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Abstract

A general SI (Susceptible-Infected) epidemic system of host-parasite interactions operating under Allee
effects, horizontal and/or vertical transmission, and where infected individuals experience pathogen-
induced reductions in reproductive ability, is introduced. The initial focus of this study is on the
analyses of the dynamics of Density-Dependent and Frequency-Dependent effects on SI models (SI-DD
and SI-FD). The analyses identify conditions involving horizontal and vertical transmitted reproductive
numbers, namely those used to characterize and contrast SI-FD and SI-DD dynamics. Conditions that
lead to disease-driven extinction, or disease-free dynamics, or susceptible-free dynamics, or endemic dis-
ease patterns are identified. The SI-DD system supports richer dynamics including limit cycles while
the SI-FD model only supports equilibrium dynamics. SI models under “small” horizontal transmission
rates may result in susceptible-free dynamics. SI models under with and inefficient reproductive infec-
tious class may lead to disease-driven extinction scenarios. The SI-DD model supports stable periodic
solutions that emerge from unstable equilibrium provided that either the Allee threshold and/or the
disease transmission rate is large; or when the disease has limited influence on the infectives growth
rate; and/or when disease-induced mortality is low. Host-parasite systems where diffusion or migration
of local populations manage to destabilize them are examples of what is known as diffusive instability.
The exploration of SI-dynamics in the presence of dispersal brings up the question of whether or not
diffusive instability is a possible outcome. Here, we briefly look at such possibility within two-patch
coupled SI-DD and SI-FD systems. It is shown that relative high levels of asymmetry, two modes of
transmission, frequency dependance, and Allee effects are capable of supporting diffusive instability.
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1. Introduction

Parasitism contributes to the selection of future generations of hosts through their impact on factors
that lead to reductions in fitness (Hudson et al. 2002) and as a result, wildlife managers must account
for emerging and/or re-emerging diseases. Competition for space and resources (finding mates or food)
also impact the reproductive ability and likelihood of survival of individuals, particularly those hous-
ing pathogens or parasites. Hosts’ dynamics (survival in particular) often depends on the ability of a
population to maintain a critical mass (Kang and Castillo-Chavez 2012).The impact of heterogenous
transmission factors including multiple transmission modes by altering a population’s dynamics may
lessen the plausibility of conservation goals or the economic viability of selected management policies
(Potapov et al 2012). Hence, it is not surprising that the pressure which parasites or pathogens place on
their hosts and the relation of such interactions to community and/or ecosystem structure has been the
subject of continuous empirical and theoretical studies. Some of the theoretical consequences associated
to host-pathogen dynamics when factors like: i) multiple modes of disease transmission; (ii) host popu-
lation density; and (iii) the presence or absence of critical host population thresholds, are addressed in
this manuscript.

Modes of disease transmission, like horizontal and vertical, differentially facilitate the colonization
of host populations by bacteria, fungi, or viruses. Colonization (horizontal transmission) is sometimes
seen as the result of close interactions (contacts) between disease-free host and infected individuals.
A contact process that implicitly assumes the sharing of a common, local habitat. The passage of a
disease-causing agent from a mother to offspring during the “ birth” process is also sometimes possible
(vertical transmission). Feline leukemia (FeLV) and feline immunodeficiency (FIV) viruses are transmit-
ted horizontally and vertically. Leishmaniasis, a disease caused by the protozoan parasite Leishmania
infantum, is transmitted horizontally and vertically. Domesticated dog populations are presumed to be
a reservoir for Leishmania infantum; a reservoir maintained by the differential contributions of multiple
modes of transmission (Santaella et al. 2011).The deadly septicaemia, which manages to kill 80% of
septicaemia-infected birds, gets lodged in the ovary of surviving birds; passed later to the birds eggs
(vertical transmission); spreading horizontally within the hatcher and brooder.

Teasing out the roles of density- and frequency-dependent transmission (DDT versus FDT) on the
dynamics of host-parasite systems is carried out for theoretical and policy reasons. FDT is the result
of density-independent contact rates between susceptible and infected individuals. DDT assumes that
infection risks increase with host density. Density-dependent transmission (DDT) may require a minimal
number of available susceptible hosts, that is, a threshold density, for transmission to occur. Density-
dependent parasitic disease transmission plays a role in regulating host population size (Anderson and
May 1978 &1991) while frequency-dependent parasitic transmission does not require host density thresh-
olds or regulatory host population constraints on the birth or death rates to ”work” (Getz and Pickering
1983).

In population biology we often lack absolutes. And so, vector- and sexually-transmitted diseases have
been seen to thrive in frequency-dependent transmission settings while density-dependent infections that
lead to pathogens being shed by infected hosts into common environments may sometimes need a critical
mass of susceptible individuals to thrive (Anderson and May 1991; Antonovics et al. 1995). Pathogens
can be spread via “direct” contacts (kissing can spread herpes viruses), aerosol (sneezing can spread
influenza viruses), or via indirect contacts (ingesting water contaminated with fecal material can cause
result in cholera infections), or through vectors (ticks and mosquitoes often spread viruses and bacteria
to their hosts), or via some combination of direct and indirect modes, sometimes mediated by a vector.
Empirical work on mice, voles, lady bird beetles, frogs, and plants has shown that pathogen transmission
often involve DD and FD transmission modes, with one predominant mode (Hudson et al. 2002). The
negative impact of deliberate releases of pathogens via aerosol or in water systems tends to increase
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with host density. On the other hand, sexually transmitted pathogens seem to thrive equally well or
bad in small or large population settings while some vector-borne diseases have been shown to support
frequency-dependent transmission patterns (Anderson and May 1991; Antonovics and Alexander 1992;
Ferrari et al 2011). Antonovics and Alexander (1992) manipulated the density and frequency of infected
hosts Silene latifolia and in the process they found out that deposition of the anther smut fungus Mi-
crobotryum violaceum by pollinating insects managed to increase with the frequency of infection.

A pathogen may or may not be deleterious enough to regulate the dynamics of host populations
and so it is not surprising that the impact of pathogens on hosts is tied in to virulence. Pathogen’s
levels of virulence differentially impacts host’s fitness. Often, increases in virulence result in a reduced
probability survival or a diminished ability of a host to reproduce successfully, or both (Anderson and
May 1979; Hudson et al. 2001; Hilker et al. 2009). Pathogens whose transmission successes increases
with host density seem to have managed to select for variants capable of regulating a host population.
Dwyer et al (1990) studied a host-pathogen system where a detailed account of virus titer on infected
hosts could be estimated. Their study focused on studying the ability of the Myxoma virus to control
an exploding rabbit populations over a long window in time. Empirical evidence from systems involving
conjunctivitis in house finches or parasitic nematodes in red grouse and feral Soay sheep provide an ex-
ample of a system where disease regulates population size (Gulland 1992; Hudson et al. 1998; Hochachka
and Dhondt 2000). Pathogen infections are contributors to the decline or the extinction of some species
(Dwyer et al 1990; Daszak et al. 1999; Harvell et al. 2002; Smith et al. 2006; Thieme et al. 2009). The
deleterious role of chytridiomycosis in amphibians, chestnut blight in American chestnuts, avian malaria
in Hawaiian birds, devil facial tumour disease in Tasmanian devils, or sudden oak death in Californian
trees provide classical examples of the role of disease in regulating a population. Theory suggests that
density-dependent specialist pathogens (i.e., those infecting a single host) alone rarely drive their hosts’
extinction but can lead to extinction of the pathogen while frequency-dependent transmission may be
capable of supporting significant decreases, including the potential extinction of host and parasite pop-
ulations in the presence of moderately lethal pathogens (de Castro and Bolker 2005; Ferrari et al 2011;
Kilpatrick and Altizer 2012).

