This article was downloaded by: [Yun Kang]
On: 04 July 2011, At: 08:24
Publisher: Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3J H, UK

J ournal of Difference Equations and Applications

Publication details, including instructions for authors and subscription information:
http:// www.tandfonline.com/ loi/ gdea20

Pre-images of invariant sets of a discrete-time two-species competition model

Yun Kang ${ }^{\text {a }}$ Mesa, AZ, 85212, USA
Available online: 1 J une 2011

${ }^{\text {a }}$ Applied Sciences and Mathematics, Arizona State University,

To cite this article: Yun Kang (2011): Pre-images of invariant sets of a discrete-time two-species competition model, Journal of Difference Equations and Applications, DOI:10.1080/ 10236198.2011.591390

To link to this article: http:// dx. doi. org/ 10.1080/ 10236198.2011.591390

©First

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions
This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan, sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Pre-images of invariant sets of a discrete-time two-species competition model

Yun Kang*
Applied Sciences and Mathematics, Arizona State University, Mesa, AZ 85212, USA

(Received 16 September 2010; final version received 17 May 2011)

Abstract

In this paper, we explore the structure of pre-images of invariant sets of a discrete-time two-species competition model with singularity at the origin. We first show that this competition model is persistent with respect to the total population of two species, i.e. all initial conditions in $\mathbb{R}_{+}^{2} \backslash\{(0,0)\}$ are attracted to a compact set which is bounded away from the origin. Then we study the properties of pre-images of this system and give the explicit structure of all pre-images of invariant sets for this system under certain parameter range. These results are analogous to the one-dimensional discrete system. Our study is the first step to explore the structure of the basins of attractions of interior attractors of a general discrete-time two-species model (e.g. the locally asymptotically stable interior period-2 orbit). Finally, we discuss how our results give useful insights on the future study for coexistence of the species and list some open problems related to our system.

Keywords: basins of attraction; competition models; critical curves; invariant sets; persistent; rank- k pre-images
AMS 2000 Subject Classifications: Primary 37B25; 39A11; 54H20; Secondary 92D25

1. Introduction

It is common that ecosystems have multiple attractors, in which the final densities of species, or even the persistence of species, depend on their initial densities [8,12]. The basins of attractions of attractors can measure the resilience of ecosystems and the possible initial conditions allowing the coexistence of species. Thus, understanding the structure of the basins of attractions of their attractors can provide important information on the strategies for the sustainable management of such ecosystems [12]. Discrete-time ecological models are known to exhibit multiple attractors including periodic and chaotic attractors. However, except for a few exceptions (e.g. Elaydi and Sacker [4]), the qualitative studies of the structure of the basins of attraction of these periodic and chaotic attractors are rare. Since pre-images of invariant sets can define the boundaries of the basins of attractions of attractors, we explore the structure of pre-images of invariant sets of a discrete-time two-species competition model in this paper by using the properties of critical curves of non-invertible maps. This novel approach can also be extended to general discrete-time two-species interaction models.

Let x_{n} and y_{n} denote the population sizes of two competing species x and y at generation n, respectively. Suppose that species x suffers from the extremes of contest intra-specific

[^0]competitive interaction and species y suffers from the extremes of scramble intra-specific competitive interactions [11], then a model of resource-mediated competition between species x and y can be described as follows in the model (1), (2) $[1,5,6]$
\[

$$
\begin{align*}
& x_{n+1}=\frac{r_{1} x_{n}}{a+x_{n}+y_{n}} \tag{1}\\
& y_{n+1}=y_{n} \mathrm{e}^{r_{2}-\left(x_{n}+y_{n}\right)} \tag{2}
\end{align*}
$$
\]

where all parameters r_{1}, r_{2} and a are strictly positive. Franke and Yakubu [5,6] studied global dynamics of general two-species competition models including system (1), (2). In particular, they (1991b) established an exclusion principle for discrete competition models where the density-dependent growth functions are either all exponential or all rational, and gave an example that such exclusion principle fails where two species can coexist through a locally stable period- 2 orbit. This phenomenon of coexistence has been observed in other competition models $[2,3,13,14]$ as well as in system (3), (4) which is the case when $a=0$ for system (1), (2)

$$
\begin{gather*}
x_{n+1}=\frac{r_{1} x_{n}}{x_{n}+y_{n}} \tag{3}\\
y_{n+1}=y_{n} \mathrm{e}^{r_{2}-\left(x_{n}+y_{n}\right)} \tag{4}
\end{gather*}
$$

It is easy to check that for any $a \geq 0$ and $r_{1} \neq r_{2}$, system (1), (2) has only two equilibrium points $\left(r_{1}, 0\right)$ and ($0, r_{2}$) (i.e. no interior equilibrium point) with the following property: one of them is transversally stable (i.e. the external Lyapunov exponent evaluated at this equilibrium point is less than 1) and the other one is transversally unstable (i.e. the external Lyapunov exponent evaluated at this equilibrium point is greater than 1). The simulation suggests that under certain parameter range, system (1), (2) has locally asymptotically stable interior periodic-2 orbits with heteroclinic orbits connecting two boundary equilibria points. In addition, the basins of attractions of these interior periodic-2 orbits attract all interior points except all the pre-images of heteroclinic orbits. In order to show this phenomenon observed from simulations, we need to understand the structure of all pre-images of heteroclinic orbits first. However, it is very challenging to show this for the general case rigorously. Thus, we focus on system (3), (4) which is the special case of system (1), (2). We will extend the work to more general case $a>0$ and other more general models in the future study.

The structure of the rest of this paper is as follows. In Section 2, we give the basic terminologies used in the paper and introduce the concept of critical curves. In addition, we show that there exists a compact positively invariant set that attracts all points in R_{+}^{2} (Theorem 6). In Section 3, we study the properties of the rank-1 pre-image of system (3), (4) and give the explicit structure of all rank pre-images of any invariant set (Theorem 9). This result is analogous to Theorem 4.2 by [4]. In Section 4, we summarize the results of our study and discuss how to apply these results to obtain the structure of the basins of attraction for the interior attractors of system (3), (4). In the Appendix, we derive a major technical lemma which will be used in proving the main results.

2. Definitions and compact positively invariant set

Let X be a metric space and H be a two-dimensional discrete system on X that is described by (3), (4). Then $H: X \rightarrow X$ is a discrete semi-dynamical system, where $H^{0}\left(\xi_{0}\right)=\xi_{0}=$
(x_{0}, y_{0}) and $H^{n}\left(\xi_{0}\right)=\xi_{n}=\left(x_{n}, y_{n}\right), n \in \mathbb{Z}_{+}$. Note that system (3), (4) has singularity at the origin $(0,0)$; thus, its state space X can be defined as $X=\left\{(x, y) \in \mathbb{R}_{+}^{2}: 0<x+y<\infty\right\}$. The local dynamics of (3), (4) can be summarized as follows:

Lemma 1 [Local Dynamics of (3), (4)].

1. If $r_{1} \neq r_{2}$, then system (3), (4) has only two equilibria $\xi^{*}=\left(r_{1}, 0\right)$ and $\eta^{*}=\left(0, r_{2}\right)$. If $r_{1}>r_{2}$, then ξ^{*} is locally asymptotically stable and η^{*} is transversally unstable; if $r_{1}<r_{2}$, then ξ^{*} is transversally unstable and η^{*} is transversally stable.
2. If $r_{1}=r_{2}=r$, then all points in the line $\left\{(x, y) \in \mathbb{R}_{+}^{2}: x+y=r\right\}$ are equilibria of system (3), (4).
3. If system (3), (4) has an interior periodic-2 orbit $P_{2}^{i}=\left\{\left(x_{1}^{i}, y_{1}^{i}\right),\left(x_{2}^{i}, y_{2}^{i}\right)\right\}$, then it can be explicitly found as

$$
\begin{aligned}
x_{1}^{i}=\frac{s_{1}\left(s_{1} \mathrm{e}^{r_{2}-s_{1}}-s_{2}\right)}{s_{1} \mathrm{e}^{r_{2}-s_{1}}-r_{1}}, \quad y_{1}^{i}=\frac{s_{1}\left(s_{2}-r_{1}\right)}{s_{1} r^{r_{2}-s_{1}}-r_{1}}, \\
x_{2}^{i}=\frac{r_{1} x_{1}^{i}}{s_{1}}, \quad y_{2}^{i}=y_{1}^{i} \mathrm{e}^{r_{2}-s_{1}}
\end{aligned}
$$

where

$$
s_{1}=x_{1}^{i}+y_{1}^{i}=r_{2}-\sqrt{r_{2}^{2}-r_{1}^{2}} \quad \text { and } \quad s_{2}=x_{2}^{i}+y_{2}^{i}=r_{2}+\sqrt{r_{2}^{2}-r_{1}^{2}} .
$$

The proof of Lemma 1 can be obtained from straight algebraic calculations; thus, we omit the details. Lemma 1 indicates that system (3)-(4) is not permanent since it has no interior steady state (Theorem 6.3, Hutson and Schmitt [7]). In the case that $r_{1} \neq r_{2}$, the system always has one boundary steady state that is transversally stable. However, it can have a locally asymptotically stable interior period-2 orbit P_{2}^{i} for certain r_{1}, r_{2} values as observed in other models [2,3,6,13,14]. For instance, when $r_{1}=2, r_{2}=2.2$, system (3), (4) has a locally asymptotically stable interior periodic- 2 orbit

$$
P_{2}^{i}=\left\{\left(x_{1}^{i}, y_{1}^{i}\right),\left(x_{2}^{i}, y_{2}^{i}\right)\right\}=\{(0.1536,2.9629),(0.0986,1.1849)\}
$$

at which the eigenvalues of the product of the Jacobian matrix along these orbits are 0.91 and 0.26 .

Denote $B\left(P_{2}^{i}\right)$ as the basins of attractions of P_{2}^{i}. The interesting question is: What is the structure of $B\left(P_{2}^{i}\right)$? This question has been posed as an open problem for a discrete competition model studied by [2]. As we know for planar maps, the basins of attraction of omega limit sets can have very complicated structures. Instead of studying the structure of $B\left(P_{2}^{i}\right)$ directly, we study the pre-images of invariant sets instead. Now, we give some important definitions.

Definition 2 [Pre-images of a point]. For a given point $\xi_{0} \in X$, we say $\xi \in X$ is a rankk pre-image of ξ_{0} if $H^{k}(\xi)=\xi_{0}$. The collection of rank- $k(k \geq 1)$ pre-images of ξ_{0} is defined as

$$
H^{-k}\left(\xi_{0}\right)=\left\{\xi \in X: H^{k}(\xi)=\xi_{0}\right\}
$$

and the collection of all pre-images of ξ_{0} (including $k=0$) is defined as

$$
E F_{\xi_{0}}=\left(\bigcup_{k \geq 1} H^{-k}\left(\xi_{0}\right)\right) \bigcup\left\{\xi_{0}\right\}
$$

Definition 3 [Invariant/Positively Invariant Set]. We say $M \subset X$ is an invariant set of H if $H(M)=M$. And $M \subset X$ is a positively invariant set of H if $H(M) \subset M$.

