interior period-2 orbit Pi
2 for certain r1, r2 values as

observed in other models [2,3,6,13,14]. For instance, when r1 ¼ 2, r2 ¼ 2.2, system (3),

(4) has a locally asymptotically stable interior periodic-2 orbit

Pi
2 ¼ ðxi1; y

i
1Þ; ðx

i
2; y

i
2Þ

� �
¼ {ð0:1536; 2:9629Þ; ð0:0986; 1:1849Þ}

at which the eigenvalues of the product of the Jacobian matrix along these orbits are 0.91

and 0.26.

Denote B Pi
2

� �
as the basins of attractions of Pi

2. The interesting question is: What is the

structure of B Pi
2

� �
? This question has been posed as an open problem for a discrete

competition model studied by [2]. As we know for planar maps, the basins of attraction of

omega limit sets can have very complicated structures. Instead of studying the structure of

B Pi
2

� �
directly, we study the pre-images of invariant sets instead. Now, we give some

important definitions.

Definition 2 [Pre-images of a point]. For a given point j0 [ X, we say j [ X is a rank-

k pre-image of j0 if H kðjÞ ¼ j0. The collection of rank-k (k $ 1) pre-images of j0 is

defined as

H2kðj0Þ ¼ j [ X : HkðjÞ ¼ j0
� �

and the collection of all pre-images of j0 (including k ¼ 0) is defined as

EFj0 ¼
[
k$1

H2kðj0Þ

 ![
{j0}:
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Definition 3 [Invariant/Positively Invariant Set]. We say M , X is an invariant

set of H if HðMÞ ¼ M. And M , X is a positively invariant set of H if HðMÞ , M.

Note. If M is an invariant set of H, then M includes both positively invariant orbits and

negatively invariant orbits but not all negatively invariant orbits.

Definition 4 [Pre-images of an Invariant Set]. Let M be an invariant set for system

(3), (4), then H 0ðMÞ ¼ HðMÞ ¼ M. The collection of rank-k pre-images of M (k $ 1) is

defined as

H2kðMÞ ¼
[

j0[M

{j [ XnM : HkðjÞ ¼ j0};

and the collection of all pre-images of M (including k ¼ 0) is defined as

EFM ¼
[
k$0

H2kðMÞ ¼
[
k$1

[
j0[M

{j [ XnM : HkðjÞ ¼ j0}

 !" #[
M:

Note. If M is an invariant set of H, then H2kðMÞ should not contain points in M for all

k $ 1.

If r2 . r1, then from Lemma 1 we know that h* is transversally stable. LetW sðh*Þ be

the stable manifold associated with this transversal direction. Then EFW sðh *Þ contains all

pre-images of W sðh*Þ, which is invariant and does not belong to B Pi
2

� �
. The simulation

(Figure 4) also suggests that all interior points of R2
þ are attracted to Pi

2 except EFW sðh *Þ.

In order to show this rigorously, we investigate the structure of pre-images of invariant sets

for system (3), (4), which includes EFW sðh *Þ in this paper.

Note that while species x is absent, system (3), (4) reduces to the following well known

Ricker’s map

ytþ1 ¼ yne
r22yn : ð5Þ

According to Theorem 4.2 (Elaydi and Sacker [4]), single species system (5) has a stable 2-

cycle {y1; y2} when 2 , r2 , 2:52 with its basins of attraction being {y [ Rþ : y . 0}n

EFy where EFy is a set of all pre-images of y ¼ r2 (EFy is called the set of eventually fixed

points by [4]). Moreover, they gave the explicit structure of EFy as follows:

EFy ¼ V2ðyÞ
[

{q2n : n $ 2}

where

1. V2ðyÞ ¼ {y2n : n $ 1} is a full negative orbit with yn ! 0 monotonically.

2. For each n $ 2, there exists a unique monotonically increasing sequence of rank-n

pre-image q2n such that

lim
n!1

q2n ¼ 1 and q2n is rank-1 pre-image of y2nþ1:

Our study in this paper can answer the interesting question such as whether pre-images of

the invariant sets of (3), (4), e.g. EFW sðh *Þ, have the similar structure as Ey. To continue our

study, we define the critical curves of (3), (4) in the next subsection.
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2.1 Critical curves

Notice that the system H, i.e. (3), (4), is a two-dimensional non-invertible map. As the

point j0 ¼ ðx0; y0Þ varies in its state space X, the number of rank-1 pre-images of j0
changes. Real pre-images appear or disappear as the point j0 crosses the boundary

separating regions for which the points have a different number of rank-1 pre-images.

Such boundaries, called rank-1 critical curve and denoted by LC, are generally

characterized by the presence of multiple coincident (merging) pre-images. The locus of

these coincident first rank pre-images is called rank-1 curve of merging pre-images and

denoted by LC21.

The critical curve of rank-1 LC is the two-dimensional generalization of the notion of

critical value (local minimum or maximum value) of a one-dimensional map (for the

Ricker’s map hðyÞ ¼ yer22y, it has LC ¼ er221), LC21 is the generalization of the notion of

critical point (the image of local extremum point, e.g. the Ricker’s map h has its extreme

point as LC21 ¼ 1). Arcs of LC separate the plane into regions characterized by a different

number of real pre-images. For convenience, HkðLC21Þ, k $ 1 are called critical curves.

For a two-dimensional continuous map H, the set LC21 is included in the set of points,

denoted by JC, through which detðJÞðx; yÞ (i.e. the determinant of Jacobian matrix)

changes sign. From the geometric action of the foliation of the Riemann plane, we can also

say that the critical set LC21 must belong to JC, i.e. LC21 , JC. In fact, a plane region U

which intersects LC21 is ‘folded’ along LC to the side with more pre-images, and the two

folded images have opposite orientation [10]. This implies that the map has the Jacobian

matrix with a different sign in the two portions of U separated by LC21. Our map H is

smooth in X; thus, the sign of detðJÞ occurs when it vanishes and LC ¼ HðLC21Þ

constitutes the boundary lines which separate regions Zk characterized by a k number

of rank-1 pre-images (for system (3), (4), k ¼ 0; 1; 2;1, which we demonstrate in

Lemma 7).