The impact of disease outbreaks can be devastating and their dynamics must be particularly mon-
itored within populations near extinction; that is, those with population levels near established Allee
effects thresholds (Allee 1938; Stephens and Sutherland 1999; Stephens et al 1999; Courchamp et al
2009; Kang and Lanchier 2011). The relevance of threshold effects has been identified within a wide
array of taxa (Courchamp et al. 2008; Kramer et al. 2009). Populations under Allee effects or fac-
ing extinction or both must be effectively managed (Drake 2004; Hilker 2009). The fragility of these
populations means that limiting the transmission of highly deleterious diseases is critical (Deredec and
Courchamp 2007; Hilker 2009). Recurrent infectious disease outbreaks tend to enhance the deleterious
role of Allee effects within diseases capable of inducing reductions in host fitness (Hilker et al. 2005;
Deredec and Courchamp 2006; Yakubu 2007; Hilker et al. 2009; Thieme et al. 2009; Hilker 2010;
Friedman and Yakubu 2011; Kang and Castillo-Chavez 2013). The results of this manuscript seem to
be in sync with the overall conclusions reached the study of predator-prey systems (e.g., Cushing 1994;
Emmert and Allen 2004; Drew et al 2006; Jang and Diamond 2007; Berezovskaya et al. 2010; Kang and
Armbruster 2011; Kang and Castillo-Chavez 2012).

Parasites and hosts co-evolve in response to environmental clues and/or selective pressures (Kil-
patrick and Altizer 2012). Mammals, birds, fish, and insects generate mobility patterns as they track
resources and as it is well known movement and/or dispersal can impact disease dynamics (Altizer 2010).
In short, mobility has been a key player in the evolution of host-parasite systems. Studies that in addi-
tion to disease and mobility (dispersal) also include the impact of Allee effects are not well understood
(Rios-Soto et al. 2006; Hikler et al. 2007; Kang and Castillo-Chavez 2013b). Hilker et al. (2007) used a
reaction-diffusion SI model within a frequency-dependent transmission framework in their explorations

3



of the impact of disease and mobility on the spatiotemporal patterns of disease transmission. SI models
that incorporate disease-reduced fertility have been explored by a number of researchers (Diekmann and
Kretzshmar (1991) and Berezovskaya et al. (2004)). In Kang and Castillo-Chavez (2013b) a two-patch SI
model with density-dependent transmission is used to show that the differential movement of susceptible
and infected individuals can enhance or suppress the spread of a disease. A SI model that incorporates
a horizontally and vertically transmitted disease; infectives giving birth to infectives; susceptibles giving
birth to susceptibles; Allee effects within the net reproduction term; disease-induced death rate; and dis-
ease reduced reproductive ability, is used in this manuscript to begin to address questions that include:
What is the role of multiple modes of transmission? Will density-dependent and frequency-dependent
vertical transmission affect host-parasite dynamics differentially? Under what conditions would Allee
effects alter disease-free dynamics or facilitate disease-driven extinction? Would Allee thresholds on
reproductive fitness become altered (reduced) by disease? What is the role of DDT or FDT in support
of diffusive instability?

In Section 2, a general SI (Susceptible-Infected) model with Allee effects built in the reproduc-
tion that incorporates horizontal and vertical transmission modes, is formulated. The basic dynamic
properties of the model are characterized, in particular, sufficient conditions in support of disease-free
and persistence of species results are identified (Theorem 2.1 and its corollary 2.1). In Section 3, the
dynamics of SI models under frequency-dependent or density-dependent horizontal transmission are
contrasted. Boundary dynamics are characterized (Proposition 3.1) and sufficient conditions for disease-
and susceptible-population persistence are provided in Theorem 3.1. A classification of interior dynamics
comes in Theorem 3.2. In Section 4, disease-driven extinction, disease-free or susceptible-free dynamics,
and endemic persistent dynamics are characterized. The nature of bifurcations supported by SI mod-
els is studied with the aid of the reproduction numbers linked to horizontal and vertical transmission
modes. In Section 5, sufficient conditions leading to diffusive instability (Theorem 5.1) are identified.
The nature of mechanisms potentially capable of supporting diffusive instability in SI-models and prey-
predator models, is briefly discussed. The implications of the results in this manuscript are discussed in
the Conclusion.

2. An SI model with Allee effects and vertical transmission

The model outlined in this section deals with a population facing a disease that can be effectively
captured within a SI framework under assumptions that include the possibility of multiple modes of
transmission, that is, horizontal and vertical. It is therefore assumed that infected individuals can give
birth to infected hosts; that Allee effects alter the net reproduction term (possibly due to mating limita-
tions or predator saturation); the presence of increases in mortality due to disease-induced deaths; and
the fact that infected individuals may experience reductions in reproductive ability.

We let S and I denote the susceptible and infective populations, respectively, with N = S + I
denoting the total host population. The approach followed from Deredec and Courchamp (2006) leads
to the following set of nonlinear system after the incorporation of the above assumptions:

dS
dt = rSf(N)︸ ︷︷ ︸

Growth with Allee effects

− φ(N)
I

N
S︸ ︷︷ ︸

Horizontal transmission
dI
dt = φ(N) IN S + ρrIf(N)︸ ︷︷ ︸

Vertical transmission

− dI︸︷︷︸
Additional death due to infections

(1)

where r > 0, ρ ∈ [0, 1], d > 0 are respectively the intrinsic growth rate, the reduction of growth rate
due to disease, and the excess death rate from the disease. The horizontal transmission term φ(N)
includes density-dependent transmission, φ(N) = βN (the law of mass action) or frequency-dependent
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transmission, φ(N) = β (proportionate mixing or standard incidence). In the absence of disease, the SI
Model (1) reduces to the following single species growth model:

dN
dt = rNf(N) (2)

where the per capita growth function rf(N) is subject to strong Allee effects, i.e., there exists an Allee
threshold K− and a carrying capacity K+ such that

f(N) < 0 if 0 < N < K− or N > K+; f(N) > 0 if K− < N < K+; f(K−) = f(K+) = 0. (3)

Thus, the population model described by Equation (2) converges to 0 if initial conditions are below K−

or converges to its carrying capacity K+ whenever the initial conditions are above K−.

Note: If ρ = 1, Model (1) is reduced to Model (6), which was introduced by Deredec and Chourchamp
(2006) while if ρ = 0, Model (1) can be seen as a special case of the models studied in Kang and Chavez-
Castillo (2012). The formulation of this SI Model (1) is similar in approach to that found in Boukal
and Berec (2002), Courchamp et al( 2009), Hilker et al (2009), and Thieme et al (2009), particularly in
the way we model the effects of Allee effects and disease. The literature on the use of phenomenological
models like Model (2) is extensive (e.g., see Lewis and Kareiva 1993; Gruntfest et al 1997; Alvarez 1998;
Padrón and Trevisan 2000; Shi and Shivaji 2006; Hilker 2010; Friedman and Yakubu 2012). Our models
allow for infectives to give birth to infectives with the caveat that their reproductive ability may be
reduced; a feat that being captured with the parameter ρ.

The need for biological consistency (well posed model) is addressed with the help of the state-
space naturally associated with Model (1), namely, X = {(S, I) ∈ R2

+} with its interior defined as

X̊ = {(S, I) ∈ R2
+ : SI > 0}. The state space when φ(N) = β is X = {(S, I) ∈ R3

+ : S + I > 0}. The
assumption that f(N) is differentiable leads to the following theorem for Model (1):

Theorem 2.1 (Basic dynamical features of (1)). Assume that r > 0, d > 0, ρ ∈ [0, 1] and both f, φ
are continuous in X with f satisfying Condition (3), then System (1) is positively invariant and bounded
in X with the following property

lim sup
t→∞

N(t) = lim sup
t→∞

S(t) + I(t) ≤ K+.