Note. If M is an invariant set of H, then M includes both positively invariant orbits and negatively invariant orbits but not all negatively invariant orbits.

Definition 4 [Pre-images of an Invariant Set]. Let M be an invariant set for system (3), (4), then $H^{0}(M)=H(M)=M$. The collection of rank-k pre-images of $M(k \geq 1)$ is defined as

$$
H^{-k}(M)=\bigcup_{\xi_{0} \in M}\left\{\xi \in X \backslash M: H^{k}(\xi)=\xi_{0}\right\} ;
$$

and the collection of all pre-images of M (including $k=0$) is defined as

$$
E F_{M}=\bigcup_{k \geq 0} H^{-k}(M)=\left[\bigcup_{k \geq 1}\left(\bigcup_{\xi_{0} \in M}\left\{\xi \in X \backslash M: H^{k}(\xi)=\xi_{0}\right\}\right)\right] \bigcup M .
$$

Note. If M is an invariant set of H, then $H^{-k}(M)$ should not contain points in M for all $k \geq 1$.

If $r_{2}>r_{1}$, then from Lemma 1 we know that η^{*} is transversally stable. Let $W^{s}\left(\eta^{*}\right)$ be the stable manifold associated with this transversal direction. Then $E F_{W^{s}\left(\eta^{*}\right)}$ contains all pre-images of $W^{s}\left(\eta^{*}\right)$, which is invariant and does not belong to $B\left(P_{2}^{i}\right)$. The simulation (Figure 4) also suggests that all interior points of \mathbb{R}_{+}^{2} are attracted to P_{2}^{i} except $E F_{W^{s}\left(\eta^{*}\right)}$. In order to show this rigorously, we investigate the structure of pre-images of invariant sets for system (3), (4), which includes $E F_{W^{s}\left(\eta^{*}\right)}$ in this paper.

Note that while species x is absent, system (3), (4) reduces to the following well known Ricker's map

$$
\begin{equation*}
y_{t+1}=y_{n} \mathrm{e}^{r_{2}-y_{n}} . \tag{5}
\end{equation*}
$$

According to Theorem 4.2 (Elaydi and Sacker [4]), single species system (5) has a stable 2cycle $\left\{y_{1}, y_{2}\right\}$ when $2<r_{2}<2.52$ with its basins of attraction being $\left\{y \in \mathbb{R}_{+}: y>0\right\} \backslash$ $E F_{y}$ where $E F_{y}$ is a set of all pre-images of $y=r_{2}\left(E F_{y}\right.$ is called the set of eventually fixed points by [4]). Moreover, they gave the explicit structure of $E F_{y}$ as follows:

$$
E F_{y}=\Omega^{-}(y) \bigcup\left\{q_{-n}: n \geq 2\right\}
$$

where

1. $\Omega^{-}(y)=\left\{y_{-n}: n \geq 1\right\}$ is a full negative orbit with $y_{n} \rightarrow 0$ monotonically.
2. For each $n \geq 2$, there exists a unique monotonically increasing sequence of rank-n pre-image q_{-n} such that

$$
\lim _{n \rightarrow \infty} q_{-n}=\infty \text { and } q_{-n} \text { is rank-1 pre-image of } y_{-n+1}
$$

Our study in this paper can answer the interesting question such as whether pre-images of the invariant sets of (3), (4), e.g. $E F_{W^{s}\left(\eta^{*}\right)}$, have the similar structure as E_{y}. To continue our study, we define the critical curves of (3), (4) in the next subsection.

2.1 Critical curves

Notice that the system H, i.e. (3), (4), is a two-dimensional non-invertible map. As the point $\xi_{0}=\left(x_{0}, y_{0}\right)$ varies in its state space X, the number of rank-1 pre-images of ξ_{0} changes. Real pre-images appear or disappear as the point ξ_{0} crosses the boundary separating regions for which the points have a different number of rank-1 pre-images. Such boundaries, called rank-1 critical curve and denoted by $L C$, are generally characterized by the presence of multiple coincident (merging) pre-images. The locus of these coincident first rank pre-images is called rank-1 curve of merging pre-images and denoted by $L C_{-1}$.

The critical curve of rank-1 $L C$ is the two-dimensional generalization of the notion of critical value (local minimum or maximum value) of a one-dimensional map (for the Ricker's map $h(y)=y e^{r_{2}-y}$, it has $\left.L C=\mathrm{e}^{r_{2}-1}\right), L C_{-1}$ is the generalization of the notion of critical point (the image of local extremum point, e.g. the Ricker's map h has its extreme point as $L C_{-1}=1$). Arcs of $L C$ separate the plane into regions characterized by a different number of real pre-images. For convenience, $H^{k}\left(L C_{-1}\right), k \geq 1$ are called critical curves.

For a two-dimensional continuous map H, the set $L C_{-1}$ is included in the set of points, denoted by J_{C}, through which $\operatorname{det}(J)(x, y)$ (i.e. the determinant of Jacobian matrix) changes sign. From the geometric action of the foliation of the Riemann plane, we can also say that the critical set $L C_{-1}$ must belong to J_{C}, i.e. $L C_{-1} \subset J_{C}$. In fact, a plane region U which intersects $L C_{-1}$ is 'folded' along $L C$ to the side with more pre-images, and the two folded images have opposite orientation [10]. This implies that the map has the Jacobian matrix with a different sign in the two portions of U separated by $L C_{-1}$. Our map H is smooth in X; thus, the sign of $\operatorname{det}(J)$ occurs when it vanishes and $L C=H\left(L C_{-1}\right)$ constitutes the boundary lines which separate regions Z_{k} characterized by a k number of rank-1 pre-images (for system (3), (4), $k=0,1,2, \infty$, which we demonstrate in Lemma 7).

The Jacobian matrix of system (3), (4) is represented as

$$
J=\left[\begin{array}{cc}
\frac{r_{1} y}{(x+y)^{2}} & -\frac{r_{1} x}{(x+y)^{2}} \tag{6}\\
-y \mathrm{e}^{r_{2}-x-y} & -\mathrm{e}^{r_{2}-x-y}(y-1)
\end{array}\right]
$$

with its determinant

$$
\operatorname{det}(J)=-\frac{r_{1} y^{r_{2}-x-y}(x+y-1)}{(x+y)^{2}}
$$

This gives two critical curves $L C_{-1}=L C_{-1}^{1} \cup L C_{-1}^{2}$ of system (3), (4), where the determinant of Jacobian $\operatorname{det}(J)$ vanishes in X, i.e.

$$
\begin{align*}
& L C_{-1}^{1}: y=1-x, 0 \leq x<1, \tag{7}\\
& L C_{-1}^{2}: y=0, x>0 . \tag{8}
\end{align*}
$$

The curve $L C_{-1}^{2}$ is an invariant manifold of (3),(4) and is mapped to the rank-1 critical curve $L C^{2}=\left(r_{1}, 0\right)$ through H, i.e. $H\left(L C_{-1}^{2}\right)=\left(r_{1}, 0\right)$. The other critical curve $L C^{1}=$ $H\left(L C_{-1}^{1}\right)$ is given by

$$
L C^{1}:\left(r_{1} x,(1-x) \mathrm{e}^{r_{2}-1}\right), \quad 0 \leq x<1
$$

which can be simplified as follows:

$$
\begin{equation*}
L C^{1}: g(x)=\left(1-\frac{x}{r_{1}}\right) \mathrm{e}^{r_{2}-1}, \quad 0 \leq x<r_{1} \tag{9}
\end{equation*}
$$

Both $L C_{-1}^{1}: y=1-x, 0 \leq x<1$ and $L C^{1}: g(x)=\left(1-x / r_{1}\right) \mathrm{e}^{r_{2}-1}, \quad 0 \leq x<r_{1}$ are linear decreasing functions with respect to x. Moreover, the curves $L C_{-1}^{1}, L C^{1}=$ $H\left(L C_{-1}^{1}\right)$ do not have intersections if $r_{2}>r_{1}>1$ or $\max \left\{r_{1}, \mathrm{e}^{r_{2}-1} / r_{1}\right\}<1$, and $L C_{-1}^{1}=$ $H^{-1}\left(L C^{1}\right)$ is a one-to-one mapping. In the next subsection, we show that H has a compact positively invariant set attracting all points in X.

2.2 Compact positively invariant set

Recall that

$$
X=\left\{(x, y) \in \mathbb{R}_{+}^{2}: 0<x+y<\infty\right\}
$$

we denote

$$
\begin{align*}
& Z_{\infty}=\left\{\left(r_{1}, 0\right)\right\}=L C^{2}, \\
& Z_{0}=\{(x, y) \in X: y>g(x)\} \bigcup\left\{(x, 0): x>0, x \neq r_{1}\right\}, \\
& Z_{1}=\left\{(x, y) \in X: y=g(x), 0 \leq x<r_{1}\right\}=L C^{1}, \\
& Z_{2}=\left\{(x, y) \in X: 0<y<g(x), 0 \leq x<r_{1}\right\}, \\
& Z_{1,2, \infty}=Z_{1} \bigcup Z_{2} \bigcup Z_{\infty}, \tag{10}\\
& Z_{\text {all }}=\left\{(x, y) \in X: 0 \leq x \leq r_{1}, 0 \leq y \leq g(x)\right\}, \\
& Z_{2}^{1}=\left\{(x, y) \in Z_{2}: 0<y<f\left(f\left(y_{c}\right)\right)=\left(1-\frac{x}{r_{1}}\right) \mathrm{e}^{2 r_{2}-1-\mathrm{e}^{r_{2}-1}}\right\}, \\
& Z_{2}^{2}=\left\{(x, y) \in Z_{2} \backslash Z_{2}^{1}\right\}, \\
& B=\left\{(x, y) \in Z_{2}: x+y<1\right\}
\end{align*}
$$

where $g(x)$ is given by (9), $y_{c}=1-\left(x / r_{1}\right)$ and $f(y)=y \mathrm{e}^{r_{2}-y /\left(r_{1}-x\right)}$. These defined notations are used throughout the rest of this paper.

Lemma 5 [Z_{2} Positively Invariant]. System H defined by (3), (4) maps X to $Z_{1,2, \infty}$, where $Z_{1,2, \infty}$ is positively invariant. Moreover, $Z_{\text {all }}$ is also positively invariant and attracts all points in X.