The Jacobian matrix of system (3), (4) is represented as

J ¼

r1y

ðxþyÞ2
2 r1x

ðxþyÞ2

2yer22x2y 2er22x2yðy2 1Þ

2
4

3
5 ð6Þ

with its determinant

detðJÞ ¼ 2
r1ye

r22x2yðxþ y2 1Þ

ðxþ yÞ2
:

This gives two critical curves LC21 ¼ LC1
21 < LC2

21 of system (3), (4), where the

determinant of Jacobian det(J) vanishes in X, i.e.

LC1
21 : y ¼ 12 x; 0 # x , 1; ð7Þ

LC2
21 : y ¼ 0; x . 0: ð8Þ

The curve LC2
21 is an invariant manifold of (3),(4) and is mapped to the rank-1 critical

curve LC 2 ¼ ðr1; 0Þ through H, i.e. H LC2
21

� �
¼ ðr1; 0Þ. The other critical curve LC 1 ¼

H LC1
21

� �
is given by

LC 1 : r1x; ð12 xÞer221
� �

; 0 # x , 1
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which can be simplified as follows:

LC 1 : gðxÞ ¼ 12
x

r1

� �
er221; 0 # x , r1 ð9Þ

Both LC1
21 : y ¼ 12 x; 0 # x , 1 and LC 1 : gðxÞ ¼ ð12 x=r1Þe

r221; 0 # x , r1 are

linear decreasing functions with respect to x. Moreover, the curves LC1
21; LC

1 ¼

H LC1
21

� �
do not have intersections if r2 . r1 . 1 or max{r1; e

r221=r1} , 1, and LC1
21 ¼

H21ðLC 1Þ is a one-to-one mapping. In the next subsection, we show that H has a compact

positively invariant set attracting all points in X.

2.2 Compact positively invariant set

Recall that

X ¼ ðx; yÞ [ R2
þ : 0 , xþ y , 1

� �
;

we denote

Z1 ¼ {ðr1; 0Þ} ¼ LC 2;

Z0 ¼ {ðx; yÞ [ X : y . gðxÞ}
[

{ðx; 0Þ : x . 0; x – r1};

Z1 ¼ {ðx; yÞ [ X : y ¼ gðxÞ; 0 # x , r1} ¼ LC 1;

Z2 ¼ {ðx; yÞ [ X : 0 , y , gðxÞ; 0 # x , r1};

Z1;2;1 ¼ Z1

[
Z2

[
Z1;

Zall ¼ {ðx; yÞ [ X : 0 # x # r1; 0 # y # gðxÞ};

Z1
2 ¼ ðx; yÞ [ Z2 : 0 , y , f ðf ðycÞÞ ¼ 12

x

r1

� �
e2r2212er221

� 	
;

Z2
2 ¼ ðx; yÞ [ Z2nZ

1
2

� �
;

B ¼ {ðx; yÞ [ Z2 : xþ y , 1}

ð10Þ

where gðxÞ is given by (9), yc ¼ 12 ðx=r1Þ and f ðyÞ ¼ yer22y=ðr12xÞ. These defined

notations are used throughout the rest of this paper.

Lemma 5 [Z2 Positively Invariant]. System H defined by (3), (4) maps X to Z1;2;1,

where Z1;2;1 is positively invariant. Moreover, Zall is also positively invariant and attracts

all points in X.

Proof. Given any point j ¼ ðx; yÞ [ X, we have the following three cases:

1. If y ¼ 0, then j1 ¼ HðjÞ ¼ ðr1; 0Þ ¼ Z1;

2. If x ¼ 0, then j1 ¼ HðjÞ ¼ ð0; yer22yÞ [ Z1 < Z2;

3. If xy . 0, then y can be represented as kx for some positive number k; thus, we have

x1 ¼
r1x

xþ y
¼

r1

k þ 1
; ð11Þ

y1 ¼ kxer22ðkþ1Þx #
k

k þ 1
er221 ¼ 12

x1

r1

� �
er221 ¼ gðx1Þ: ð12Þ
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The last two cases imply that for any point j in the region {ðx; yÞ [ X : y . 0}, we

have

j1 ¼ HðjÞ ¼ ðx1; y1Þ [ {ðx; yÞ [ X : 0 # x , r1; 0 , y # gðxÞ} ¼ Z1 < Z2:

Hence, H maps X to Z1;2;1. Since Z1;2;1 is a subset of X; therefore, Z1;2;1 is

positively invariant and attracts all points in X.

Note that Z1;2;1 is a subset of Zall and Zall is a subset of X; therefore,

HðZallÞ , HðXÞ , Z1;2;1 , Zall

which implies that Zall is also positively invariant and attracts all points in X. A

Lemma 5 indicates that the dynamics of (3), (4) can be restricted to a bounded

positively invariant region Zall. However, the non-compactness of Zall is inconvenient for

us to study the global dynamics of (3), (4). The following theorem shows that there exists a

compact positive invariant set that attracts all points in X.

Theorem 6 [Compact positively invariant sets]. Assume that r1 – r2, then for any e

such that the following inequality holds

0 , e # min r1; r2; e
2r2212er221

; r1e
r22r1

n o
¼ rm;

the compact region defined by

De ¼ {ðx0; y0Þ [ Zall : x0 þ y0 $ e}

is positively invariant and attracts all points in X.

Proof. From Lemma 5, we can restrict system (3), (4) to the bounded positively invariant

region Zall. Assume that a point j0 ¼ ðx0; y0Þ is in the region defined by

{ðx; yÞ [ Zall : y . 0}, then it can be characterized by two variables m and k where

0 , m ¼ x0 þ y0 # max r1; e
r221

� �
and x0 ¼ ky0; 0 # k , 1:

Thus, we have

ðx0; y0Þ ¼
km

k þ 1
;

m

k þ 1

� �
:

According to (3), (4), the first iteration of j0 can be represented as

j1 ¼ ðx1; y1Þ ¼ Hðj0Þ ¼
r1k

k þ 1
;
mer22m

k þ 1

� �
:

Denote the sum of x1 and y1 as the following new function Fðm; kÞ

Fðm; kÞ ¼ x1 þ y1 ¼
r1k

k þ 1
þ

mer22m

k þ 1
: ð13Þ

Journal of Difference Equations and Applications 7
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Then we have

›F

›k
¼

r1 2 mer22m

ðk þ 1Þ2
; ð14Þ

›F

›m
¼

ð12 mÞer22m

k þ 1
: ð15Þ

Equation (14) indicates that for a given m, if r1 , mer22m, then ›F=›k , 0, hence,

inf
x0þy0¼m

{x1 þ y1} ¼ inf
k$0

{Fðk;mÞ} ¼ lim
k!1

Fðk;mÞ ¼ r1:

And if r1 $ mer22m, then ›F=›k $ 0, hence,

inf
x0þy0¼m

{x1 þ y1} ¼ inf
k$0

{Fðk;mÞ} ¼ Fð0;mÞ ¼ mer22m:

Now let m vary from

rm ¼ min r1; r2; e
2r2212er221

; r1e
r22r1

n o
to rM ¼ max r1; e

r221
� �

:

Note that

ðx0; y0Þ [ Zall : r
m # x0 þ y0 # rM

� �
# ðx0; y0Þ [ X : rm # x0 þ y0 # rM
� �

:

Thus, if ðx0; y0Þ [ Zall, then from part 3 of Lemma 11, we have

inf
r m#m#r M

inf
x0þy0¼m

{x1 þ y1} $ inf
r m#m#r M

inf
k$0

{Fðk;mÞ} ¼ min
r m#m#r M

r1;me
r22m

f g $ rm: ð16Þ

Now define

De ¼ {ðx0; y0Þ [ Zall : e # x0 þ y0} and Dc
e ¼ ZallnDe ;

then

De , ðx0; y0Þ [ X : e # x0 þ y0 # rM
� �

:

If e ¼ rm, then according to (16) and Lemma 5, we can see that if a point ðx0; y0Þ is in
Drm , then its first iteration ðx1; y1Þ is still in Drm since ðx1; y1Þ [ Zall and x1 þ y1 $ rm:
Therefore, Drm is positively invariant.

Let ðx0; y0Þ be a point in the region Dc
r m , then

x0 þ y0 , rm ¼ min r1; r2; e
2r2212er221

; r1e
r22r1

n o
:

Thus, we have

x1 ¼
r1x0

x0 þ y0
. x0 and y1 ¼ y0e

r22ðx0þy0Þ . y0

which indicates that we have the following two situations:
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1. j0 ¼ ðx0; y0Þ stays in Dc
r m for all future time. In this case, we have a strictly

increasing sequence {H iðj0Þ}
1

i¼1 where

H iðj0Þ [ Dc
r m and H iðj0Þp H iþ1ðj0Þ for all i [ Zþ

where p is the strong usual component-wise order relation. Therefore,

lim
i!1

H iðj0Þ ¼ j*

where j* ¼ ðr1; 0Þ or ð0; r2Þ is a boundary equilibrium of system H and is contained

in Drm .

2. There exists some positive integer k, such that jk ¼ Hkðj0Þ [ Drm , then jn [
Drm , Drm for all n $ k.

The above argument indicates that Drm attracts all points in Zall. Since Zall attracts all

points in X; therefore, Drm attracts all points in X.

If e , rm, then De is a compact neighbourhood of Drm . Since Drm attracts all points in

X, any point in X will enter De in some finite time. By applying the similar arguments (the

above two steps for showing that Drm attracts all points in Zall), we can show that any point

in De will either stay in De for all future time and converge to one of the two boundary

equilibria or will enter Drm in some finite time and stay in Drm for all future time.

Therefore, De is positively invariant and attracts all points in X. A

Theorem 6 indicates that system (3), (4) is persistent with respect to the total population

of species x and y, i.e. if r1 – r2, then for any initial condition ðx0; y0Þ [ X we have

lim inf
n!1

ðxn þ ynÞ $ rm:

This result allows us to restrict system (3), (4) to the compact positively invariant region

Drm .

3. Pre-images of invariant sets

In this section, we explore the properties of all rank pre-images of invariant sets of system

(3), (4). The following two lemmas give us useful information on the properties of pre-

images of points in X, which can help us to find the explicit structure of all rank pre-images

of invariant sets.

Lemma 7 [Z0 2 Z2 map]. Each point in Zi; i ¼ 0; 1; 2;1 has i rank-1 pre-images. If

j [ Z2, then its rank-1 pre-images can be represented as ji21; i ¼ a; b with the following

properties

H21ðjÞ ¼ ja21; j
b
21

� �
and jb21 p hp ja21

where p is the strong usual component-wise order relation and h is a point in LC1
21.

Moreover, the maps

Gb
21 : Z2 ! B and Ga

21 : Z2 ! X

defined by Gi
21ðjÞ ¼ ji21; i ¼ a; b are smooth.
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Proof. Note that H LC2
21

� �
¼ ðr1; 0Þ; thus, LC

2
21n{ðr1; 0Þ} has no pre-images and (r1, 0)

has infinite many pre-images, i.e. LC2
21n{ðr1; 0Þ}

� �
, Z0 and Z1 ¼ {ðr1; 0Þ}.

Given any point ðx0; y0Þ [ XnLC2
21, if it has pre-images (x, y), then the pre-images

should satisfy the following two equations

x0 ¼
r1x

xþ y
) x ¼

x0y

r1 2 x0
; ð17Þ

y0 ¼ yer22x2y: ð18Þ

Now substituting (17) into (18) we get

y0 ¼ ye
r22

r1y

r12x0 # max
y.0

ye
r22

r1y

r12x0

n o
¼ f ðycÞ ¼ gðx0Þ ¼ 12

x0

r1

� �
er221 ð19Þ

where yc ¼ 12 x0=r1 and f ðyÞ ¼ yer22ðr1y=r12x0Þ. Therefore, according to the properties of

the Ricker’s map 11 (also see results in [4]), we have the following three situations:

1. If y0 . gðx0Þ . 0, then y0 has no pre-image for the Ricker’s map (19); thus, ðx0; y0Þ
has no pre-image for (3), (4). Hence, we have shown that the region Z0 defined in

(10) has no pre-images.

2. If y0 ¼ gðx0Þ . 0, then y0 has exactly one rank-1 pre-image for the Ricker’s map

Lemma (19); thus, (x0, y0) has exactly one rank-1 pre-image.

3. If 0 , y0 , gðx0Þ, then y0 has two rank-1 pre-images for the Ricker’s map (19);

thus, (x0, y0) has two rank-1 pre-images.

Therefore, the first part of Lemma 7 holds.