In addition, we have the following:

1. If N(0) ∈ (0,K−), then limt→∞N(t) = 0.

2. If there exists a positive number α > K− such that rρf(α) > d, then

lim inf
t→∞

N(t) = lim inf
t→∞

S(t) + I(t) ≥ α for any N(0) > α.

3. If maxK−≤N≤K+{K
+φ(N)
N + rρf(N)} < d, then lim supt→∞ I(t) = 0.

Proof. Since both S = 0 and I = 0 are invariant manifold for System (1), then according to the continuity
of the system, we can easily show that (1) is positively invariant in X. In addition, System (1) gives the
following equation:

dN

dt
= r(S + ρI)f(N)− dI (4)

where N = S + I. Thus, if K− ≤ N ≤ K+, we have the following

rρNf(N)− dN = N(rρf(N)− d) ≤ dN

dt
= r(S + ρI)f(N)− dI ≤ rNf(N) (5)
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which indicates that
lim
t→∞

N(t) = lim
t→∞

S(t) + I(t) = 0 if N(0) < K−

since f(N) satisfies Condition (3), i.e.,

f(N) > 0 when K− ≤ N ≤ K+.

If N < K− or N > K+, then we have the following

rNf(N)− dN = N(rf(N)− d) ≤ dN

dt
= r(S + ρI)f(N)− dI ≤ rρNf(N) (6)

which indicates that

lim sup
t→∞

N(t) = lim sup
t→∞

S(t) + I(t) ≤ K+ if N(0) > K−

since f(N) satisfies Condition (3), i.e.,

f(N) < 0 when N < K− or N > K+.

If there exists a positive number α > K− such that rρf(α) > d, then according to (6), we have

dN

Ndt

∣∣∣
N=α

≥ rρf(N)− d
∣∣∣
N=α

> 0.

Therefore, lim inft→∞N(t) = lim inft→∞ S(t) + I(t) ≥ α for any N(0) > α.

If maxK−<N<K+{K
+φ(N)
N + rρf(N)} < d, then from (1) and the fact that lim supt→∞N(t) ≤ K+ ,

we have

dI

dt
= φ(N)

I

N
S + ρrIf(N)− dI = I

(
Sφ(N)

N
+ rρf(N)− d

)
< I

(
K+φ(N)

N
+ rρf(N)− d

)
< 0

which indicates that lim supt→∞ I(t) = 0.

Notes: Some of the consequences that follow from Theorem 2.1 are:

1. The size of the initial population is extremely important for persistence regardless of the disease
due to Allee effects.

2. The total population population will not be above its carrying capacity K+ in the long run.

3. Species persistence requires that the initial population α is above the Allee threshold K−, and
excess deaths d

rρ are small enough, smaller than the per capita growth function evaluated at the

total population α, i.e., f(α) > d
rρ .

4. In the absence of vertical transmission, disease free dynamics requires that

max
K−≤N≤K+

{φ(N)

N
} < d

K+
.

While in the presence of vertical transmission, disease free dynamics requires that

max
K−≤N≤K+

{φ(N)

N
+
rρf(N)

K+
} < d

K+
.
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For convenience, we can consider that f(N) has a generic form of (N −K−)(K+−N) and φ(N) = β
(i.e., frequency-dependent ) or βN (i.e., the law of mass action) then scaling and setting

S → S

K+
, I → I

K+
, K− → K−

K+
, t→ rt, ρ→ ρ

r
, β → β

r
, d→ d

r

leads to the following two SI models with both horizontal and vertical transmission and Allee effects:

dS

dt
= S(N − θ) (1−N)− βSI

N
(7)

dI

dt
=

βSI

N
− dI + ρI(N − θ) (1−N) (8)

and

dS

dt
= S(N − θ) (1−N)− βSI (9)

dI

dt
= βSI − dI + ρI(N − θ) (1−N) (10)

where f(N) = r(N−θ) (1−N) is the per capita growth in the absence of disease; the parameter θ = K−

K+

represents the Allee threshold; ρ ∈ [0, 1] represents the reduce reproductive ability due to the disease; β
represents the disease transmission rate while d denotes the additional death rate coming from infections.
The direct application of Theorem 2.1 to System (7)-(8) and (9)-(10) gives the following corollary:

Corollary 2.1 (Basic dynamic features of (7)-(8) and (9)-(10)). System (7)-(8) and System (9)-(10)
are positively invariant and bounded in their state space X with the following property

lim sup
t→∞

N(t) = lim sup
t→∞

S(t) + I(t) ≤ 1.

In addition, we have the following:

1. If N(0) ∈ (0, θ), then limt→∞N(t) = 0.

2. If there exists a positive number α > θ such that ρf(α) > d, then

lim inf
t→∞

N(t) = lim inf
t→∞

S(t) + I(t) ≥ α for any N(0) > α.

3. If β + ρ(1−θ)2
4 < d, we have lim supt→∞ I(t) = 0.

Proof. The application of Theorem 2.1 is direct. We only show the item 3. Since N = S + I ≥ S and
lim supt→∞N(t) = lim supt→∞ S(t) + I(t) ≤ 1, therefore, for System (7)-(8), we have

Sφ(N)

N
+ rρf(N) =

βS

N
+ ρ(N − θ)(1− θ) ≤ β + ρ(N − θ)(1− θ) ≤ β +

ρ(1− θ)2

4
.

For System (9)-(10), we also have

Sφ(N)

N
+ rρf(N) = βS + ρ(N − θ)(1− θ) ≤ β + ρ(N − θ)(1− θ) ≤ β +

ρ(1− θ)2

4
.

Therefore, if β + ρ(1−θ)2
4 < d, we have lim supt→∞ I(t) = 0 for System (7)-(8) and System (9)-(10).

Notes: The traditional basic reproduction number for SI- Allee effects free- and vertical transmission
free-models, namely R0 = d

β is naturally no longer relevant. The remainder of this article focuses on the

dynamics of System (7)-(8) and System (9)-(10).
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3. Mathematical analysis

Notice that System (7)-(8) is not defined at (S, I) = (0, 0) but from Corollary 2.1, we know that

lim
t→∞

(S(t), I(t)) = (0, 0) whenever S(0) + I(0) < θ.

Thus, we artificially define (0, 0) as the extinction equilibrium. Hence, System (7)-(8) and System
(9)-(10) have the same boundary dynamics since both of them can be reduced to the system given by

dS

dt
= S(S − θ) (1− S) if I = 0

and
dI

dt
= ρI(I − θ) (1− I)− dI if S = 0.

Therefore, System (7)-(8) and System (9)-(10) have the following three boundary equilibria

E0,0 = (0, 0), Eθ,0 = (θ, 0), E1,0 = (1, 0).

If, in addition, (1− θ)2 > 4d/ρ holds, then systems (7)-(8) and (9)-(10) support the following additional
boundary equilibria on the I-axis:

E0,θ =

(
0,

1 + θ

2
−
√

(1− θ)2 − 4d/ρ

2

)
, E0,1 =

(
0,

1 + θ

2
+

√
(1− θ)2 − 4d/ρ

2

)
.