Proof. Given any point $\xi=(x, y) \in X$, we have the following three cases:

1. If $y=0$, then $\xi_{1}=H(\xi)=\left(r_{1}, 0\right)=Z_{\infty}$;
2. If $x=0$, then $\xi_{1}=H(\xi)=\left(0, \mathrm{ye}^{r_{2}-y}\right) \in Z_{1} \cup Z_{2}$;
3. If $x y>0$, then y can be represented as $k x$ for some positive number k; thus, we have

$$
\begin{align*}
& x_{1}=\frac{r_{1} x}{x+y}=\frac{r_{1}}{k+1}, \tag{11}\\
& y_{1}=k x \mathrm{e}^{r_{2}-(k+1) x} \leq \frac{k}{k+1} \mathrm{e}^{r_{2}-1}=\left(1-\frac{x_{1}}{r_{1}}\right) \mathrm{e}^{r_{2}-1}=g\left(x_{1}\right) . \tag{12}
\end{align*}
$$

The last two cases imply that for any point ξ in the region $\{(x, y) \in X: y>0\}$, we have

$$
\xi_{1}=H(\xi)=\left(x_{1}, y_{1}\right) \in\left\{(x, y) \in X: 0 \leq x<r_{1}, 0<y \leq g(x)\right\}=Z_{1} \cup Z_{2}
$$

Hence, H maps X to $Z_{1,2, \infty}$. Since $Z_{1,2, \infty}$ is a subset of X; therefore, $Z_{1,2, \infty}$ is positively invariant and attracts all points in X.

Note that $Z_{1,2, \infty}$ is a subset of $Z_{\text {all }}$ and $Z_{\text {all }}$ is a subset of X; therefore,

$$
H\left(Z_{\text {all }}\right) \subset H(X) \subset Z_{1,2, \infty} \subset Z_{\text {all }}
$$

which implies that $Z_{\text {all }}$ is also positively invariant and attracts all points in X.
Lemma 5 indicates that the dynamics of (3), (4) can be restricted to a bounded positively invariant region $Z_{\text {all }}$. However, the non-compactness of $Z_{\text {all }}$ is inconvenient for us to study the global dynamics of (3), (4). The following theorem shows that there exists a compact positive invariant set that attracts all points in X.

Theorem 6 [Compact positively invariant sets]. Assume that $r_{1} \neq r_{2}$, then for any ϵ such that the following inequality holds

$$
0<\epsilon \leq \min \left\{r_{1}, r_{2}, \mathrm{e}^{2 r_{2}-1-\mathrm{e}^{r_{2}-1}}, r_{1} \mathrm{e}^{r_{2}-r_{1}}\right\}=r^{m}
$$

the compact region defined by

$$
D_{\epsilon}=\left\{\left(x_{0}, y_{0}\right) \in Z_{\text {all }}: x_{0}+y_{0} \geq \epsilon\right\}
$$

is positively invariant and attracts all points in X.

Proof. From Lemma 5, we can restrict system (3), (4) to the bounded positively invariant region $Z_{\text {all }}$. Assume that a point $\xi_{0}=\left(x_{0}, y_{0}\right)$ is in the region defined by $\left\{(x, y) \in Z_{\text {all }}: y>0\right\}$, then it can be characterized by two variables m and k where

$$
0<m=x_{0}+y_{0} \leq \max \left\{r_{1}, \mathrm{e}^{r_{2}-1}\right\} \text { and } x_{0}=k y_{0}, 0 \leq k<\infty .
$$

Thus, we have

$$
\left(x_{0}, y_{0}\right)=\left(\frac{k m}{k+1}, \frac{m}{k+1}\right)
$$

According to (3), (4), the first iteration of ξ_{0} can be represented as

$$
\xi_{1}=\left(x_{1}, y_{1}\right)=H\left(\xi_{0}\right)=\left(\frac{r_{1} k}{k+1}, \frac{m \mathrm{e}^{r_{2}-m}}{k+1}\right)
$$

Denote the sum of x_{1} and y_{1} as the following new function $F(m, k)$

$$
\begin{equation*}
F(m, k)=x_{1}+y_{1}=\frac{r_{1} k}{k+1}+\frac{m \mathrm{e}^{r_{2}-m}}{k+1} . \tag{13}
\end{equation*}
$$

Then we have

$$
\begin{gather*}
\frac{\partial F}{\partial k}=\frac{r_{1}-m \mathrm{e}^{r_{2}-m}}{(k+1)^{2}}, \tag{14}\\
\frac{\partial F}{\partial m}=\frac{(1-m) \mathrm{e}^{r_{2}-m}}{k+1} . \tag{15}
\end{gather*}
$$

Equation (14) indicates that for a given m, if $r_{1}<m \mathrm{e}^{r_{2}-m}$, then $\partial F / \partial k<0$, hence,

$$
\inf _{x_{0}+y_{0}=m}\left\{x_{1}+y_{1}\right\}=\inf _{k \geq 0}\{F(k, m)\}=\lim _{k \rightarrow \infty} F(k, m)=r_{1} .
$$

And if $r_{1} \geq m \mathrm{e}^{r_{2}-m}$, then $\partial F / \partial k \geq 0$, hence,

$$
\inf _{x_{0}+y_{0}=m}\left\{x_{1}+y_{1}\right\}=\inf _{k \geq 0}\{F(k, m)\}=F(0, m)=m \mathrm{e}^{r_{2}-m} .
$$

Now let m vary from

$$
r^{m}=\min \left\{r_{1}, r_{2}, \mathrm{e}^{2 r_{2}-1-\mathrm{e}^{r_{2}-1}}, r_{1} \mathrm{e}^{r_{2}-r_{1}}\right\} \text { to } r^{M}=\max \left\{r_{1}, \mathrm{e}^{r_{2}-1}\right\} .
$$

Note that

$$
\left\{\left(x_{0}, y_{0}\right) \in Z_{\text {all }}: r^{m} \leq x_{0}+y_{0} \leq r^{M}\right\} \subseteq\left\{\left(x_{0}, y_{0}\right) \in X: r^{m} \leq x_{0}+y_{0} \leq r^{M}\right\}
$$

Thus, if $\left(x_{0}, y_{0}\right) \in Z_{\text {all }}$, then from part 3 of Lemma 11, we have

$$
\begin{equation*}
\inf _{r^{m} \leq m \leq r^{M} x_{0}+y_{0}=m} \inf \left\{x_{1}+y_{1}\right\} \geq \inf _{r^{m} \leq m \leq r^{M}} \inf _{k \geq 0}\{F(k, m)\}=\min _{r^{m} \leq m \leq r^{M}}\left\{r_{1}, m \mathrm{e}^{r_{2}-m}\right\} \geq r^{m} . \tag{16}
\end{equation*}
$$

Now define

$$
D_{\epsilon}=\left\{\left(x_{0}, y_{0}\right) \in Z_{\text {all }}: \epsilon \leq x_{0}+y_{0}\right\} \text { and } D_{\epsilon}^{c}=Z_{\text {all }} \backslash D_{\epsilon},
$$

then

$$
D_{\epsilon} \subset\left\{\left(x_{0}, y_{0}\right) \in X: \epsilon \leq x_{0}+y_{0} \leq r^{M}\right\} .
$$

If $\epsilon=r^{m}$, then according to (16) and Lemma 5 , we can see that if a point $\left(x_{0}, y_{0}\right)$ is in $D_{r^{m}}$, then its first iteration $\left(x_{1}, y_{1}\right)$ is still in $D_{r^{m}}$ since $\left(x_{1}, y_{1}\right) \in Z_{\text {all }}$ and $x_{1}+y_{1} \geq r^{m}$. Therefore, $D_{r^{m}}$ is positively invariant.

Let $\left(x_{0}, y_{0}\right)$ be a point in the region $D_{r^{m}}^{c}$, then

$$
x_{0}+y_{0}<r^{m}=\min \left\{r_{1}, r_{2}, \mathrm{e}^{2 r_{2}-1-\mathrm{e}^{r_{2}-1}}, r_{1} \mathrm{e}^{r_{2}-r_{1}}\right\} .
$$

Thus, we have

$$
x_{1}=\frac{r_{1} x_{0}}{x_{0}+y_{0}}>x_{0} \text { and } y_{1}=y_{0} \mathrm{e}^{r_{2}-\left(x_{0}+y_{0}\right)}>y_{0}
$$

which indicates that we have the following two situations:

1. $\xi_{0}=\left(x_{0}, y_{0}\right)$ stays in $D_{r^{m}}^{c}$ for all future time. In this case, we have a strictly increasing sequence $\left\{H^{i}\left(\xi_{0}\right)\right\}_{i=1}^{\infty}$ where

$$
H^{i}\left(\xi_{0}\right) \in D_{r^{m}}^{c} \text { and } H^{i}\left(\xi_{0}\right) \ll H^{i+1}\left(\xi_{0}\right) \text { for all } i \in \mathbb{Z}_{+}
$$

where \ll is the strong usual component-wise order relation. Therefore,

$$
\lim _{i \rightarrow \infty} H^{i}\left(\xi_{0}\right)=\xi^{*}
$$

where $\xi^{*}=\left(r_{1}, 0\right)$ or $\left(0, r_{2}\right)$ is a boundary equilibrium of system H and is contained in $D_{r^{m}}$.
2. There exists some positive integer k, such that $\xi_{k}=H^{k}\left(\xi_{0}\right) \in D_{r^{m}}$, then $\xi_{n} \in$ $D_{r^{m}} \subset D_{r^{m}}$ for all $n \geq k$.

The above argument indicates that $D_{r^{m}}$ attracts all points in $Z_{\text {all }}$. Since $Z_{\text {all }}$ attracts all points in X; therefore, $D_{r^{m}}$ attracts all points in X.

If $\epsilon<r^{m}$, then D_{ϵ} is a compact neighbourhood of $D_{r^{m}}$. Since $D_{r^{m}}$ attracts all points in X, any point in X will enter D_{ϵ} in some finite time. By applying the similar arguments (the above two steps for showing that $D_{r^{m}}$ attracts all points in $Z_{\text {all }}$), we can show that any point in D_{ϵ} will either stay in D_{ϵ} for all future time and converge to one of the two boundary equilibria or will enter $D_{r^{m}}$ in some finite time and stay in $D_{r^{m}}$ for all future time. Therefore, D_{ϵ} is positively invariant and attracts all points in X.

Theorem 6 indicates that system (3), (4) is persistent with respect to the total population of species x and y, i.e. if $r_{1} \neq r_{2}$, then for any initial condition $\left(x_{0}, y_{0}\right) \in X$ we have

$$
\liminf _{n \rightarrow \infty}\left(x_{n}+y_{n}\right) \geq r^{m} .
$$

This result allows us to restrict system (3), (4) to the compact positively invariant region $D_{r^{m}}$.

3. Pre-images of invariant sets

In this section, we explore the properties of all rank pre-images of invariant sets of system (3), (4). The following two lemmas give us useful information on the properties of preimages of points in X, which can help us to find the explicit structure of all rank pre-images of invariant sets.