Choose a point j ¼ ðx0; y0Þ [ Z2, its two rank-1 pre-images can be denoted as

H21ðjÞ ¼ ja21; j
b
21

� �
¼ xa21; y

a
21

� �
; xb21; y

b
21

� �� �
where ji21; i ¼ a; b satisfy (17) and (19).

Denote h ¼ ðx0=r1; r1 2 x0=r1Þ. Since

h ¼ ð12 y; yÞ if let y ¼
r1 2 x0

r1
;

we can check that the point h [ LC1
21 by using (7). Note that y ¼ r1 2 x0=r1 is a critical

point of yer22ðr1y=r12x0Þ, then from (19), we can see that the pre-image

jb21 ¼
x0y

b
21

r1 2 x0
; yb21

� �
p h ) xb21 þ yb21 , 1 ) jb21 [ B

and the pre-image

ja21 ¼
x0y

a
21

r1 2 x0
; ya21

� �
q h ) xb21 þ yb21 . 1:

Therefore, for each interior point j [ Z2, there are two rank-1 pre-images ji21; i ¼ a; b and
a point h [ LC1

21, such that

jb21 p hp ja21

where jb21 [ B.
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From the inverse function theorem, we can conclude that the maps

Ga
21 : Z2 ! B;Gb

21 : Z2 ! X

defined by Gi
21ðjÞ ¼ ji21; i ¼ a; b are smooth. A

In the rest of the paper, we use subscript 2n to denote a rank-n pre-image and

superscript i ¼ a, b to denote the location of the pre-image, i.e. if i ¼ a, then the pre-image

is above LC1
21, otherwise it is below LC1

21 and, therefore, in the set B.

Lemma 8 [Location of Pre-images]. Let xi2k; y
i
2k

� �
; i ¼ a; b be rank-k pre-images of a

point ðx0; y0Þ [ Z2 and ui2k; u
i
2k

� �
; i ¼ a; b be rank-k pre-images of a point ðu0; v0Þ [ Z2

where k ¼ 1,2. Then

1. xb21; y
b
21

� �
p ðx0; y0Þ if 0 , x0 þ y0 # min{r1; r2}.

2. xa21; y
a
21

� �
[ Z0 if r2 . r1 . 1 and ðx0; y0Þ [ Z1

2. Moreover, we have

xb22; y
b
22

� �
p xb21; y

b
21

� �
and ya21 , ya22:

3. xb21; y
b
21

� �
p ub21; v

b
21

� �
if r2 . 1 and ðx0; y0Þp ðu0; v0Þ.

Proof. If ðx0; y0Þ [ Z2, then 0 , x0 þ y0 # min{r1; r2} implies that 0 , y0 # r1 2 x0.

Thus, according to (17), we have

xb21 ¼
x0y

b
21

r1 2 x0
#

x0y
b
21

y0
: ð20Þ

On the other hand, according to (19), the following equality holds

y0 ¼ yb21e
r22

r1y
b
21

r12x0
:

ð21Þ

The condition 0 , x0 þ y0 # min{r1; r2} implies that if r2 # r1, then

0 , x0 þ y0 # r2 ) 0 ,
x0

r2
þ

y0

r2
# 1 ) 0 ,

x0

r1
þ

y0

r2
# 1 ) y0 , y* ¼ r2 12

x0

r1

� �
:

Similarly, if r2 $ r1, then

0 , x0 þ y0 # r1 ) 0 ,
x0

r1
þ

y0

r1
# 1 ) 0 ,

x0

r1
þ

y0

r2
# 1 ) y0 , y* ¼ r2 12

x0

r1

� �
:

Thus, according to Lemma 11 (also see results in [4]), we have 0 , yb21 , y0. Hence,

according to (20), we can conclude that

xb21 #
x0y

b
21

y0
, x0:
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Therefore, the first part of Lemma 8 holds, i.e.

xb21; y
b
21

� �
p ðx0; y0Þ if 0 , x0 þ y0 # min{r1; r2}:

The condition r2 . r1 . 1 indicates that ðer221=r1Þ . 1 and B , Z1
2. If ðx0; y0Þ [ Z1

2,

then 0 , y0 , ð12 x0=r1Þe
2r2212er221

. Therefore, according to Lemma 11 (also see results

in [4]) and the inequality ðer221=r1Þ . 1, we have

ya21 . 12
x0

r1

� �
er221: ð22Þ

From (17) and (22), we have

xa21 ¼
x0y

a
21

r1 2 x0
.

x0e
r221

r1
. x0: ð23Þ

This indicates that

ya21 . 12
x0

r1

� �
er221 . 12

xa21

r1

� �
er221:

Therefore, xa21; y
a
21

� �
[ Z0.

From the proof of the first part of Lemma 8, we can see that

xb21; y
b
21

� �
p ðx0; y0Þ ) xb21; y

b
21

� �
[ B , Z1

2:

Thus, by applying the first part of Lemma 8, we have xb22; y
b
22

� �
p xb21; y

b
21

� �
directly.

Note that yer22ðr1y=r12x0Þ is a decreasing function with respect to x0. Thus,

y0 ¼ ya21e
r22

r1y
a
21

r12x0 . yb21 ¼ ya22e
r22

r1y
a
22

r12xb
21 . ya22e

r22
r1y

a
22

r12x0

Since r2 . r1 . 1, the fixed point y* ¼ r2 2 ðr2x=r1Þ is strictly greater than the critical

point yc ¼ 12 ðx=r1Þ for the Ricker’s map yer22ðr1y=r12xÞ where x ¼ x0 or x ¼ xb21. Let

ui21; i ¼ a; b be rank-1 pre-images of yb21 for the Ricker’s map yer22ðr1y=r12x0Þ. Since

yer22ðr1y=r12x0Þ . yer22ðr1y=r12xb
21

Þ, we have ua21 , ya22. Recall that

ua21e
r22ðr1u

a
21

=r12x0Þ ¼ yb21 , y0 ¼ ya21e
r22ðr1y

a
21

=r12x0Þ;

therefore, we have ya21 , ua21. Hence, ya21 , ya22 (see Figure 1(a) for graphic

representations). Therefore, the second part of Lemma 8 holds.