We have arrived at the following proposition regarding the boundary equilibria of System (7)-(8) and
System (9)-(10):

Proposition 3.1 (Boundary equilibria of System (7)-(8) and System (9)-(10)). System (7)-(8) and
System (9)-(10) always have boundary equilibria E0,0 = (0, 0), Eθ,0 = (θ, 0), E1,0 = (1, 0). If in addition
Condition (1−θ)2 > 4d/ρ holds then both systems will support two additional boundary equilibria E0,θ =
(0, θ2) and E0,1 = (0,K2) where

θ < θ2 =
1 + θ

2
−
√

(1− θ)2 − 4d/ρ

2
< K2 =

1 + θ

2
+

√
(1− θ)2 − 4d/ρ

2
< 1.

The nature of the stability of these boundary equilibria is listed in Table 1.

Proof. If S = 0, System(7)-(8) and System (9)-(10) reduced to the following equation:

dI

dt
= I(ρ(I − θ)(1− I)− d) = 0⇒ ρ(I − θ)(1− I)− d = 0.

Therefore, if (1− θ)2 − 4d/ρ, we have

E0,θ = (0, θ2) =

(
0,

1 + θ

2
−
√

(1− θ)2 − 4d/ρ

2

)
, E0,1 = (0,K2) =

(
0,

1 + θ

2
+

√
(1− θ)2 − 4d/ρ

2

)
.

Notice that
√

(1− θ)2 − 4d/ρ < 1−θ
2 , therefore,

θ2 =
1 + θ

2
−
√

(1− θ)2 − 4d/ρ

2
>

1 + θ

2
− 1− θ

2
> θ

and

K2 =
1 + θ

2
+

√
(1− θ)2 − 4d/ρ

2
<

1 + θ

2
− 1− θ

2
= 1.
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Boundary Equilibria Stability Condition
E0,0 Always locally asymptotically stable

Eθ,0
For Model (7)-(8)- Saddle if d

β > 1; Source if d
β < 1.

For Model (9)-(10)-Saddle if d
β > θ; Source if d

β < θ

E1,0 Saddle if d
β < 1; Locally asymptotically stable if d

β ≥ 1

E0,θ

For Model (7)-(8)- Saddle if d
ρ < β; Source if d

ρ > β

For Model (9)-(10)-Saddle if
1+θ−

√
(1−θ)2−4d/ρ

2 > d
ρβ (i.e., θ2 >

d
ρβ );

Source if
1+θ−

√
(1−θ)2−4d/ρ

2 < d
ρβ (i.e., θ2 <

d
ρβ )

E0,1

For Model (7)-(8)- Saddle if d
ρ > β; Locally asymptotically stable if d

ρ < β

For Model (9)-(10)-Saddle if
1+θ+

√
(1−θ)2−4d/ρ

2 < d
ρβ (i.e., K2 <

d
ρβ );

Locally asymptotically stable if
1+θ+

√
(1−θ)2−4d/ρ

2 > d
ρβ (i.e., K2 >

d
ρβ )

Table 1: The local stability of boundary equilibria for System (7)-(8) and System (9)-(10)

Thus, we have

θ < θ2 =
1 + θ

2
−
√

(1− θ)2 − 4d/ρ

2
<

1 + θ

2
< K2 =

1 + θ

2
+

√
(1− θ)2 − 4d/ρ

2
< 1.

The stability of the boundary equilibria is obtained from the signs of eigenvalues of the corresponding
Jacobian matrices. We omit the details but collect the results in Table 1.

Notes: The results in Proposition 3.1 are used to determine the global dynamics in the absence of
interior equilibrium (see the proof of Theorem 3.2 for details).

Theorem 3.1 (Persistence of disease or susceptibles). Assume that (1−θ)2
4 > d

ρ and the initial

condition N(0) ∈ (θ2,K2) then the following statement follows:

1. For System (7)-(8) and System (9)-(10), a sufficient condition for the persistence of disease is
d
β < 1.

2. For System (7)-(8), a sufficient condition for the persistence of susceptibles is d
βρ > 1 while for

System (9)-(10) is d
βρ > K2.

The persistence of disease (or susceptibles) means that there exists a positive number ε such that

lim inf
t→∞

I(t)[or S(t)] ≥ ε for any N(0) ∈ (θ2,K2).

Proof. The condition (1−θ)2
4 > d

ρ leads to the equalities

h(N) = ρ(N − θ)(1−N)− d =
ρ

d
(N − θ2)(K2 −N),

which indicates that h(α) > 0 for any α ∈ (θ2,K2). Since h(N) = ρf(N)−d then Theorem 2.1 and (its)
Corollary 2.1 imply that

lim inf
t→∞

N(t) = lim inf
t→∞

S(t) + I(t) ≥ α for any N(0) = α ∈ (θ2,K2).

9



The use of Theorem 2.1 and (its) Corollary 2.1 again allows to conclude that System (7)-(8) and System
(9)-(10) attract to the compact set 0 ≤ N ≤ 1 and are positively invariant within α ≤ N ≤ 1 for any
α ∈ (θ2,K2).

Letting BS = {(S, I) ∈ X : α ≤ S+I ≤ 1}∩{I = 0} and BI = {(S, I) ∈ X : α ≤ S+I ≤ 1}∩{S = 0}
leads to the facts that (i) BS and BI are positively invariant and that (ii) the omega limit set of BS is
E1,0 while the omega limit set of BI is E0,1.

The results (Theorem 2.5 and its corollary) in Hutson (1984) guarantee that the persistence of disease

is determined by the sign of dI
Idt

∣∣∣
BS

= dI
Idt

∣∣∣
E1,0

while the persistence of susceptibles is determined by the

sign of dS
Sdt

∣∣∣
BI

= dI
Idt

∣∣∣
E0,1

.

Letting φ(N) = β or βN means that the dynamics of I-class are governed by

dI

dt
= φ(N)

I

N
S + ρIf(N)− dI = I

(
Sφ(N)

N
+ ρf(N)− d

)
,

which gives

dI

Idt

∣∣∣
BS

= (β + ρf(N)− d)
∣∣∣
BS

= (β + ρf(S)− d)
∣∣∣
E1,0

= β − d > 0 if φ(N) = β and
d

β
< 1

and

dI

Idt

∣∣∣
BS

= (βS + ρf(N)− d)
∣∣∣
BS

= (βS + ρf(S)− d)
∣∣∣
E1,0

= β − d > 0 if φ(N) = βN and
d

β
< 1.

The results (Theorem 2.5 and its corollary) in Hutson (1984) guarantee that the persistence of disease

for System (7)-(8) and Systeme (9)-(10) as long as d < min{ρ(1−θ)
2

4 , β} and the initial condition N(0) ∈
(θ2,K2).

The dynamics of the S-class are governed by

dS

dt
= Sf(N)− φ(N)

I

N
S = S

(
f(N)− Iφ(N)

N

)
,

which gives

dS

Sdt

∣∣∣
BI

= f(N)− Iφ(N)

N

∣∣∣
BI

= f(I)− β
∣∣∣
E0,1

= f(K2)− β =
d

ρ
− β > 0 if φ(N) = β and

d

βρ
> 1

and

dS

Sdt

∣∣∣
BI

= f(N)− Iφ(N)

N

∣∣∣
BI

= f(I)− βI
∣∣∣
E0,1

=
d

ρ
− βK2 > 0 if φ(N) = βN and

d

βρ
> K2.

Therefore, applications of the results in Hutson ((Theorem 2.5 and its corollary,1984) allows us to
conclude that:

1. A sufficient condition for the persistence of susceptibles in System (7)-(8) is that (1−θ)2
4 > d

ρ > β

as long initial condition are such that N(0) ∈ (θ2,K2).