Lemma 7 [$\left.Z_{0}-Z_{2} \mathrm{map}\right]$. Each point in $Z_{i}, i=0,1,2, \infty$ has i rank-1 pre-images. If $\xi \in Z_{2}$, then its rank-1 pre-images can be represented as $\dot{\xi}_{-1}^{i}, i=a, b$ with the following properties

$$
H^{-1}(\xi)=\left\{\dot{\xi}_{-1}^{a}, \dot{\xi}_{-1}^{b}\right\} \text { and } \dot{\xi}_{-1}^{b} \ll \eta \ll \dot{\xi}_{-1}^{a}
$$

where \ll is the strong usual component-wise order relation and η is a point in $L C_{-1}^{1}$. Moreover, the maps

$$
G_{-1}^{b}: Z_{2} \rightarrow B \text { and } G_{-1}^{a}: Z_{2} \rightarrow \mathbb{X}
$$

defined by $G_{-1}^{i}(\xi)=\xi_{-1}^{i}, i=a, b$ are smooth.

Proof. Note that $H\left(L C_{-1}^{2}\right)=\left(r_{1}, 0\right)$; thus, $L C_{-1}^{2} \backslash\left\{\left(r_{1}, 0\right)\right\}$ has no pre-images and $\left(r_{1}, 0\right)$ has infinite many pre-images, i.e. $\left(L C_{-1}^{2} \backslash\left\{\left(r_{1}, 0\right)\right\}\right) \subset Z_{0}$ and $Z_{\infty}=\left\{\left(r_{1}, 0\right)\right\}$.

Given any point $\left(x_{0}, y_{0}\right) \in X \backslash L C_{-1}^{2}$, if it has pre-images (x, y), then the pre-images should satisfy the following two equations

$$
\begin{align*}
& x_{0}=\frac{r_{1} x}{x+y} \Rightarrow x=\frac{x_{0} y}{r_{1}-x_{0}} \tag{17}\\
& y_{0}=y \mathrm{e}^{r_{2}-x-y} \tag{18}
\end{align*}
$$

Now substituting (17) into (18) we get

$$
\begin{equation*}
y_{0}=y \mathrm{e}^{r_{2}-\frac{r_{1} y}{r_{1}-x_{0}}} \leq \max _{y>0}\left\{y \mathrm{e}^{r_{2}-\frac{r_{1} y}{r_{1}-x_{0}}}\right\}=f\left(y_{c}\right)=g\left(x_{0}\right)=\left(1-\frac{x_{0}}{r_{1}}\right) \mathrm{e}^{r_{2}-1} \tag{19}
\end{equation*}
$$

where $y_{c}=1-x_{0} / r_{1}$ and $f(y)=y \mathrm{e}^{r_{2}-\left(r_{1} y / r_{1}-x_{0}\right)}$. Therefore, according to the properties of the Ricker's map 11 (also see results in [4]), we have the following three situations:

1. If $y_{0}>g\left(x_{0}\right)>0$, then y_{0} has no pre-image for the Ricker's map (19); thus, $\left(x_{0}, y_{0}\right)$ has no pre-image for (3), (4). Hence, we have shown that the region Z_{0} defined in (10) has no pre-images.
2. If $y_{0}=g\left(x_{0}\right)>0$, then y_{0} has exactly one rank- 1 pre-image for the Ricker's map Lemma (19); thus, (x_{0}, y_{0}) has exactly one rank-1 pre-image.
3. If $0<y_{0}<g\left(x_{0}\right)$, then y_{0} has two rank-1 pre-images for the Ricker's map (19); thus, $\left(x_{0}, y_{0}\right)$ has two rank-1 pre-images.

Therefore, the first part of Lemma 7 holds.
Choose a point $\xi=\left(x_{0}, y_{0}\right) \in Z_{2}$, its two rank-1 pre-images can be denoted as

$$
H^{-1}(\xi)=\left\{\dot{\xi}_{-1}^{a}, \dot{\xi}_{-1}^{b}\right\}=\left\{\left(x_{-1}^{a}, y_{-1}^{a}\right),\left(x_{-1}^{b}, y_{-1}^{b}\right)\right\}
$$

where $\xi_{-1}^{i}, i=a, b$ satisfy (17) and (19).
Denote $\eta=\left(x_{0} / r_{1}, r_{1}-x_{0} / r_{1}\right)$. Since

$$
\eta=(1-y, y) \text { if let } y=\frac{r_{1}-x_{0}}{r_{1}},
$$

we can check that the point $\eta \in L C_{-1}^{1}$ by using (7). Note that $y=r_{1}-x_{0} / r_{1}$ is a critical point of $y e^{r_{2}-\left(r_{1} y / r_{1}-x_{0}\right)}$, then from (19), we can see that the pre-image

$$
\xi_{-1}^{b}=\left(\frac{x_{0} y_{-1}^{b}}{r_{1}-x_{0}}, y_{-1}^{b}\right) \ll \eta \Rightarrow x_{-1}^{b}+y_{-1}^{b}<1 \Rightarrow \dot{\xi}_{-1}^{b} \in B
$$

and the pre-image

$$
\dot{\xi}_{-1}^{a}=\left(\frac{x_{0} y_{-1}^{a}}{r_{1}-x_{0}}, y_{-1}^{a}\right) \gg \eta \Rightarrow x_{-1}^{b}+y_{-1}^{b}>1 .
$$

Therefore, for each interior point $\xi \in Z_{2}$, there are two rank-1 pre-images $\xi_{-1}^{i}, i=a, b$ and a point $\eta \in L C_{-1}^{1}$, such that

$$
\xi_{-1}^{b} \ll \eta \ll \xi_{-1}^{a}
$$

where $\xi_{-1}^{b} \in B$.

From the inverse function theorem, we can conclude that the maps

$$
G_{-1}^{a}: Z_{2} \rightarrow B, G_{-1}^{b}: Z_{2} \rightarrow \mathbb{X}
$$

defined by $G_{-1}^{i}(\xi)=\xi_{-1}^{i}, i=a, b$ are smooth.
In the rest of the paper, we use subscript $-n$ to denote a rank- n pre-image and superscript $i=a, b$ to denote the location of the pre-image, i.e. if $i=a$, then the pre-image is above $L C_{-1}^{1}$, otherwise it is below $L C_{-1}^{1}$ and, therefore, in the set B.

Lemma 8 [Location of Pre-images]. Let $\left(x_{-k}^{i}, y_{-k}^{i}\right), i=a, b$ be rank-k pre-images of a point $\left(x_{0}, y_{0}\right) \in Z_{2}$ and $\left(u_{-k}^{i}, u_{-k}^{i}\right), i=a, b$ be rank-k pre-images of a point $\left(u_{0}, v_{0}\right) \in Z_{2}$ where $k=1,2$. Then

1. $\left(x_{-1}^{b}, y_{-1}^{b}\right) \ll\left(x_{0}, y_{0}\right)$ if $0<x_{0}+y_{0} \leq \min \left\{r_{1}, r_{2}\right\}$.
2. $\left(x_{-1}^{a}, y_{-1}^{a}\right) \in Z_{0}$ if $r_{2}>r_{1}>1$ and $\left(x_{0}, y_{0}\right) \in Z_{2}^{1}$. Moreover, we have

$$
\left(x_{-2}^{b}, y_{-2}^{b}\right) \ll\left(x_{-1}^{b}, y_{-1}^{b}\right) \text { and } y_{-1}^{a}<y_{-2}^{a} .
$$

3. $\left(x_{-1}^{b}, y_{-1}^{b}\right) \ll\left(u_{-1}^{b}, v_{-1}^{b}\right)$ if $r_{2}>1$ and $\left(x_{0}, y_{0}\right) \ll\left(u_{0}, v_{0}\right)$.

Proof. If $\left(x_{0}, y_{0}\right) \in Z_{2}$, then $0<x_{0}+y_{0} \leq \min \left\{r_{1}, r_{2}\right\}$ implies that $0<y_{0} \leq r_{1}-x_{0}$. Thus, according to (17), we have

$$
\begin{equation*}
x_{-1}^{b}=\frac{x_{0} y_{-1}^{b}}{r_{1}-x_{0}} \leq \frac{x_{0} y_{-1}^{b}}{y_{0}} . \tag{20}
\end{equation*}
$$

On the other hand, according to (19), the following equality holds

$$
\begin{equation*}
y_{0}=y_{-1}^{b} \mathrm{e}^{r_{2}-\frac{r_{1}, \frac{p_{1}}{r_{1}-x_{0}}}{} .} \tag{21}
\end{equation*}
$$

The condition $0<x_{0}+y_{0} \leq \min \left\{r_{1}, r_{2}\right\}$ implies that if $r_{2} \leq r_{1}$, then

$$
0<x_{0}+y_{0} \leq r_{2} \Rightarrow 0<\frac{x_{0}}{r_{2}}+\frac{y_{0}}{r_{2}} \leq 1 \Rightarrow 0<\frac{x_{0}}{r_{1}}+\frac{y_{0}}{r_{2}} \leq 1 \Rightarrow y_{0}<y^{*}=r_{2}\left(1-\frac{x_{0}}{r_{1}}\right) .
$$

Similarly, if $r_{2} \geq r_{1}$, then

$$
0<x_{0}+y_{0} \leq r_{1} \Rightarrow 0<\frac{x_{0}}{r_{1}}+\frac{y_{0}}{r_{1}} \leq 1 \Rightarrow 0<\frac{x_{0}}{r_{1}}+\frac{y_{0}}{r_{2}} \leq 1 \Rightarrow y_{0}<y^{*}=r_{2}\left(1-\frac{x_{0}}{r_{1}}\right) .
$$

Thus, according to Lemma 11 (also see results in [4]), we have $0<y_{-1}^{b}<y_{0}$. Hence, according to (20), we can conclude that

$$
x_{-1}^{b} \leq \frac{x_{0} y_{-1}^{b}}{y_{0}}<x_{0} .
$$

Therefore, the first part of Lemma 8 holds, i.e.

$$
\left(x_{-1}^{b}, y_{-1}^{b}\right) \ll\left(x_{0}, y_{0}\right) \text { if } 0<x_{0}+y_{0} \leq \min \left\{r_{1}, r_{2}\right\}
$$

The condition $r_{2}>r_{1}>1$ indicates that $\left(\mathrm{e}^{r_{2}-1} / r_{1}\right)>1$ and $B \subset Z_{2}^{1}$. If $\left(x_{0}, y_{0}\right) \in Z_{2}^{1}$, then $0<y_{0}<\left(1-x_{0} / r_{1}\right) \mathrm{e}^{2 r_{2}-1-\mathrm{e}^{r_{2}-1}}$. Therefore, according to Lemma 11 (also see results in [4]) and the inequality $\left(\mathrm{e}^{r_{2}-1} / r_{1}\right)>1$, we have

$$
\begin{equation*}
y_{-1}^{a}>\left(1-\frac{x_{0}}{r_{1}}\right) \mathrm{e}^{r_{2}-1} . \tag{22}
\end{equation*}
$$