Since ðx0; y0Þp ðu0; v0Þ, we have xb21 ¼ x0y
b
21=ðr1 2 x0Þ , u0y

b
21=ðr1 2 u0Þ. The

condition r2 . 1 implies that

yb21e
r22ðr1y

b
21

=r12u0Þ , y0 ¼ yb21e
r22ðr1y

b
21

=r12x0Þ , v0 ¼ vb21e
r22ðr1v

b
21

=r12u0Þ

, vb21e
r22ðr1v

b
21

=r12x0Þ:

Then from Figure 1(b), we can obtain that yb21 , vb21. Therefore,

xb21 ¼
x0y

b
21

r1 2 x0
,

u0y
b
21

r1 2 u0
,

u0v
b
21

r1 2 u0
¼ ub21:

Therefore, the third part of Lemma 8 holds. A
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(a
)

(b
)

F
ig
u
re

1
.

S
ch
em

at
ic

g
ra
p
h
s
o
f
th
e
p
re
-i
m
ag
es

o
f
R
ic
k
er
’s

m
ap
s
fð
x;
yÞ

¼
ye

r 2
2
ðr

1
y=
r 1
2
xÞ
w
h
er
e
f
x 0
;y

i 2
1

�
� ¼

y 0
;f

xb 2
1
;y

i 2
2

�
� ¼

yb 2
1
;f

u
0
;v

i 2
1

�
� ¼

v 0
;i
¼

a
;b
.
(a
)

T
w
o
R
ic
k
er
’s

m
ap
s
fð
x;
yÞ

¼
ye

r 2
2
ðr

1
y=
r 1
2
xÞ
w
h
er
e
x
¼

x 0
;x

b 2
1

an
d

x 0
.

xb 2
1
.
In

ad
d
it
io
n
,
f
x 0
;y

i 2
1

�
� ¼

y 0
;i
¼

a
;b

an
d

f
xb 2

1
;y

i 2
2

�
� ¼

yb 2
1
;i
¼

a
;b

an
d
(b
)

T
w
o
R
ic
k
er
’s

m
ap
s
fð
x;
yÞ

¼
ye

r 2
2
ðr

1
y=
r 1
2
xÞ
w
h
er
e
x
¼

x 0
;u

0
an
d

x 0
,

u
0
:
In

ad
d
it
io
n
,
f
x 0
;y

i 2
1

�
� ¼

y 0
;i
¼

a
;b

an
d

f
u
0
;v

i 2
1

�
� ¼

v 0
;i
¼

a
;b
.
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Part 3 of Lemma 8 indicates that the rank-1 pre-images have monotonic properties.

Theorem 9 [Structure of pre-images of invariant sets]. Assume that

r2 . r1 . 1; 2r2 2 12 er221 . 0

and M is an invariant set of system (3), (4) such that ðr1; 0Þ � M. Then

1. M is contained in Z2
2. Moreover, the rank-1 pre-images of M can be represented as

H21ðMÞ ¼ Mb
21, where Mb

21 ¼ jb21 ¼ xb21; y
b
21

� �
[ B : H jb21

� �
¼ j [ M

� �
.

2. The collection of all rank pre-images of jb21 [ Mb
21 can be represented as

Ejb21
¼
[
n$0

H2nðjb21Þ ¼
[

n$0;i¼a;b

ji2n21 ¼
[

n$1;i¼a;b

xi2n; y
i
2n

� �

where

H21 jb2n

� �
¼ ja2n21; j

b
2n21

� �
; jb2n [ B; jb2n21 p jb2n for all n $ 1with

lim
n!1

jb2n ¼ ð0; 0Þ

and

ja2n [ Z0; y
a
2n , ya2n21 for all n $ 1 with lim

n!1
ya2n ¼ 1:

Moreover, H21 jb2n

� �
¼ H2k jb2n21þk

� �
for any 1 # k # n.

3. The collection of all rank pre-images of M can be represented as

EFM ¼ M
[ [

n$1

H2nðMÞ

 !
¼ M

[
Mb

21

[
<k#2#n;i¼a;bM

i
2k

� �

where

Mb
2n21 ¼

[
jb21[Mb

21

j [ B : HnðjÞ ¼ jb21 [ Mb
21

� �
;

Ma
2n21 ¼

[
jb21[Mb

21

j [ Z0 : H
nðjÞ ¼ jb21 [ Mb

21

� �
;

H212nðMÞ ¼ Ma
2n21;M

b
2n21

� �
;Ma

2n21 , Z0;M
b
2n21 , B; for all 1 # n

and

lim
n!1

Mb
2n ¼ ð0; 0Þ:

Moreover, Mb
2n >Mb

2k ¼ Y for any two distinct positive integers and Ma
2n >

Ma
2k ¼ Y for any two distinct positive integers n; k $ 2.
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Proof. The condition r2 . r1 . 1 and 2r2 2 12 er221 . 0 indicates that

rm ¼ min r1; r2; e
2r2212er221

; r1e
r22r1

n o
¼ min r1; e

2r2212er221
n o

. 1:

Recall that B ¼ {ðx; yÞ [ Z2 : xþ y , 1} and LC1
21 ¼ {ðx; yÞ [ Z2 : xþ y ¼ 1}, then

Drm > B ¼ Y and Drm > LC1
21 ¼ Y:

According to Theorem 6, all points in X are attracted to the compact positively

invariant set Drm ; therefore,

M , Drm and M > ðB< LC1
21Þ

� �
¼ Y:

The fact that

HðMÞ ¼ M and H21ðZ1Þ ¼ LC1
21

indicates that ðM > Z1Þ ¼ Y.
Since all points in X are also attracted to Z1;2;1 by Lemma 5, M , Z1;2;1. Therefore,

M , Drm > Z1;2;1

� �
:

Note that

Z1 ¼ ðr1; 0Þ � M and ðM > Z1Þ ¼ Y;

therefore, M , Drm > Z2ð Þ.

Now suppose that there exists a point j [ M > Z1
2. Then according to Lemmas 7 and

8, j has two rank-1 pre-images ji21; i ¼ a; b where ja21 [ Z0 and jb21 [ B. Since

ðM > BÞ ¼ Y and M , Z2;

the point j has no pre-images in M. This contradicts to the fact that M is invariant.

Therefore, M > Z1
2 ¼ Y. This indicates that M should be contained in Z2nZ

1
2 ¼ Z2

2.

Let j ¼ ðx; yÞ be any point in M, then according to Lemma 7, j has two pre-images

ji21 ¼ xi21; y
i
21

� �
; i ¼ a; b. SinceM is invariant and strictly above LC1

21; therefore, j
a
21 [

M is strictly above LC1
21 and jb21 [ B is strictly below LC1

21.