2. A sufficient condition for the persistence of susceptibles in System (9)-(10) is that (1−θ)2
4 > d

ρ > βK2

as long initial condition are such that N(0) ∈ (θ2,K2).

10



Note: The System (7)-(8) or System (9)-(10) satisfy the definition of permanence provided that there
exists a positive number ε such that for any N(0) ∈ (θ2,K2)

lim inf
t→∞

min{I(t), S(t)} ≥ ε

An application of Theorem 3.1 leads to the following permanency results:

1. A sufficient condition for the permanence of System (7)-(8) is that the initial condition N(0) ∈
(θ2,K2) and

ρ <
d

β
< min{1, ρ(1− θ)2

4β
}.

2. A sufficient condition for the permanence of System (9)-(10) is that the initial condition N(0) ∈
(θ2,K2) and

ρK2 <
d

β
< min{1, ρ(1− θ)2

4β
}.

We postulate (throughout the rest of this manuscript) that System (7)-(8) or System (9)-(10) have
disease-free dynamics if its attractor is E0,0∪E1,0; or System (7)-(8) or (9)-(10) has susceptibles-free
dynamics if its attractor is E0,0 ∪ E0,1; or System (7)-(8) or (9)-(10) has disease-driven extinction
if its attractor is E0,0.

3.1. Interior equilibrium

Notice that the equilibria of System (7)-(8) satisfy the following equations:

S′ = S
[
(N − θ) (1−N)− βI

N

]
= 0⇒ S = 0 or I = N(N−θ)(1−N)

β ,

I ′ = I
[
βS
N + ρ(N − θ) (1−N)− d

]
= 0⇒ I = 0 or S = N [d−ρ(N−θ)(1−N)]

β

.

while the equilibria of System (9)-(10) satisfy the following equations

S′ = S [(N − θ) (1−N)− βI] = 0⇒ S = 0 or I = (N−θ)(1−N)
β ,

I ′ = I [βS + ρ(N − θ) (1−N)− d] = 0⇒ I = 0 or S − d
β = −ρ(N−θ)(1−N)

β

.

If we let (S∗, I∗) be an interior equilibrium of System (7)-(8) or System (9)-(10) then we have that:

1. The following equation

N∗ = S∗ + I∗ =
N∗[d+ (1− ρ)(N∗ − θ) (1−N∗)]

β
⇒ β − d

1− ρ
= (N∗ − θ) (1−N∗) (11)

for System (7)-(8) must be satisfied, and so, we see that System (7)-(8) has no interior equilibrium
if d ≥ β and

N∗ = 1+θ
2 ±

√
(1−θ)2− 4(β−d)

1−ρ
2 if (1−θ)2

4 > (β−d)
1−ρ > 0

I∗ = N∗(N∗−θ)(1−N∗)
β ,

S∗ = N∗ d−ρ(N
∗−θ)(1−N∗)
β

[
= ρN∗ (N∗−θ2)(N∗−K2)

β if (1−θ)2
4 > d

ρ

]
.

System (7)-(8) may have the following two interior equilibria N∗i , i = 1, 2, i.e.,

θ < S∗1 + I∗1 = N∗1 =
1 + θ

2
−

√
(1− θ)2 − 4(β−d)

1−ρ

2
<

1 + θ

2

11



and

1 + θ

2
< S∗2 + I∗2 = N∗2 =

1 + θ

2
+

√
(1− θ)2 − 4(β−d)

1−ρ

2
< 1.

The Jacobian matrix of Model (7)-(8) evaluated at the interior equilibrium (S∗, I∗) can be repre-
sented as follows

J(S∗,I∗) =

 S∗
[
1 + θ − 2N∗ + βI∗

(N∗)2

]
S∗
[
1 + θ − 2N∗ − βS∗

(N∗)2

]
I∗
[
β + ρ(1 + θ)− 2ρN∗ + βI∗

(N∗)2

]
I∗
[
ρ(1 + θ − 2N∗)− βS∗

(N∗)2

]  (12)

where N∗ = S∗ + I∗. Its two eigenvalues λi, i = 1, 2 satisfy the following equalities:

λ1 + λ2 = (S∗ + ρI∗)(1 + θ − 2N∗) and λ1λ2 =
βS∗I∗(1− ρ)(2N∗ − 1− θ)

N∗
. (13)

Thus, if an interior equilibrium (S∗, I∗) exists, it would be locally asymptotically stable provided
that N∗ > 1+θ

2 , or a saddle if N∗ < 1+θ
2 . We conclude that System (7)-(8) has either no interior or

two interior equilibria N∗i , i = 1, 2 and if we happen to have two interior equilibria then we must
have that N∗1 is always a saddle and N∗2 is always a source.

2. The following equation

N∗ = S∗ + I∗ =
d

β
+ (1− ρ)

(N∗ − θ) (1−N∗)
β

⇒ β

1− ρ
(N∗ − d

β
) = (N∗ − θ) (1−N∗) (14)

for System (9)-(10). According to Corollary 2.1, we have N∗ < 1, thus (14) implies that System
(9)-(10) has no interior equilibrium if d

β ≥ 1 and

N∗ = 1+θ
2 −

β
2(1−ρ) ±

√
(1+θ− β

1−ρ )
2
+4( d

1−ρ−θ)
2 if

(1+θ− β
1−ρ )

2

4 > θ − d
1−ρ

= 1+θ
2 −

β
2(1−ρ) ±

√
(1−θ− β

1−ρ )
2−4 d−θβ1−ρ

2 if
(1+θ− β

1−ρ )
2

4 > θ − d
1−ρ

I∗ = (N∗−θ)(1−N∗)
β ,

S∗ = d−ρ(N∗−θ)(1−N∗)
β

[
= ρ (N∗−θ2)(N∗−K2)

β if (1−θ)2
4 > d

ρ

]
.

System (9)-(10) may have the following two interior equilibria:

S∗1 + I∗1 = N∗1 =
1 + θ

2
− β

2(1− ρ)
−

√(
1 + θ − β

1−ρ

)2

+ 4( d
1−ρ − θ)

2
<

1 + θ

2
− β

2(1− ρ)

and

1 + θ

2
− β

2(1− ρ)
< S∗2+I∗2 = N∗2 =

1 + θ

2
− β

2(1− ρ)
+

√(
1 + θ − β

1−ρ

)2

+ 4( d
1−ρ − θ)

2
< 1+θ− β

(1− ρ)

if
1 + θ

2
>

β

2(1− ρ)
,

(
1 + θ − β

1− ρ

)2

> 4(θ − d

1− ρ
) and θ >

d

1− ρ
.

12



On the other hand if θ < d
1−ρ then System (9)-(10) may have at most one interior equilibrium,

namely,

S∗2 + I∗2 = N∗2 =
1 + θ

2
− β

2(1− ρ)
+

√(
1 + θ − β

1−ρ

)2

+ 4( d
1−ρ − θ)

2
.

The Jacobian matrix of System (9)-(10) evaluated at the interior equilibrium (S∗, I∗) is represented
as

J(S∗,I∗) =

(
S∗(1 + θ − 2N∗) S∗(1 + θ − β − 2N∗)

I∗(β + ρ(1 + θ)− 2ρN∗) ρI∗(1 + θ − 2N∗)

)
(15)

where N∗ = S∗ + I∗. Its two eigenvalues λi, i = 1, 2 satisfy the following equalities:

λ1 + λ2 = (S∗ + ρI∗)(1 + θ − 2N∗) and λ1λ2 = βS∗I∗ [(1− ρ)(2N∗ − 1− θ) + β] . (16)

Thus, when the interior (S∗, I∗) exists, it is locally asymptotically stable as long as N∗ > 1+θ
2

while a saddle whenever N∗ < 1+θ
2 −

β
2(1−ρ) . It is a source if

1 + θ

2
− β

2(1− ρ)
< N∗ <

1 + θ

2
.