From (17) and (22), we have

$$
\begin{equation*}
x_{-1}^{a}=\frac{x_{0} y_{-1}^{a}}{r_{1}-x_{0}}>\frac{x_{0} \mathrm{e}^{r_{2}-1}}{r_{1}}>x_{0} . \tag{23}
\end{equation*}
$$

This indicates that

$$
y_{-1}^{a}>\left(1-\frac{x_{0}}{r_{1}}\right) \mathrm{e}^{r_{2}-1}>\left(1-\frac{x_{-1}^{a}}{r_{1}}\right) \mathrm{e}^{r_{2}-1} .
$$

Therefore, $\left(x_{-1}^{a}, y_{-1}^{a}\right) \in Z_{0}$.
From the proof of the first part of Lemma 8, we can see that

$$
\left(x_{-1}^{b}, y_{-1}^{b}\right) \ll\left(x_{0}, y_{0}\right) \Rightarrow\left(x_{-1}^{b}, y_{-1}^{b}\right) \in B \subset Z_{2}^{1}
$$

Thus, by applying the first part of Lemma 8, we have $\left(x_{-2}^{b}, y_{-2}^{b}\right) \ll\left(x_{-1}^{b}, y_{-1}^{b}\right)$ directly.
Note that $y \mathrm{e}^{r_{2}-\left(r_{1} y / r_{1}-x_{0}\right)}$ is a decreasing function with respect to x_{0}. Thus,

$$
y_{0}=y_{-1}^{a} \mathrm{e}^{r_{2}-\frac{r_{1},{ }^{,}-1}{r_{1}-x_{0}}}>y_{-1}^{b}=y_{-2}^{a} \mathrm{e}^{\mathrm{r}_{2}-\frac{r_{1} 1^{a}-2}{r_{1}-x_{-1}}}>y_{-2}^{a} \mathrm{e}^{r_{2}-\frac{r_{1},{ }_{1},-2}{r_{1}-x_{0}}}
$$

Since $r_{2}>r_{1}>1$, the fixed point $y^{*}=r_{2}-\left(r_{2} x / r_{1}\right)$ is strictly greater than the critical point $y_{c}=1-\left(x / r_{1}\right)$ for the Ricker's map $y \mathrm{e}^{r_{2}-\left(r_{1} y / r_{1}-x\right)}$ where $x=x_{0}$ or $x=x_{-1}^{b}$. Let $u_{-1}^{i}, i=a, b$ be rank-1 pre-images of y_{-1}^{b} for the Ricker's map $y \mathrm{e}^{r_{2}-\left(r_{1} y / r_{1}-x_{0}\right)}$. Since $y \mathrm{e}^{r_{2}-\left(r_{1} y / r_{1}-x_{0}\right)}>y \mathrm{e}^{r_{2}-\left(r_{1} y / r_{1}-x_{-1}^{b}\right)}$, we have $u_{-1}^{a}<y_{-2}^{a}$. Recall that

$$
u_{-1}^{a} \mathrm{e}^{r_{2}-\left(r_{1} u_{-1}^{a} / r_{1}-x_{0}\right)}=y_{-1}^{b}<y_{0}=y_{-1}^{a} \mathrm{e}^{r_{2}-\left(r_{1} y_{1}{ }_{-1}^{a} / r_{1}-x_{0}\right)} ;
$$

therefore, we have $y_{-1}^{a}<u_{-1}^{a}$. Hence, $y_{-1}^{a}<y_{-2}^{a}$ (see Figure 1(a) for graphic representations). Therefore, the second part of Lemma 8 holds.

Since $\left(x_{0}, y_{0}\right) \ll\left(u_{0}, v_{0}\right)$, we have $x_{-1}^{b}=x_{0} y_{-1}^{b} /\left(r_{1}-x_{0}\right)<u_{0} y_{-1}^{b} /\left(r_{1}-u_{0}\right)$. The condition $r_{2}>1$ implies that

$$
\begin{aligned}
y_{-1}^{b} \mathrm{e}^{r_{2}-\left(r_{1} y_{-1}^{b} / r_{1}-u_{0}\right)} & <y_{0}=y_{-1}^{b} \mathrm{e}^{r_{2}-\left(r_{1} y_{-1}^{b} / r_{1}-x_{0}\right)}<v_{0}=v_{-1}^{b} \mathrm{e}^{r_{2}-\left(r_{1} b_{-1}^{b} / r_{1}-u_{0}\right)} \\
& <v_{-1}^{b} \mathrm{e}^{r_{2}-\left(r_{1} v_{-1}^{b} / r_{1}-x_{0}\right)} .
\end{aligned}
$$

Then from Figure 1(b), we can obtain that $y_{-1}^{b}<v_{-1}^{b}$. Therefore,

$$
x_{-1}^{b}=\frac{x_{0} y_{-1}^{b}}{r_{1}-x_{0}}<\frac{u_{0} y_{-1}^{b}}{r_{1}-u_{0}}<\frac{u_{0} v_{-1}^{b}}{r_{1}-u_{0}}=u_{-1}^{b} .
$$

Therefore, the third part of Lemma 8 holds.
(a)

Part 3 of Lemma 8 indicates that the rank-1 pre-images have monotonic properties.

Theorem 9 [Structure of pre-images of invariant sets]. Assume that

$$
r_{2}>r_{1}>1,2 r_{2}-1-\mathrm{e}^{r_{2}-1}>0
$$

and M is an invariant set of system (3), (4) such that $\left(r_{1}, 0\right) \notin M$. Then

1. M is contained in Z_{2}^{2}. Moreover, the rank-1 pre-images of M can be represented as $H^{-1}(M)=M_{-1}^{b}$, where $M_{-1}^{b}=\left\{\dot{\xi}_{-1}^{b}=\left(x_{-1}^{b}, y_{-1}^{b}\right) \in B: H\left(\dot{\xi}_{-1}^{b}\right)=\xi \in M\right\}$.
2. The collection of all rank pre-images of $\dot{\xi}_{-1}^{b} \in M_{-1}^{b}$ can be represented as

$$
E_{\xi_{-1}}=\bigcup_{n \geq 0} H^{-n}\left(\xi_{-1}^{b}\right)=\bigcup_{n \geq 0, i=a, b} \xi_{-n-1}^{i}=\bigcup_{n \geq 1, i=a, b}\left(x_{-n}^{i}, y_{-n}^{i}\right)
$$

where

$$
\begin{aligned}
& \quad H^{-1}\left(\dot{\xi}_{-n}^{b}\right)=\left\{\dot{\xi}_{-n-1}^{a}, \dot{\xi}_{-n-1}^{b}\right\}, \dot{\xi}_{-n}^{b} \in B, \dot{\xi}_{-n-1}^{b} \ll \dot{\xi}_{-n}^{b} \text { for all } n \geq 1 \text { with } \\
& \lim _{n \rightarrow \infty} \dot{\xi}_{-n}^{b}=(0,0)
\end{aligned}
$$

and

$$
\dot{\xi}_{-n}^{a} \in Z_{0}, y_{-n}^{a}<y_{-n-1}^{a} \text { for all } n \geq 1 \text { with } \lim _{n \rightarrow \infty} y_{-n}^{a}=\infty .
$$

Moreover, $H^{-1}\left(\dot{\xi}_{-n}^{b}\right)=H^{-k}\left(\dot{\xi}_{-n-1+k}^{b}\right)$ for any $1 \leq k \leq n$.
3. The collection of all rank pre-images of M can be represented as

$$
E F_{M}=M \bigcup\left(\bigcup_{n \geq 1} H^{-n}(M)\right)=M \bigcup M_{-1}^{b} \bigcup\left(\cup_{k \leq 2 \leq n, i=a, b} M_{-k}^{i}\right)
$$

where

$$
\begin{gathered}
M_{-n-1}^{b}=\bigcup_{\xi_{-1}^{-} \in M_{-1}^{b}}\left\{\xi \in B: H^{n}(\xi)=\xi_{-1}^{b} \in M_{-1}^{b}\right\} \\
M_{-n-1}^{a}=\bigcup_{\xi_{-1}^{b} \in M_{-1}^{b}}\left\{\xi \in Z_{0}: H^{n}(\xi)=\xi_{-1}^{b} \in M_{-1}^{b}\right\}, \\
H^{-1-n}(M)=\left\{M_{-n-1}^{a}, M_{-n-1}^{b}\right\}, M_{-n-1}^{a} \subset Z_{0}, M_{-n-1}^{b} \subset B, \text { for all } 1 \leq n
\end{gathered}
$$

and

$$
\lim _{n \rightarrow \infty} M_{-n}^{b}=(0,0)
$$

Moreover, $M_{-n}^{b} \cap M_{-k}^{b}=\emptyset$ for any two distinct positive integers and $M_{-n}^{a} \cap$ $M_{-k}^{a}=\emptyset$ for any two distinct positive integers $n, k \geq 2$.

Proof. The condition $r_{2}>r_{1}>1$ and $2 r_{2}-1-\mathrm{e}^{r_{2}-1}>0$ indicates that

$$
r^{m}=\min \left\{r_{1}, r_{2}, \mathrm{e}^{2 r_{2}-1-\mathrm{e}^{r_{2}-1}}, r_{1} \mathrm{e}^{r_{2}-r_{1}}\right\}=\min \left\{r_{1}, \mathrm{e}^{2 r_{2}-1-\mathrm{e}^{r_{2}-1}}\right\}>1 .
$$

Recall that $B=\left\{(x, y) \in Z_{2}: x+y<1\right\}$ and $L C_{-1}^{1}=\left\{(x, y) \in Z_{2}: x+y=1\right\}$, then

$$
D_{r^{m}} \cap B=\emptyset \quad \text { and } \quad D_{r^{m}} \cap L C_{-1}^{1}=\emptyset .
$$

According to Theorem 6, all points in X are attracted to the compact positively invariant set $D_{r^{m}}$; therefore,

$$
M \subset D_{r^{m}} \quad \text { and } \quad\left(M \cap\left(B \cup L C_{-1}^{1}\right)\right)=\emptyset .
$$

The fact that

$$
H(M)=M \quad \text { and } \quad H^{-1}\left(Z_{1}\right)=L C_{-1}^{1}
$$

indicates that $\left(M \cap Z_{1}\right)=\emptyset$.
Since all points in X are also attracted to $Z_{1,2, \infty}$ by Lemma $5, M \subset Z_{1,2, \infty}$. Therefore,

$$
M \subset\left(D_{r^{m}} \cap Z_{1,2, \infty}\right)
$$

Note that

$$
Z_{\infty}=\left(r_{1}, 0\right) \notin M \quad \text { and } \quad\left(M \cap Z_{1}\right)=\emptyset ;
$$

therefore, $M \subset\left(D_{r^{m}} \cap Z_{2}\right)$.
Now suppose that there exists a point $\xi \in M \cap Z_{2}^{1}$. Then according to Lemmas 7 and $8, \xi$ has two rank-1 pre-images $\dot{\xi}_{-1}^{i}, i=a, b$ where $\dot{\xi}_{-1}^{a} \in Z_{0}$ and $\dot{\xi}_{-1}^{b} \in B$. Since

$$
(M \cap B)=\emptyset \text { and } M \subset Z_{2},
$$

the point ξ has no pre-images in M. This contradicts to the fact that M is invariant. Therefore, $M \cap Z_{2}^{1}=\emptyset$. This indicates that M should be contained in $Z_{2} \backslash Z_{2}^{1}=Z_{2}^{2}$.