Denote

Ma
21 ¼

[
j[M

ja21 [ Z0 : H ja21

� �
¼ j

� �
and Mb

21 ¼
[
j[M

jb21 [ B : H jb21

� �
¼ j

� �
:

Then the invariant property of M and M > B ¼ Y implies that M ¼ Ma
21. Therefore,

according to Definition 4, we have H21ðMÞ ¼ Mb
21: Hence, the first part of Lemma holds.

Recall that

Z1
2 ¼ ðx; yÞ [ Z2 : 0 , y , 12

x

r1

� �
e2r2212er221

� 	
;

then we have B , Z1
2. Let j

i
2k; i ¼ a; b be the rank k pre-image of j, where j ¼ ðx; yÞ [ M

and k [ Zþ. Note that j
b
21 ¼ xb21; y

b
21

� �
is in B; therefore,

xb21 þ yb21 , 1 , min{r1; r2} and yb21 , 12
xb21

r1

� �
e2r2212er221

:

Journal of Difference Equations and Applications 15

D
ow

nl
oa

de
d 

by
 [

Y
un

 K
an

g]
 a

t 0
8:

24
 0

4 
Ju

ly
 2

01
1 



Then according to Lemma 8, we have

H21 jb21

� �
¼ jb22; j

a
22

� �
¼ xb22; y

b
22

� �
; xa22; y

a
22

� �� �
where

jb22 [ B; jb22 p jb21; j
a
22 [ Z0;Hðja22Þ ¼ jb21 and ya21 , ya22:

Since

jb22 [ B , Z1
2 and ja22 [ Z0;

we can repeat the above argument to get

H22 jb21

� �
¼ H21 jb22

� �
¼ jb23; j

a
23

� �
¼ xb23; y

b
23

� �
; xa23; y

a
23

� �� �
where

jb23 [ B; jb23 p jb22; j
a
23 [ Z0;H ja23

� �
¼ jb22 and ya22 , ya23:

Apply the same above argument repeatedly, then for any n $ 1 and 1 # k # n, we

have

H21 jb2n

� �
¼ H2k H2nþk21 jb21

� �� �
¼ jb2n21; j

a
2n21

� �
¼ xb2n21; y

b
2n21

� �
; xa2n21; y

a
2n21

� �� �
where jb2n

� �1
n¼1

is a strictly monotone decreasing sequence converging to (0, 0) and

ya2n

� �1
n¼1

is a strictly monotone increasing sequence converging to infinity. Moreover,

H ja2n

� �
¼ jb2nþ1 for all n $ 2. Thus, the collection of all rank pre-images of jb21 [ Mb

21 is[
n$1

H2nðjÞ ¼ jb2n

� �1
n¼1

[
ja2n

� �1
n¼1

:

Therefore, the second part of Theorem 9 holds.

Denote

Ma
2n21 ¼

[
jb21[Mb

21

ja2n21 [ Z0 : H
n ja2n21

� �
¼ jb21

� �

and

Mb
2n21 ¼

[
jb21[Mb

21

jb2n21 [ B : Hn jb2n21

� �
¼ jb21

� �
:

Since H21ðMÞ ¼ Mb
21 , B; therefore,

Ma
2n21 ¼

[
jb21[Mb

21

ja2n21 [ Z0 : H
n ja2n21

� �
¼ jb21

� �

¼
[
j[M

ja2n21 [ Z0 : H
nþ1 ja2n21

� �
¼ j

� �
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and

Mb
2n21 ¼

[
jb21[Mb

21

jb2n21 [ B : Hn jb2n21

� �
¼ jb21

� �

¼
[
j[M

jb2n21 [ B : Hnþ1 jb2n21

� �
¼ j

� �
:

Then according to the proof of the second part of Theorem 9 and the definition of rank-k

pre-images of an invariant set 4, we have

H2n21ðMÞ ¼ Ma
2n21 <Mb

2n21; n $ 1:

Since limn!1j
b
2n ¼ ð0; 0Þ, thus

lim
n!1

Mb
2n ¼ ð0; 0Þ:

Note that Ma
2n21 [ Z0 and Mb

2n21 [ B for any n $ 1, thus

H2n21ðMÞ ¼ Ma
212n;M

b
2n21

� �
for any n $ 1:

Therefore, the collection of all rank pre-images of M is

EFM ¼ M
[

Mb
21

[ [
n$2

H2nðMÞ

 !
¼ M

[
Mb

21

[ [
n$2;i¼a;b

Mi
2n

 !
:

Now assume that there is h [ B and two distinct positive integers k, n such that

h [ Mb
2n >Mb

2k. Without loss of generality, let k , n, then Hn21ðhÞ ¼ j [ Mb
21

andHk21ðhÞ ¼ z [ Mb
21. Since z [ Mb

21, then H iðzÞ [ M for any i $ 1. Therefore,

Hn2kðzÞ [ M. However, this contradicts to the fact that Hn21ðhÞ ¼ Hn2k H k21ðhÞ
� �

¼

Hn2kðzÞ ¼ j [ Mb
21 and M >Mb

21 ¼ Y. Similarly, we can show that Ma
2n >Ma

2k ¼ Y
for any distinct positive integers n; k $ 2. Therefore, the third part of Theorem 9

holds. A

Theorem 9 is an analogous result to Theorem 4.2 by [4]. Moreover, it indicates that

{Mb
2n}

1

n¼1 is a monotone decreasing sequence that converges to (0, 0). See Figure 2 for the

structure of Ejb21
and EFM . In the case that M is a smooth curve, we have the following

corollary:

Corollary 10 [Smooth invariant curve]. Assume that all the conditions in Theorem 9

hold and notations are the same. Let M be an invariant smooth curve of system (3), (4) that

does not contain ðr1; 0Þ, then

EFM ¼ M
[

Mb
2n

� �1
n¼1

[
Ma

2n

� �1
n¼2

where Ma
2n21 , Z0;M

b
2n , B are smooth curves. Let C be any compact subset of X, then

m2 EFM > Cð Þ ¼ 0 where m2 is nature Lebesgue measure in R2.
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Proof. According to Theorem 9, we have

H21ðMÞ ¼ Mb
21 andH

2n21ðMÞ ¼ {Ma
212n;M

b
212n} for any n $ 1:

SinceM is a smooth curve in Drm , then from Lemma 7, we know that its rank-1 pre-image

Mb
21 is also a smooth curve in B. Then apply Lemmas 7 and 8 repeatedly, we know that

Mb
2n [ B and Ma

2n21 [ Z0 are smooth curves for any n $ 1.