If System (9)-(10) has two interior equilibria N∗i , i = 1, 2 then using their expressions and the
criteria for interior stability allow us to conclude that N∗1 is always a saddle while N∗2 can be a
sink or source. If, on the other hand, System (9)-(10) has only one interior equilibrium, namely
N∗2 , then we see that it can be a sink or source depending on parameter values.

The above discussion can be summarized in the following theorem:

Theorem 3.2 (Interior equilibria of Models). Let Ei1 = (S∗1 , I
∗
1 ) and Ei2 = (S∗2 , I

∗
2 ) then existence

and stability conditions for the interior equilibria of System (7)-(8) are listed in Table 2.

Interior Equilibrium Condition for existence Condition for local asymptotically stable

Ei1 0 < β−d
1−ρ <

(1−θ)2
4 < d

ρ or

0 < β−d
1−ρ <

d
ρ <

(1−θ)2
4 Always a saddle

Ei2 0 < β−d
1−ρ <

(1−θ)2
4 < d

ρ or

0 < β−d
1−ρ <

d
ρ <

(1−θ)2
4 Always locally asymptotically stable.

Table 2: The local stability of interior equilibrium for System (7)-(8)

Existence and stability conditions for the interior equilibria of System (9)-(10) are listed in Table 3.
Sufficient conditions leading to no interior equilibrium and the related global dynamics of System (7)-(8)
and System (9)-(10) are listed in Table 4.

Proof. The above discussion shows that a necessary condition for System (7)-(8) and System (9)-(10) to
a have interior equilibrium is that d

β < 1 while the existence of interior equilibrium for System (7)-(8)

and System (9)-(10) can be classified with the conditions d
ρ >

(1−θ)2
4 and d

ρ <
(1−θ)2

4 .

If d
ρ >

(1−θ)2
4 then System (7)-(8) and System (9)-(10) have no boundary equilibria E0,θ and E0,1 on

I-axis and therefore
h(N) = ρ(N − θ)(1−N)− d < 0 for all N > 0.
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Interior
Equilibrium

Condition for existence Condition for stability

Ei1
min{ d

1−ρ ,
d
β ,

β+ρ−1
1−ρ } < θ and (a)

d
ρ >

(1−θ)2
4 or (b) d

ρ <
(1−θ)2

4 , N1 < θ2

Always a saddle

Ei2

Case (1):min{ d
1−ρ ,

d
β ,

β+ρ−1
1−ρ } < θ and

(a) d
ρ >

(1−θ)2
4 or (b)

d
ρ <

(1−θ)2
4 , N2 < θ2 or (c)

d
ρ <

(1−θ)2
4 , N2 > K2;

Case (2):1 > d
β > θ and (a) d

ρ >
(1−θ)2

4

or (b) d
ρ <

(1−θ)2
4 , N2 < θ2 or (c)

d
ρ <

(1−θ)2
4 , N2 > K2

Locally asymptotically stable if N∗2 >
1+θ

2
while it’s a source if

1+θ
2 −

β
2(1−ρ) < N∗2 <

1+θ
2

Table 3: The local stability of interior equilibrium for System (9)-(10)

Necessary conditions for the existence of interior equilibrium for System (7)-(8) and System (9)-(10) are
tied in to the existence of solutions of the following equations:

β − d
1− ρ

= (N − θ) (1−N) , 0 <
β − d
1− ρ

<
(1− θ)2

4
<
d

ρ
(17)

and

β
1−ρ (N − d

β ) = (N − θ) (1−N) , dβ > θ, or

β
1−ρ (N − d

β ) = (N − θ) (1−N) , 1+θ
2 > β

2(1−ρ) ,
(

1− θ − β
1−ρ

)2

> 4(βθ−d)
1−ρ > 0.

(18)

Therefore, if d
ρ >

(1−θ)2
4 then System (7)-(8) and System (9)-(10) have no interior if d

β ≥ 1 or if the
following conditions

β − d
1− ρ

>
(1− θ)2

4
for System (7)− (8)

and (
1− θ − β

1− ρ

)2

<
4(βθ − d)

1− ρ
< 0 for System (9)− (10)

for each model hold.

If dρ <
(1−θ)2

4 , then System (7)-(8) and System (9)-(10) have boundary equilibria E0,θ and E0,1 on the
I-axis. Additional conditions are needed to guarantee the existence of interior equilibrium for System
(7)-(8) and System (9)-(10). System (7)-(8) and System (9)-(10) are discussed separately.

1. For System (7)-(8), if β−d
1−ρ >

(1−θ)2
4 nEquation (17) should have solutions in the interval (0, θ2) or

(K2, 1) since

S∗ = N∗
d− ρ(N∗ − θ) (1−N∗)

β
= ρN∗

(N∗ − θ2) (N∗ −K2)

β
> 0.

The schematic nullclines for System (7)-(8) when β−d
1−ρ <

(1−θ)2
4 are illustrated in Figure 1. Two

interior equilibria occur whenever β−d
1−ρ <

d
ρ <

(1−θ)2
4 with one interior a saddle (i.e., the horizontal

14



Cases System (7)-(8) System (9)-(10)

No interior equilibrium

Case (1): d
β ≥ 1; Case (2):

β−d
1−ρ >

(1−θ)2
4 ; Case (3):

d
ρ <

β−d
1−ρ <

(1−θ)2
4 .

Case (1): d
β ≥ 1; Case (2):

βθ−d
1−ρ >

(1−θ− β
1−ρ )2

4 ; Case (3):

min{ d
1−ρ ,

d
β ,

β+ρ−1
1−ρ } < θ, dρ <

(1−θ)2
4 , θ2 < N∗i < K2, i = 1, 2;

Case (4): d
β > θ, dρ <

(1−θ)2
4 , θ2 < N2 < K2

Disease-free dynamics d
β ≥ 1 d

β ≥ 1

Susceptible-free dynamics min{β, (1−θ)2
4 } > d

ρ .

d
ρ < min{βK2,

(1−θ)2
4 } and

Conditions of Case (2) or Case
(3) or Case (4)

Disease-driven extinction (1−θ)2
4 < min{β−d1−ρ ,

d
ρ}.

d
ρ <

(1−θ)2
4 and

βθ−d
1−ρ >

(1−θ− β
1−ρ )2

4 .

Permanence
N(0) ∈ (θ2,K2) and

β < d
ρ < min{βρ ,

(1−θ)2
4 }.

N(0) ∈ (θ2,K2) and

βK2 <
d
ρ < min{βρ ,

(1−θ)2
4 }.

Table 4: No interior equilibrium and the related global dynamics for System (7)-(8) and System (9)-(10)

line intercepts in the green region of (N − θ)(1 − N)) and the other a sink (i.e., the horizontal
line intercepts in the blue region of (N − θ)(1 − N)). There is no interior equilibrium when the

horizontal line intercepts (crosses) the black region of (N − θ)(1−N), i.e., d
ρ <

β−d
1−ρ <

(1−θ)2
4 .

2. For System (9)-(10), whenever βθ−d
1−ρ <

(1−θ− β
1−ρ )2

4 Equation (18) should have solutions in the

interval (0, θ2) or (K2, 1) since

S∗ =
d− ρ(N∗ − θ) (1−N∗)

β
= ρ

(N∗ − θ2) (N∗ −K2)

β
> 0.