Let $\xi=(x, y)$ be any point in M, then according to Lemma 7, ξ has two pre-images $\xi_{-1}^{i}=\left(x_{-1}^{i}, y_{-1}^{i}\right), i=a, b$. Since M is invariant and strictly above $L C_{-1}^{1}$; therefore, $\xi_{-1}^{a} \in$ M is strictly above $L C_{-1}^{1}$ and $\xi_{-1}^{b} \in B$ is strictly below $L C_{-1}^{1}$.

Denote

$$
M_{-1}^{a}=\bigcup_{\xi \in M}\left\{\xi_{-1}^{a} \in Z_{0}: H\left(\xi_{-1}^{a}\right)=\xi\right\} \text { and } M_{-1}^{b}=\bigcup_{\xi \in M}\left\{\dot{\xi}_{-1}^{b} \in B: H\left(\dot{\xi}_{-1}^{b}\right)=\xi\right\}
$$

Then the invariant property of M and $M \cap B=\emptyset$ implies that $M=M_{-1}^{a}$. Therefore, according to Definition 4, we have $H^{-1}(M)=M_{-1}^{b}$. Hence, the first part of Lemma holds.

Recall that

$$
Z_{2}^{1}=\left\{(x, y) \in Z_{2}: 0<y<\left(1-\frac{x}{r_{1}}\right) \mathrm{e}^{2 r_{2}-1-\mathrm{e}^{r_{2}-1}}\right\}
$$

then we have $B \subset Z_{2}^{1}$. Let $\dot{\xi}_{-k}^{i}, i=a, b$ be the rank k pre-image of ξ, where $\xi=(x, y) \in M$ and $k \in \mathbb{Z}_{+}$. Note that $\dot{\xi}_{-1}^{b}=\left(x_{-1}^{b}, y_{-1}^{b}\right)$ is in B; therefore,

$$
x_{-1}^{b}+y_{-1}^{b}<1<\min \left\{r_{1}, r_{2}\right\} \text { and } y_{-1}^{b}<\left(1-\frac{x_{-1}^{b}}{r_{1}}\right) \mathrm{e}^{2 r_{2}-1-\mathrm{e}^{r_{2}-1}} .
$$

Then according to Lemma 8, we have

$$
H^{-1}\left(\dot{\xi}_{-1}^{b}\right)=\left\{\dot{\xi}_{-2}^{b}, \xi_{-2}^{a}\right\}=\left\{\left(x_{-2}^{b}, y_{-2}^{b}\right),\left(x_{-2}^{a}, y_{-2}^{a}\right)\right\}
$$

where

$$
\stackrel{\xi}{-2}_{b}^{b} \in B, \dot{\xi}_{-2}^{b} \ll \dot{\xi}_{-1}^{b}, \dot{\xi}_{-2}^{a} \in Z_{0}, H\left(\dot{\xi}_{-2}^{a}\right)=\dot{\xi}_{-1}^{b} \text { and } y_{-1}^{a}<y_{-2}^{a}
$$

Since

$$
\dot{\xi}_{-2}^{b} \in B \subset Z_{2}^{1} \text { and } \xi_{-2}^{a} \in Z_{0}
$$

we can repeat the above argument to get

$$
H^{-2}\left(\xi_{-1}^{b}\right)=H^{-1}\left(\dot{\xi}_{-2}^{b}\right)=\left\{\dot{\xi}_{-3}^{b}, \xi_{-3}^{a}\right\}=\left\{\left(x_{-3}^{b}, y_{-3}^{b}\right),\left(x_{-3}^{a}, y_{-3}^{a}\right)\right\}
$$

where

$$
\dot{\xi}_{-3}^{b} \in B, \dot{\xi}_{-3}^{b} \ll \dot{\xi}_{-2}^{b}, \xi_{-3}^{a} \in Z_{0}, H\left(\xi_{-3}^{a}\right)=\dot{\xi}_{-2}^{b} \text { and } y_{-2}^{a}<y_{-3}^{a} .
$$

Apply the same above argument repeatedly, then for any $n \geq 1$ and $1 \leq k \leq n$, we have

$$
\begin{aligned}
H^{-1}\left(\xi_{-n}^{b}\right) & =H^{-k}\left(H^{-n+k-1}\left(\dot{\xi}_{-1}^{b}\right)\right)=\left\{\dot{\xi}_{-n-1}^{b}, \xi_{-n-1}^{a}\right\} \\
& =\left\{\left(x_{-n-1}^{b}, y_{-n-1}^{b}\right),\left(x_{-n-1}^{a}, y_{-n-1}^{a}\right)\right\}
\end{aligned}
$$

where $\left\{\dot{\xi}_{-n}^{b}\right\}_{n=1}^{\infty}$ is a strictly monotone decreasing sequence converging to $(0,0)$ and $\left\{y_{-n}^{a}\right\}_{n=1}^{\infty}$ is a strictly monotone increasing sequence converging to infinity. Moreover, $H\left(\check{\xi}_{-n}^{a}\right)=\dot{\xi}_{-n+1}^{b}$ for all $n \geq 2$. Thus, the collection of all rank pre-images of $\dot{\xi}_{-1}^{b} \in M_{-1}^{b}$ is

$$
\bigcup_{n \geq 1} H^{-n}(\xi)=\left\{\dot{\xi}_{-n}^{b}\right\}_{n=1}^{\infty} \bigcup\left\{\dot{\xi}_{-n}^{a}\right\}_{n=1}^{\infty} .
$$

Therefore, the second part of Theorem 9 holds.
Denote

$$
M_{-n-1}^{a}=\bigcup_{\xi_{-1}^{b} \in M_{-1}^{b}}\left\{\xi_{-n-1}^{a} \in Z_{0}: H^{n}\left(\dot{\xi}_{-n-1}^{a}\right)=\dot{\xi}_{-1}^{b}\right\}
$$

and

$$
M_{-n-1}^{b}=\bigcup_{\xi_{-1}^{也} \in M_{-1}^{b}}\left\{\dot{\xi}_{-n-1}^{b} \in B: H^{n}\left(\dot{\xi}_{-n-1}^{b}\right)=\dot{\xi}_{-1}^{b}\right\}
$$

Since $H^{-1}(M)=M_{-1}^{b} \subset B$; therefore,

$$
\begin{aligned}
M_{-n-1}^{a} & =\bigcup_{\xi_{-1}^{b} \in M_{-1}^{b}}\left\{\xi_{-n-1}^{a} \in Z_{0}: H^{n}\left(\xi_{-n-1}^{a}\right)=\xi_{-1}^{b}\right\} \\
& =\bigcup_{\xi \in M}\left\{\dot{\xi}_{-n-1}^{a} \in Z_{0}: H^{n+1}\left(\dot{\xi}_{-n-1}^{a}\right)=\xi\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
M_{-n-1}^{b} & =\bigcup_{\xi_{-1}^{b} \in M_{-1}^{b}}\left\{\dot{\xi}_{-n-1}^{b} \in B: H^{n}\left(\dot{\xi}_{-n-1}^{b}\right)=\dot{\xi}_{-1}^{b}\right\} \\
& =\bigcup_{\xi \in M}\left\{\dot{\xi}_{-n-1}^{b} \in B: H^{n+1}\left(\dot{\xi}_{-n-1}^{b}\right)=\xi\right\} .
\end{aligned}
$$

Then according to the proof of the second part of Theorem 9 and the definition of rank- k pre-images of an invariant set 4 , we have

$$
H^{-n-1}(M)=M_{-n-1}^{a} \cup M_{-n-1}^{b}, n \geq 1
$$

Since $\lim _{n \rightarrow \infty} \xi_{-n}^{b}=(0,0)$, thus

$$
\lim _{n \rightarrow \infty} M_{-n}^{b}=(0,0)
$$

Note that $M_{-n-1}^{a} \in Z_{0}$ and $M_{-n-1}^{b} \in B$ for any $n \geq 1$, thus

$$
H^{-n-1}(M)=\left\{M_{-1-n}^{a}, M_{-n-1}^{b}\right\} \text { for any } n \geq 1 .
$$

Therefore, the collection of all rank pre-images of M is

$$
E F_{M}=M \bigcup M_{-1}^{b} \bigcup\left(\bigcup_{n \geq 2} H^{-n}(M)\right)=M \bigcup M_{-1}^{b} \bigcup\left(\bigcup_{n \geq 2, i=a, b} M_{-n}^{i}\right)
$$

Now assume that there is $\eta \in B$ and two distinct positive integers k, n such that $\eta \in M_{-n}^{b} \cap M_{-k}^{b}$. Without loss of generality, let $k<n$, then $H^{n-1}(\eta)=\xi \in M_{-1}^{b}$ and $H^{k-1}(\eta)=\zeta \in M_{-1}^{b}$. Since $\zeta \in M_{-1}^{b}$, then $H^{i}(\zeta) \in M$ for any $i \geq 1$. Therefore, $H^{n-k}(\zeta) \in M$. However, this contradicts to the fact that $H^{n-1}(\eta)=H^{n-k}\left(H^{k-1}(\eta)\right)=$ $H^{n-k}(\zeta)=\xi \in M_{-1}^{b}$ and $M \cap M_{-1}^{b}=\emptyset$. Similarly, we can show that $M_{-n}^{a} \cap M_{-k}^{a}=\emptyset$ for any distinct positive integers $n, k \geq 2$. Therefore, the third part of Theorem 9 holds.