For any compact set C [ X, there are only finite number of Mi
2n; i ¼ a; b which

intercept with C or are contained in C. Since m2 Ma
2n21

� �
¼ 0 and m2 Mb

2n

� �
¼ 0 for any

positive integer n $ 1; therefore, m2 <n$1H
2nðMÞ

T
C

� �
¼ 0. A

Remark. If ðr1; 0Þ [ M, let N ¼ Mn{ðr1; 0Þ}, then N is still an invariant smooth curve.

From Corollary 10, we have

EFM ¼ M
[ [

n$1

H2nðMÞ

 !
¼ M

[ [
n$1

H2nðNÞ

 ![
H21ðZ1Þ

¼ M
[

Nb
2n

� �1
n¼1

[
Na

2n

� �1
n¼2

[
{ðx; 0Þ [ X}:

Therefore, the result in Corollary 10 still holds, i.e. for any compact set C [ X, we have

m2 EFM

\
C


 �
¼ 0

where m2 is a nature Lebesgue measure in R2.

The simulations (see Figure 3) suggest that there are heteroclinic orbits connecting two

boundary equilibria points. We are able to show the existence of such heteroclinic orbits

when one species goes to extinction for (3), (4). However, it is still an open problem to

show the existence of heteroclinic orbits when there are locally asymptotically stable

interior periodic-2 orbits. Theorem 9 and its Corollary 10 give an explicit structure of all

pre-images of invariant sets including heteroclinic orbits.

4. Discussion

The basins of attractions of attractors of an ecological system can provide important

information on its resilience and initial conditions allowing the coexistence of all species.

(a) (b)

Figure 2. The structure of all rank pre-images of a point in Mb
21 and an invariant set M. (a) The

structure of all rank preimages of a point jb21 in Mb
21. (b) The structure of all rank pre-images of an

invariant set M.
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Since pre-images of invariant sets of a system can define the boundaries of the basins of

attractions of attractors, we study the properties of all pre-images of invariant sets for a

discrete-time two-species competition model (3), (4) and give the explicit structure of all

pre-images of invariant sets for this system when

r2 . r1 . 1 and 2r2 2 12 er221 . 0: ð24Þ

Our results combined with simulations suggest that if inequalities (24) hold, then the

basins of attractions of the interior periodic-2 orbits are all interior points in X except the

measure zero sets. These measure zero sets are the pre-images of heteroclinic orbits (see

Figure 4).

If we say that an ecosystem is relatively permanent, then the population of any species

in this system is strictly bounded away from zero for almost all strictly positive initial

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5
A heteroclinic orbit for a discrete-time two-species competition model 

Sp
ec

ie
s Y

Species X

r1 = 2, r2 = 2.2, x0 = 2, y0 = 0.001,
Iterations N = 100

Figure 3. A heteroclinic orbit of system (3), (4) when r1 ¼ 2; r2 ¼ 2:2; x0 ¼ 2; y0 ¼ 0:001.

3.3

2.9

2.5

2.1

1.7

1.3

0.9

0.5

0.1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x0

y 0

Basins of attraction of Pi
2

r1 = 2, r2 = 2.2

Figure 4. The basin of attraction of the interior period-2 orbit is the open quadrant minus the pre-
images of the heteroclinic curve C. The latter partition the quadrant into components which are
coloured according to which of the two periodic points attract points in the component under the
second iterate of the map. Given a point in one of the regions, there is a large number N, such that the
point will be very close to xi1; y

i
1

� �
at the iteration t and will be very close to xi2; y

i
2

� �
at the iteration

t þ 1 for all t . N.
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conditions. Our work in this paper plays an important role in proving this relative

permanence concept for (3), (4). The numerical simulations suggest the following

dynamics of system (3), (4) when

r2 . r1 . 1 and 2r2 2 12 er221 . 0 :

1. There exists a heteroclinic orbit connecting j * to h * (see Figure 3);

2. The basins of attraction of the interior periodic-2 orbit Pi
2 are all interior points of

R2
þ except all the pre-images of heteroclinic orbits (see Figure 4).

Since our system is smooth in X, the closure of all heteroclinic orbits should be a smooth

invariant curve. Then according to Theorem 9 and its Corollary 10, we can show that for

any compact set C [ X, there is only Lebesgue measure zero set in C that will converge to

heteroclinic orbits. If both the closure of heteroclinic orbits and the boundary of the system

are repelling, then we are able to show that for any compact subset C of X, all interior

points of C are attracted to the interior attractor except Lebesgue measure zero set, which

is the collection of all pre-images of the closure of the heteroclinic orbits. All the details of

proof are presented in a separate paper by [9].

In addition, our result is analogous to the result for the one-dimensional discrete

system studied by [4] (Theorem 4.2). Partial results obtained in this paper can be applied to

the general competition model (1), (2) while a . 0. For instance, Lemmas 7 and 8 are still

valid for the general system (1), (2). However, we are not able to extend the analysis

techniques used to prove Theorem 9 to prove the similar results for (1), (2). The reason is

that while a . 0, the critical curve LC21 is unbounded which always intersects with LC.

We will seek additional analysis methods to prove the similar results for (1), (2).

4.1 Open problems

There are many interesting unsolved questions regarding system (1), (2). A partial list of

these open problems is as follows:

1. How can we rigorously prove the existence of heteroclinic orbits in the planar

Kolmogorov-type competition models with parallel isoclines (such as systems (1),

(2) and (3), (4))?

2. If systems (1), (2) and (3), (4) have heteroclinic orbits connecting two boundary

equilibria points, then how do the axis dynamics impact these heteroclinic orbits?

Are there any other heteroclinic orbits?

3. How can we rigorously prove or disprove that the basins of attractions of the

interior periodic-2 orbit Pi
2 are all interior points of R

2
þ except all the pre-images of

heteroclinic orbits as suggested in Figure 4?
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Appendix A: Pre-images of Ricker’s maps

Similar results (Parts 1 and 2 of Lemma 11) can also be found in the paper [4]. For

convenience, we will re-derive their results when the Ricker map has the form of

ynþ1 ¼ yne
r22ðr1yn=r12x0Þ:

And in addition, we derive the results of Part 3 in Lemma 11 that has been used in proving

Theorem 6.