The schematic nullclines for System (9)-(10) when βθ−d
1−ρ <

(1−θ− β
1−ρ )2

4 are found in Figure 2.

There are two cases depending on the sign of d
β − θ: (1) If d

β > θ (see Figure 2(a)), two interior
equilibria occur whenever

1 + θ

2
>

β

2(1− ρ)
,

(
1− θ − β

1− ρ

)2

>
4(βθ − d)

1− ρ
> 0

and
N∗1 < θ2, N

∗
2 < θ2 or N∗2 < K2

where N∗1 is always a saddle (i.e., the line β
1−ρ (N− d

β ) intercepts the green region of (N−θ)(1−N))

and N∗2 can be sink (i.e., the line intercepts the red region of (N − θ)(1−N)) or source (i.e., the
line intercepts the blue region of (N − θ)(1 − N)). If Condition N∗2 < θ2 or N∗2 < K2 does not
hold, i.e., θ2 < N∗2 < K2 then System (9)-(10) has only one interior equilibrium N∗1 , a saddle. (2)
If d

β < θ (see Figure 2(b)) then only one interior equilibria occurs whenever

θ <
d

β
< 1, θ <

d

1− ρ
and [N∗2 < θ2 or N∗2 < K2]
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Figure 1: Schematic nullclines for System (7)-(8) when β−d
1−ρ <

(1−θ)2
4

. Potential (two) interior equilibria are the intercepts

of the horizontal line β
1−ρ and the curve (N − θ)(1 −N) with their stability determined by the location of the intercept.

The green region of (N − θ)(1 − N) is a saddle and the blue region is a sink. Two interior equilibria (see the purple

horizontal line) occur whenever β−d
1−ρ <

d
ρ
<

(1−θ)2
4

where one interior is saddle and the other one a sink.

and this interior equilibrium N∗2 can be a sink or a source, depending on parameters’ values. There
is no interior if the line intercepts the black region of (N − θ)(1−N) when

d

β
< θ, θ2 < N∗2 < K2

or (
1− θ − β

1− ρ

)2

<
4(βθ − d)

1− ρ
.

In short, sufficient conditions for the existence of interior equilibria and their stability have been identi-
fied and listed in Table 2 for System (7)-(8) and in Table 3 for System (9)-(10).

The above analysis has identified conditions (sufficient) that guarantee the absence of interior equi-
libria for System (7)-(8) and System (9)-(10); listed inTable 4. In the absence of interior equilibrium,
we can conclude thanks to the Poincaré-Bendixson Theorem (Guckenheimer & Holmes 1983), that a
trajectory starting with arbitrary initial conditions in X converge to its locally asymptotically stable
boundary equilibria since System (7)-(8) and System (9)-(10) support each a global compact attractor
{(S, I) ∈ X : 0 ≤ S + I ≤ 1} in X. The fact that E0,0 is always an attractor results according to
Proposition 3.1 in the following three cases:

1. Disease-free dynamics that corresponds to the case where E0,0 and E1,0 are the only locally
asymptotically stable boundary equilibria while other existing boundary equilibria are unstable.
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< θ.
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(b) Schematic nullclines for System (9)-(10) when d
β
> θ.

Figure 2: Schematic nullclines for System (9)-(10) when βθ−d
1−ρ <

(1−θ− β
1−ρ )

2

4
. Potential interior equilibria are intercepts

of the line β
1−ρ (N − d

β
) and the curve (N − θ)(1 − N) with their stability determined by the location of the intercept.

The green region of (N − θ)(1 − N) is a saddle; the red region is a source and the blue region is a sink. The left graph

corresponds to the case when d
β
< θ: one (see the black line β

1−ρ (N − d
β

)) or two interior equilibria (see the purple or dark

green line β
1−ρ (N − d

β
)) are possible. The right graph corresponds to the case when 1 > d

β
> θ, potentially one interior

equilibria (see the dark green or purple line β
1−ρ (N − d

β
)).

This implies that β ≥ d is a sufficient condition in support of disease-free dynamics within System
(7)-(8) and System (9)-(10).

2. Susceptible-free dynamics that corresponds to the case where E0,0 and E0,1 are the only locally
asymptotically stable boundary equilibria while other existing boundary equilibria (including those
on the I-axis) are unstable. This implies that d

β < ρK2 and d
ρ < (1− θ)2/4 for System (7)-(8) and

System (9)-(10), in addition to the conditions of non-existence of interior equilibrium.

3. Disease-driven extinction that corresponds to the case where E0,0 is the only locally asymp-
totically stable boundary equilibria provided that there is no boundary equilibria on the I-axis a

result based on Theorem 3.1. This implies that ρK2 <
d
β < 1 and d

ρ >
(1−θ)2

4 for System (7)-(8)

and System (9)-(10) in conjunction to the conditions that there are no interior equilibrium.

Detailed conditions on the three cases discussed above are listed in Table 4.

Notes: Theorem 3.2 implies the following:

1. Small values of ρ make System (7)-(8) and System (9)-(10) prone to disease-driven extinction since

one necessary condition for disease-driven extinction requires that d
ρ > (1−θ)2

4 according to
Theorem 3.1. This also suggests that vertical transmission may save a species from extinction
provided that the reproductive ability of infectives is large enough (some additional conditions
must be met).

2. System (7)-(8) has simpler dynamics than System (9)-(10). In fact, System (7)-(8) has no interior
equilibria or two interior equilibria (a saddle and a sink) while System (9)-(10) may have one or
two interior equilibria.
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4. Classifications on dynamics and related bifurcation diagrams

This section focuses on the classification of the dynamics and related bifurcations of System (7)-(8)
and System (9)-(10). We define Rh0 = β

d to be the horizontal transmission reproduction number and
Rv0 = ρ

d as the vertical transmission reproduction number.

4.1. The SI model with frequency-dependent horizontal transmission

For System (7)-(8), notice that

β − d
1− ρ

<
d

ρ
⇒ Rv0 =

ρ

d
>

1

β
.

Thus, if System (7)-(8) has boundary equilibria on the I-axis, i.e., d
ρ < (1−θ)2

4 , then the no interior

equilibria condition β−d
1−ρ > (1−θ)2

4 says that the boundary equilibrium E0,θ is a source while E0,1 is
locally asymptotically stable according to Proposition 3.1 and the fact that

β − d
1− ρ

>
d

ρ
⇒ Rv0 =

ρ

d
<

1

β
.

Therefore, System (7)-(8) have two interior equilibria provided that

0 <
β − d
1− ρ

<
(1− θ)2

4
<
d

ρ
⇒ Rv0 =

ρ

d
< min{ 1

β
,

4

(1− θ)2
}

or

0 <
β − d
1− ρ

<
d

ρ
<

(1− θ)2

4
⇒ 4

(1− θ)2
< Rv0 =

ρ

d
<

1

β
.

Corollary 2.1, Proposition 3.1, and Theorem 3.1-3.2 lead to the study of three cases for System
(7)-(8):

1. The disease-driven extinction occurs in the situation depicted in Figure 3. First, no interior

equilibrium, which requires β−d
1−ρ > (1−θ)2

4 . Within Figure 3, we see that the existence and the

stability of boundary equilibria requires Rv0 = ρ
d < 4

(1−θ)2 and d
β < 1 (i.e.,Rh0 > 1). Thus, a

sufficient condition that makes Figure 3 possible is

max{ρ
d
,

1− ρ
β − d

} < 4

(1− θ)2
and Rh0 =

β

d
> 1.

System (7)-(8) may also support disease-driven extinction whenever it supports an interior equi-
librium. In such a case, disease-driven extinction occurs as a result of catastrophic events, that
is, when a stable limit cycles merges with the adjacent saddle, leading to the annihilation of the
susceptible and infected sub-populations.