Theorem 9 is an analogous result to Theorem 4.2 by [4]. Moreover, it indicates that $\left\{M_{-n}^{b}\right\}_{n=1}^{\infty}$ is a monotone decreasing sequence that converges to $(0,0)$. See Figure 2 for the structure of $E_{\dot{S}_{-1}}$ and $E F_{M}$. In the case that M is a smooth curve, we have the following corollary:

Corollary 10 [Smooth invariant curve]. Assume that all the conditions in Theorem 9 hold and notations are the same. Let M be an invariant smooth curve of system (3), (4) that does not contain ($r_{1}, 0$), then

$$
E F_{M}=M \bigcup\left\{M_{-n}^{b}\right\}_{n=1}^{\infty} \bigcup\left\{M_{-n}^{a}\right\}_{n=2}^{\infty}
$$

where $M_{-n-1}^{a} \subset Z_{0}, M_{-n}^{b} \subset B$ are smooth curves. Let C be any compact subset of X, then $m_{2}\left(E F_{M} \cap C\right)=0$ where m_{2} is nature Lebesgue measure in \mathbb{R}^{2}.

Figure 2. The structure of all rank pre-images of a point in M_{-1}^{b} and an invariant set M. (a) The structure of all rank preimages of a point ξ_{-1}^{b} in M_{-1}^{b}. (b) The structure of all rank pre-images of an invariant set M.

Proof. According to Theorem 9, we have

$$
H^{-1}(M)=M_{-1}^{b} \text { and } H^{-n-1}(M)=\left\{M_{-1-n}^{a}, M_{-1-n}^{b}\right\} \text { for any } n \geq 1 .
$$

Since M is a smooth curve in $D_{r^{m}}$, then from Lemma 7, we know that its rank-1 pre-image M_{-1}^{b} is also a smooth curve in B. Then apply Lemmas 7 and 8 repeatedly, we know that $M_{-n}^{b} \in B$ and $M_{-n-1}^{a} \in Z_{0}$ are smooth curves for any $n \geq 1$.

For any compact set $C \in X$, there are only finite number of $M_{-n}^{i}, i=a, b$ which intercept with C or are contained in C. Since $m_{2}\left(M_{-n-1}^{a}\right)=0$ and $m_{2}\left(M_{-n}^{b}\right)=0$ for any positive integer $n \geq 1$; therefore, $m_{2}\left(\cup_{n \geq 1} H^{-n}(M) \bigcap C\right)=0$.

Remark. If $\left(r_{1}, 0\right) \in M$, let $N=M \backslash\left\{\left(r_{1}, 0\right)\right\}$, then N is still an invariant smooth curve. From Corollary 10, we have

$$
\begin{aligned}
E F_{M} & =M \bigcup\left(\bigcup_{n \geq 1} H^{-n}(M)\right)=M \bigcup\left(\bigcup_{n \geq 1} H^{-n}(N)\right) \bigcup H^{-1}\left(Z_{\infty}\right) \\
& =M \bigcup\left\{N_{-n}^{b}\right\}_{n=1}^{\infty} \bigcup\left\{N_{-n}^{a}\right\}_{n=2}^{\infty} \bigcup\{(x, 0) \in X\} .
\end{aligned}
$$

Therefore, the result in Corollary 10 still holds, i.e. for any compact set $C \in X$, we have

$$
m_{2}\left(E F_{M} \bigcap C\right)=0
$$

where m_{2} is a nature Lebesgue measure in \mathbb{R}^{2}.
The simulations (see Figure 3) suggest that there are heteroclinic orbits connecting two boundary equilibria points. We are able to show the existence of such heteroclinic orbits when one species goes to extinction for (3), (4). However, it is still an open problem to show the existence of heteroclinic orbits when there are locally asymptotically stable interior periodic-2 orbits. Theorem 9 and its Corollary 10 give an explicit structure of all pre-images of invariant sets including heteroclinic orbits.

4. Discussion

The basins of attractions of attractors of an ecological system can provide important information on its resilience and initial conditions allowing the coexistence of all species.

Figure 3. A heteroclinic orbit of system (3), (4) when $r_{1}=2, r_{2}=2.2, x_{0}=2, y_{0}=0.001$.
Since pre-images of invariant sets of a system can define the boundaries of the basins of attractions of attractors, we study the properties of all pre-images of invariant sets for a discrete-time two-species competition model (3), (4) and give the explicit structure of all pre-images of invariant sets for this system when

$$
\begin{equation*}
r_{2}>r_{1}>1 \quad \text { and } \quad 2 r_{2}-1-\mathrm{e}^{r_{2}-1}>0 . \tag{24}
\end{equation*}
$$

Our results combined with simulations suggest that if inequalities (24) hold, then the basins of attractions of the interior periodic-2 orbits are all interior points in X except the measure zero sets. These measure zero sets are the pre-images of heteroclinic orbits (see Figure 4).

If we say that an ecosystem is relatively permanent, then the population of any species in this system is strictly bounded away from zero for almost all strictly positive initial

Figure 4. The basin of attraction of the interior period-2 orbit is the open quadrant minus the preimages of the heteroclinic curve C. The latter partition the quadrant into components which are coloured according to which of the two periodic points attract points in the component under the second iterate of the map. Given a point in one of the regions, there is a large number N, such that the point will be very close to $\left(x_{1}^{i}, y_{1}^{i}\right)$ at the iteration t and will be very close to $\left(x_{2}^{i}, y_{2}^{i}\right)$ at the iteration $t+1$ for all $t>N$.
conditions. Our work in this paper plays an important role in proving this relative permanence concept for (3), (4). The numerical simulations suggest the following dynamics of system (3), (4) when

$$
r_{2}>r_{1}>1 \quad \text { and } \quad 2 r_{2}-1-\mathrm{e}^{r_{2}-1}>0:
$$

1. There exists a heteroclinic orbit connecting ξ^{*} to η^{*} (see Figure 3);
2. The basins of attraction of the interior periodic-2 orbit P_{2}^{i} are all interior points of \mathbb{R}_{+}^{2} except all the pre-images of heteroclinic orbits (see Figure 4).

Since our system is smooth in X, the closure of all heteroclinic orbits should be a smooth invariant curve. Then according to Theorem 9 and its Corollary 10, we can show that for any compact set $C \in X$, there is only Lebesgue measure zero set in C that will converge to heteroclinic orbits. If both the closure of heteroclinic orbits and the boundary of the system are repelling, then we are able to show that for any compact subset C of X, all interior points of C are attracted to the interior attractor except Lebesgue measure zero set, which is the collection of all pre-images of the closure of the heteroclinic orbits. All the details of proof are presented in a separate paper by [9].

In addition, our result is analogous to the result for the one-dimensional discrete system studied by [4] (Theorem 4.2). Partial results obtained in this paper can be applied to the general competition model (1), (2) while $a>0$. For instance, Lemmas 7 and 8 are still valid for the general system (1), (2). However, we are not able to extend the analysis techniques used to prove Theorem 9 to prove the similar results for (1), (2). The reason is that while $a>0$, the critical curve $L C_{-1}$ is unbounded which always intersects with $L C$. We will seek additional analysis methods to prove the similar results for (1), (2).

4.1 Open problems

There are many interesting unsolved questions regarding system (1), (2). A partial list of these open problems is as follows:

1. How can we rigorously prove the existence of heteroclinic orbits in the planar Kolmogorov-type competition models with parallel isoclines (such as systems (1), (2) and (3), (4))?
2. If systems (1), (2) and (3), (4) have heteroclinic orbits connecting two boundary equilibria points, then how do the axis dynamics impact these heteroclinic orbits? Are there any other heteroclinic orbits?
3. How can we rigorously prove or disprove that the basins of attractions of the interior periodic-2 orbit P_{2}^{i} are all interior points of \mathbb{R}_{+}^{2} except all the pre-images of heteroclinic orbits as suggested in Figure 4?

Acknowledgements

The author would like to thank Hal Smith for his useful comments on early drafts of the manuscript and thank the editor and referee for their useful comments for improving this manuscript. The author's research has been partially supported by SSE grant from CTI at ASU.

References

[1] F.R. Adler, Coexistence of two types on a single resource in discrete time, J. Math. Biol. 28 (1990), pp. 695-713.
[2] S. Elaydi and A.-A. Yakubu, Global stability of cycles: Lotka-Volterra competition model with stocking, J. Difference Equ. Appl. 8 (2002a), pp. 537-549.
[3] S. Elaydi and A.-A. Yakubu, Open problems and conjectures: Basins of attraction of stable cycles, J. Difference Equ. Appl. 8 (2002b), pp. 755-760.
[4] S. Elaydi and R. Sacker, Basin of attraction of periodic orbits of maps on the real line, J. Difference Equ. Appl. 10 (2004), pp. 881-888.
[5] J.E. Franke and A.-A. Yakubu, Global attractors in competitive systems, Nonlinear Anal., Theory, Methods Appl. 16 (1991a), pp. 111-129.
[6] J.E. Franke and A.-A. Yakubu, Mutual exclusion versus coexistence for discrete competitive systems, J. Math. Biol. 30 (1991b), pp. 161-168.
[7] V. Hutson and K. Schmitt, Permanence and the dynamics of biological systems, Math. Biosci. 111 (1992), pp. 1-71.
[8] A.R. Ives and S.R. Carpenter, Stability and diversity of ecosystems, Science 6 (2007), pp. 58-62.
[9] Y. Kang and H. Smith, The global dynamics of a discrete-time Lottery-Ricker competition model, J. Biol. Dyn. (2011, Epub ahead of print), DOI: 10.1080/17513758.2011.586064.
[10] C. Mira, L. Gardini, A. Barugola, and J.-C. Cathala, Chaotic Dynamics in Two-dimensional Non-invertible Maps, Nonlinear Science, Series A, Vol. 20, World Scientific Publishing Co., Pte. Ltd, Singapore, 1996.
[11] A.J. Nicholson, An outline of the dynamics of animal populations, Aust. J. Zool. 2 (1954), pp. 9-65.
[12] M. Scheffer, S. Carpenter, J.A. Foley, C. Folke, and B. Walker, Catastrophic shifts in ecosystems, Nature 413 (2001), pp. 591-596.
[13] A.-A. Yakubu, The effects of planting and harvesting on endangered species in discrete competitive systems, Math. Biosci. 126 (1995), pp. 1-20.
[14] A.-A. Yakubu, A discrete competitive system with planting, J. Difference Equ. Appl. 4 (1998), pp. 213-214.

Appendix A: Pre-images of Ricker's maps

Similar results (Parts 1 and 2 of Lemma 11) can also be found in the paper [4]. For convenience, we will re-derive their results when the Ricker map has the form of

$$
y_{n+1}=y_{n} \mathrm{e}^{r_{2}-\left(r_{1} y_{n} / r_{1}-x_{0}\right)} .
$$

And in addition, we derive the results of Part 3 in Lemma 11 that has been used in proving Theorem 6.