Lemma 11 [Properties of Ricker’s maps]. Let f ðyÞ ¼ yer22ðr1y=r12x0Þ where

ri . 0; 0 # x0 , r1; i ¼ 1; 2. Then f maps Rþ to 0; ð12 x0=r1Þe
r221

� 

. The critical

point of f is yc ¼ 12 x0=r1 which is mapped to e
r221; the fixed point is y * ¼ r2ð12 x0=r1Þ.

For any given point y0 [ 0; ð12 x0=r1Þe
r221

� �
, it has two rank-1 pre-images yi21 [

Rþ; i ¼ a; b where yb21 , y0 , ya21 and f yi21

� �
¼ y0; i ¼ a; b. Moreover, we have the

following two situations depending on the values of r2

1. When 0 , r2 # 1, then one of the following inequalities holds

0 , yb21 # y0 , y* , yc , ya21 ð25Þ

or

0 , y* , y0 , yb21 , yc , ya21: ð26Þ

In addition, ya21 is always greater than ð12 x0=r1Þe
r221.
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2. If r2 . 1, then one of the following inequalities holds

0 , yb21 , yc , y* , ya21 , y0 ð27Þ

or

0 , yb21 , yc , y0 , y* , ya21 ð28Þ

or

0 , yb21 , y0 , yc , y* , ya21 ð29Þ

In addition, if

y0 , 12
x0

r1

� �
e2r2212er221

then ya21 . 12
x0

r1

� �
er221;

otherwise if

y0 $ 12
x0

r1

� �
e2r2212er221

then ya21 # 12
x0

r1

� �
er221:

3. Let rm ¼ min r1; r2; e
2r2212er221

; r1e
r22r1

n o
and rM ¼ max r1; e

r221
� �

, then

min
r m#m#r M

min
y¼m

r1; ye
r22y

f g $ rm:

Proof. It is easy to check that if r2 # 1, then

yc ¼ r2 12
x0

r1

� �
er221 # y* ¼ 12

x0

r1

� �
er221

where equality holds when r2 ¼ 1. And if r2 . 1, then y * , yc. The detailed proof for

(25)–(29) can be illustrated by the schematic diagrams (Figures 5 and 6).

Now we will show Part 3 of the lemma. First note that the map defined by gðmÞ ¼

mer22m has the following properties

. gðmÞ $ m for m [ ½0; r2Þ and gðmÞ # m for m [ ½r2;1Þ:

. If r2 . 1, map g is positively invariant in ½e2r2212er221

; er221�; while r2 # 1, map g

is positively invariant in [0, r2] and ½r2; e
r221�.

. min0,r m#m#r M{me
r22m} ¼ min{rmer22r m ; rMer22r M}:

Since rm ¼ min r1; r2; e
2r2212er221

; r1e
r22r1

n o
and rM ¼ max r1; e

r221
� �

, thus we

have

min
r m#m#r M

min
y¼m

r1; ye
r22y

f g ¼ min r1; min
r m#m#r M

{mer22m}

� 	
¼ min{r1; r

mer22r m ; rMer22r M}

$ min r1; r2; e
2r2212er221

; r1e
r22r1 ; gðe2r2212er221

Þ; g r1e
r22r1ð Þ

n o

¼ min rm; gðe2r2212er221

Þ; g r1e
r22r1ð Þ

n o
:
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(a
)

(b
)

F
ig
u
re

5
.

T
h
e
re
la
ti
o
n
sh
ip

b
et
w
ee
n
yi 2

1
;i
¼

a
;b

an
d
y 0
;y

*
;y

c
w
h
en

0
,

r 2
#

1
w
h
er
e
f
yi 2

1�
� ¼

y 0
;i
¼

a
;b
.
(a
)
W
h
en

0
,

r 2
#

1
an
d
y 0

,
y
*
.
(b
)
W
h
en

0
,

r 2
#

1
an
d
y
*
,

y 0
,

ð1
2

x 0
=
r 1
Þe

r 2
2
1
.
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(a
)

(b
)

(c
)

F
ig
u
re

6
.

T
h
e
re
la
ti
o
n
sh
ip

b
et
w
ee
n
yi 2

1
;i
¼

a
;b

an
d
y 0
;y

*
;y

c
w
h
en

r 2
.

1
w
h
er
e
f
yi 2

1�
� ¼

y 0
;
i
¼

a
;b
.
In

F
ig
u
re

6
c,

w
e
ca
n
se
e
th
at

if
y 0

#
fð
fð
y c
ÞÞ
,
th
en

ya 2
1
.

ð1
2

x 0
=
r 1
Þe

r 2
2
1
.
(a
)
W
h
en

r 2
.

1
an
d
y
*
,

y 0
,

ð1
2

x 0
=
r 1
Þe

r 2
2
1
,
(b
)
w
h
en

0
,

r 2
#

1
an
d
y c

,
y 0

#
y
*
an
d
(c
)
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0
,
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#
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an
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y c
.
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Now assume that r2 . 1, then g + gðer221Þ ¼ gðe2r2212er221

Þ [ ½e2r2212er221

; er221�,

thus

gðe2r2212er221

Þ $ e2r2212er221

$ rm:

While if r2 # 1, then g + gðer221Þ ¼ gðe2r2212er221

Þ [ r2; e
r221

� 

, thus

gðe2r2212er221

Þ $ r2 $ rm:

Therefore, min rm; gðe2r2212er221

Þ; g r1e
r22r1ð Þ

n o
¼ min rm; g r1e

r22r1ð Þf g:
Suppose that r1e

r22r1 # r2, then g r1e
r22r1ð Þ $ r1e

r22r1 $ rm. Otherwise if

r1e
r22r1 . r2, then we have r2 , r1e

r22r1 , er221. This implies that

. If r2 $ 1, then g r1e
r22r1ð Þ $ gðer221Þ ¼ e2r2212er221

$ rm.

. If r2 , 1, then g r1e
r22r1ð Þ $ r2 $ rm.

Hence, we have gðr1e
r22r1Þ $ rm. Therefore,

min
r m#m#r M

min
y¼m

r1; ye
r22y

f g $ min rm; g r1e
r22r1ð Þf g ¼ rm: A
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