Lemma 11 [Properties of Ricker's maps]. Let $f(y)=y \mathrm{e}^{r_{2}-\left(r_{1} y / r_{1}-x_{0}\right)}$ where $r_{i}>0,0 \leq x_{0}<r_{1}, i=1,2$. Then f maps \mathbb{R}^{+}to $\left[0,\left(1-x_{0} / r_{1}\right) \mathrm{e}^{r_{2}-1}\right]$. The critical point off is $y_{c}=1-x_{0} / r_{1}$ which is mapped to $\mathrm{e}^{r_{2}-1}$; the fixed point is $y^{*}=r_{2}\left(1-x_{0} / r_{1}\right)$. For any given point $y_{0} \in\left(0,\left(1-x_{0} / r_{1}\right) e^{r_{2}-1}\right)$, it has two rank-1 pre-images $y_{-1}^{i} \in$ $\mathbb{R}^{+}, i=a, b$ where $y_{-1}^{b}<y_{0}<y_{-1}^{a}$ and $f\left(y_{-1}^{i}\right)=y_{0}, i=a, b$. Moreover, we have the following two situations depending on the values of r_{2}

1. When $0<r_{2} \leq 1$, then one of the following inequalities holds

$$
\begin{equation*}
0<y_{-1}^{b} \leq y_{0}<y^{*}<y_{c}<y_{-1}^{a} \tag{25}
\end{equation*}
$$

or

$$
\begin{equation*}
0<y^{*}<y_{0}<y_{-1}^{b}<y_{c}<y_{-1}^{a} \tag{26}
\end{equation*}
$$

In addition, y_{-1}^{a} is always greater than $\left(1-x_{0} / r_{1}\right) \mathrm{e}^{r_{2}-1}$.
2. If $r_{2}>1$, then one of the following inequalities holds

$$
\begin{equation*}
0<y_{-1}^{b}<y_{c}<y^{*}<y_{-1}^{a}<y_{0} \tag{27}
\end{equation*}
$$

or

$$
\begin{equation*}
0<y_{-1}^{b}<y_{c}<y_{0}<y^{*}<y_{-1}^{a} \tag{28}
\end{equation*}
$$

or

$$
\begin{equation*}
0<y_{-1}^{b}<y_{0}<y_{c}<y^{*}<y_{-1}^{a} \tag{29}
\end{equation*}
$$

In addition, if

$$
y_{0}<\left(1-\frac{x_{0}}{r_{1}}\right) \mathrm{e}^{2 r_{2}-1-\mathrm{e}^{r_{2}-1}} \quad \text { then } y_{-1}^{a}>\left(1-\frac{x_{0}}{r_{1}}\right) \mathrm{e}^{r_{2}-1}
$$

otherwise if

$$
y_{0} \geq\left(1-\frac{x_{0}}{r_{1}}\right) \mathrm{e}^{2 r_{2}-1-\mathrm{e}^{r_{2}-1}} \quad \text { then } y_{-1}^{a} \leq\left(1-\frac{x_{0}}{r_{1}}\right) \mathrm{e}^{r_{2}-1} .
$$

3. Let $r^{m}=\min \left\{r_{1}, r_{2}, \mathrm{e}^{2 r_{2}-1-\mathrm{e}^{r_{2}-1}}, r_{1} \mathrm{e}^{r_{2}-r_{1}}\right\} \quad$ and $\quad r^{M}=\max \left\{r_{1}, \mathrm{e}^{r_{2}-1}\right\}$, then $\min _{r^{m} \leq m \leq r^{M}} \min _{y=m}\left\{r_{1}, \mathrm{ye}^{r_{2}-y}\right\} \geq r^{m}$.

Proof. It is easy to check that if $r_{2} \leq 1$, then

$$
y_{c}=r_{2}\left(1-\frac{x_{0}}{r_{1}}\right) \mathrm{e}^{r_{2}-1} \leq y^{*}=\left(1-\frac{x_{0}}{r_{1}}\right) \mathrm{e}^{r_{2}-1}
$$

where equality holds when $r_{2}=1$. And if $r_{2}>1$, then $y^{*}<y_{c}$. The detailed proof for (25)-(29) can be illustrated by the schematic diagrams (Figures 5 and 6).

Now we will show Part 3 of the lemma. First note that the map defined by $g(m)=$ $m \mathrm{e}^{r_{2}-m}$ has the following properties

- $g(m) \geq m$ for $m \in\left[0, r_{2}\right)$ and $g(m) \leq m$ for $m \in\left[r_{2}, \infty\right)$.
- If $r_{2}>1$, map g is positively invariant in $\left[\mathrm{e}^{2 r_{2}-1-\mathrm{e}^{r_{2}-1}}, \mathrm{e}^{r_{2}-1}\right]$; while $r_{2} \leq 1$, map g is positively invariant in $\left[0, r_{2}\right]$ and $\left[r_{2}, \mathrm{e}^{r_{2}-1}\right]$.
- $\min _{0<r^{m} \leq m \leq r^{M}}\left\{m \mathrm{e}^{r_{2}-m}\right\}=\min \left\{r^{m} \mathrm{e}^{r_{2}-r^{m}}, r^{M} \mathrm{e}^{r_{2}-r^{M}}\right\}$.

Since $r^{m}=\min \left\{r_{1}, r_{2}, \mathrm{e}^{2 r_{2}-1-\mathrm{e}^{r_{2}-1}}, r_{1} \mathrm{e}^{r_{2}-r_{1}}\right\} \quad$ and $\quad r^{M}=\max \left\{r_{1}, \mathrm{e}^{r_{2}-1}\right\}$, thus we have

$$
\begin{aligned}
\min _{r^{m} \leq m \leq r^{M}} \min _{y=m}\left\{r_{1}, y \mathrm{e}^{r_{2}-y}\right\} & =\min \left\{r_{1}, \min _{r^{m} \leq m \leq r^{M}}\left\{m \mathrm{e}^{r_{2}-m}\right\}\right\}=\min \left\{r_{1}, r^{m} \mathrm{e}^{r_{2}-r^{m}}, r^{M} \mathrm{e}^{r_{2}-r^{M}}\right\} \\
& \geq \min \left\{r_{1}, r_{2}, \mathrm{e}^{2 r_{2}-1-\mathrm{e}^{r_{2}-1}}, r_{1} \mathrm{e}^{r_{2}-r_{1}}, g\left(\mathrm{e}^{2 r_{2}-1-\mathrm{e}^{r_{2}-1}}\right), g\left(r_{1} \mathrm{e}^{r_{2}-r_{1}}\right)\right\} \\
& =\min \left\{r^{m}, g\left(\mathrm{e}^{2 r_{2}-1-\mathrm{e}^{r_{2}-1}}\right), g\left(r_{1} \mathrm{e}^{r_{2}-r_{1}}\right)\right\} .
\end{aligned}
$$

Figure 5. The relationship between $y_{-1}^{i}, i=a, b$ and y_{0}, y^{*}, y_{c} when $0<r_{2} \leq 1$ where $f\left(y_{-1}^{i}\right)=y_{0}, i=a, b$. (a) When $0<r_{2} \leq 1$ and $y_{0}<y^{*}$. (b) When

Figure 6. The relationship between $y_{-1}^{i}, i=a, b$ and y_{0}, y^{*}, y_{c} when $r_{2}>1$ where $f\left(y_{-1}^{i}\right)=y_{0}, i=a, b$. In Figure 6 c , we can see that if $y_{0} \leq f\left(f\left(y_{c}\right)\right)$, then $y_{-1}^{a}>\left(1-x_{0} / r_{1}\right) \mathrm{e}^{r_{2}-1}$. (a) When $r_{2}>1$ and $y^{*}<y_{0}<\left(1-x_{0} / r_{1}\right) \mathrm{e}^{r_{2-1}}$, (b) when $0<r_{2} \leq 1$ and $y_{c}<y_{0} \leq y^{*}$ and (c) when $0<r_{2} \leq 1$ and $y_{0} \leq y_{c}$.

Now assume that $r_{2}>1$, then $g \circ g\left(\mathrm{e}^{r_{2}-1}\right)=g\left(\mathrm{e}^{2 r_{2}-1-\mathrm{e}^{r_{2}-1}}\right) \in\left[\mathrm{e}^{2 r_{2}-1-\mathrm{e}^{r_{2}-1}}, \mathrm{e}^{r_{2}-1}\right]$, thus

$$
g\left(\mathrm{e}^{2 r_{2}-1-\mathrm{e}^{r_{2}-1}}\right) \geq \mathrm{e}^{2 r_{2}-1-\mathrm{e}^{r_{2}-1}} \geq r^{m} .
$$

While if $r_{2} \leq 1$, then $g \circ g\left(\mathrm{e}^{r_{2}-1}\right)=g\left(\mathrm{e}^{2 r_{2}-1-\mathrm{e}^{r_{2}-1}}\right) \in\left[r_{2}, \mathrm{e}^{r_{2}-1}\right]$, thus

$$
g\left(\mathrm{e}^{2 r_{2}-1-\mathrm{e}^{r_{2}-1}}\right) \geq r_{2} \geq r^{m} .
$$

Therefore, $\min \left\{r^{m}, g\left(\mathrm{e}^{2 r_{2}-1-\mathrm{e}^{r_{2}-1}}\right), g\left(r_{1} \mathrm{e}^{r_{2}-r_{1}}\right)\right\}=\min \left\{r^{m}, g\left(r_{1} \mathrm{e}^{r_{2}-r_{1}}\right)\right\}$.
Suppose that $r_{1} \mathrm{e}^{r_{2}-r_{1}} \leq r_{2}$, then $g\left(r_{1} \mathrm{e}^{r_{2}-r_{1}}\right) \geq r_{1} \mathrm{e}^{r_{2}-r_{1}} \geq r^{m}$. Otherwise if $r_{1} \mathrm{e}^{r_{2}-r_{1}}>r_{2}$, then we have $r_{2}<r_{1} \mathrm{e}^{r_{2}-r_{1}}<\mathrm{e}^{r_{2}-1}$. This implies that

- If $r_{2} \geq 1$, then $g\left(r_{1} \mathrm{e}^{r_{2}-r_{1}}\right) \geq g\left(\mathrm{e}^{r_{2}-1}\right)=\mathrm{e}^{2 r_{2}-1-\mathrm{e}^{r_{2}-1}} \geq r^{m}$.
- If $r_{2}<1$, then $g\left(r_{1} \mathrm{e}^{r_{2}-r_{1}}\right) \geq r_{2} \geq r^{m}$.

Hence, we have $g\left(r_{1} \mathrm{e}^{r_{2}-r_{1}}\right) \geq r^{m}$. Therefore,

$$
\min _{r^{m} \leq m \leq r^{M}} \min _{y=m}\left\{r_{1}, y \mathrm{e}^{r_{2}-y}\right\} \geq \min \left\{r^{m}, g\left(r_{1} \mathrm{e}^{r_{2}-r_{1}}\right)\right\}=r^{m} .
$$

[^0]: *Email: yun.kang@asu.edu