2. An endemic situation occurs whenever System (7)-(8) supports the interior equilibria shown in

Figure 4. A necessary condition is that β−d
1−ρ <

(1−θ)2
4 and thus we can conclude that the sufficient

condition leading to Figure 4(a) is

Rh0 =
ρ

d
<

4

(1− θ)2
<

1− ρ
β − d

and ρ <
d

β
< 1 (or 1 < Rh0 <

1

ρ
)

while the sufficient condition leading to Figure 4(b) is

4

(1− θ)2
<

1− ρ
β − d

< Rh0 =
ρ

d
and ρ <

d

β
< 1 (or 1 < Rh0 <

1

ρ
).
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Figure 3: Schematic phase plane for System (7)-(8) when it experiences the possibility of disease-driven extinction.

3. Disease-free or susceptible-free dynamics occur when System (7)-(8) has no interior equilibrium
with either E1,0 or E0,1 locally asymptotically stable, as shown in Figure 5. Figure 5(a) highlights
a disease-free situation for which the condition

Rh0 ≥ 1 and
4

(1− θ)2
< Rv0 =

ρ

d

is sufficient.

Figure 5(b) highlights a susceptible-free state for which sufficient the condition is

1− ρ
β − d

<
4

(1− θ)2
< Rv0 =

ρ

d
and

d

β
< ρ (orRh0 >

1

ρ
).

The vertical transmission reproduction number, Rv0 = ρ
d , and the horizontal transmission reproduction

number, Rh0 = β
d help, using the above discussions and the analytical results in previous sections,

understand the effects of parameters ρ, d, β, θ on the dynamics of System (7)-(8). The results can briefly
summarized as follows:

1. A horizontal transmission reproduction number Rh0 less than 1 supports disease-free dynamics for
System (7)-(8) (see Theorem 3.2 when combined with the relevant results in Table 4).

2. Both initial condition N(0) = S(0) + I(0) and the value of the vertical transmission reproduction
number, Rv0 , are important in determining global dynamics (see Corollary 2.1 and Theorem 3.2).
We can conclude that large values of Rv0 tend to lead to susceptible-free dynamics; while interme-
diate values of Rv0 tends lead to the coexistence of susceptibles and infectives; and small values of
Rv0 tends to lead to disease-driven extinction.

3. The SI model with frequency-dependent transmissions or System (7)-(8) supports relatively simple
equilibrium dynamics. It can support no interior or two interior equilibria, with one of the interior
equilibrium always stable (see Theorem 3.2, Table 3-4 and Figure 1).
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Figure 4: Schematic phase plane for System (7)-(8) when it has the endemic occurs.
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Figure 5: Schematic phase plane for System (7)-(8) when it has no coexistence of susceptibles and infectives.

4.2. SI model with density-dependent horizontal transmissions

In this subsection, the dynamics and potential bifurcations of the SI model, with density-dependent
horizontal transmission, given by System (9)-(10), are classified. The classification of stability of bound-

ary equilibria for System (9)-(10) on the I-axis E0,θ and E0,1 when (1−θ)2
4 > d

ρ can be determined from

the signs of θ2 − d
ρβ and K2 − d

ρβ . Since

θ < θ2 =
1 + θ

2
−
√

(1− θ)2 − 4d/ρ

2
< K2 =

1 + θ

2
+

√
(1− θ)2 − 4d/ρ

2
< 1.

Hence, the signs can be determined by solving Rv0 = ρ
d from the equations θ2 = d

ρβ and K2 = d
ρβ , i.e.,

1 + θ

2
−
√

(1− θ)2 − 4d/ρ

2
=

d

ρβ
⇒ Rv0 =

ρ

d
=

1 + θ − 4β ±
√

(4β − 1)2 + (1− θ)2 − 1− 8βθ

2βθ

and

1 + θ

2
+

√
(1− θ)2 − 4d/ρ

2
=

d

ρβ
⇒ ρ

d
=

1 + θ − 4β ±
√

(4β − 1)2 + (1− θ)2 − 1− 8βθ

2βθ
.

Letting c1 =
1+θ−4β−

√
(4β−1)2+(1−θ)2−1−8βθ

2βθ and c2 =
1+θ−4β+

√
(4β−1)2+(1−θ)2−1−8βθ

2βθ leads, making

use of Proposition 3.1, to the following (a two dimensional bifurcation diagram example is shown in
Figure 6 when β = 0.1 and θ = 0.15) results:
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1. Black area in Figure 6: E0,θ is a saddle and E0,1 is locally asymptotically stable if

Rv0 =
ρ

d
> max

{
4

(1− θ)2
, c2

}
.

2. Cyan area in Figure 6: E0,θ is a source and E0,1 is locally asymptotically stable if

max

{
4

(1− θ)2
, c1

}
< Rv0 =

ρ

d
< c2.

3. Green area in Figure 6: E0,θ is a source and E0,1 is a saddle if

4

(1− θ)2
< Rv0 =

ρ

d
< c1.

4. White area in Figure 6: there is no boundary equilibrium on I-axis, i.e.,

Rv0 =
ρ

d
<

4

(1− θ)2
.

We therefore identify only four cases for System (9)-(10):

1. Case one: There is no boundary equilibrium E0,θ and E0,1 when the reproduction number of vertical
transmission Rv0 = ρ

d is small enough, i.e., Rv0 <
4

(1−θ)2 . For a certain range of parameter values,

System (9)-(10) can have a unique interior attractor, which can be an interior equilibrium (see
Figure 7; where within the the sub-figure (a) corresponds to the white area with blue dots, i.e.,
Rh0 = β

d >
1
θ , and (b) corresponds to the white area with red dots, i.e., 1 < Rh0 < 1

θ , below the
green area of Figure 6) or a stable limit cycle through Hopf-Bifurcation. This is the case when
System (9)-(10) can support disease-driven extinction as it was the case for System (7)-(8).

2. Case two: There are boundary equilibria E0,θ and E0,1 when the reproduction number of vertical
transmission Rv0 = ρ

d is large enough, i.e., 4
(1−θ)2 < Rv0 and the reproduction number of horizontal

transmission has a large value, i.e., Rh0 >
1
θ . An example of this case is shown in the black area

[whose dynamics is corresponding to the sub-figure (a) of Figure 8] and the green area [whose
dynamics is corresponding to the sub-figure (b) of Figure 8] on the right of the purple vertical line
d = 0.015 of Figure 6.

3. Case three: There are boundary equilibria E0,θ and E0,1 and the reproduction number of horizontal
transmission has intermediate values, i.e., 1 < Rh0 <

1
θ . An example of this case is shown in the

green area [whose dynamics corresponds to the sub-figure (a) of Figure 9] and the black area [whose
dynamics is corresponding to the sub-figure (b) of Figure 9] on the left of the purple vertical line
d = 0.015 of Figure 6.

4. Case four: There are boundary equilibria E0,θ and E0,1 and the reproduction number of vertical

transmission has intermediate values, i.e., max

{
4

(1−θ)2 , c1

}
< Rh0 < c2. An example of this case

is shown in the cyan area of Figure 6 whose dynamics on the right side of the purple vertical line
d = 0.015, i.e., the reproduction number of horizontal transmission has large values, i.e., Rh0 >

1
θ .

Dynamics represented by the sub-figure (a) of Figure 10 and the dynamics on the left side of the
purple vertical line d = 0.015, i.e., 1 < Rh0 <

1
θ , represented by the sub-figure (b) of Figure 10.
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The above discussion and the associated analytical results, including Proposition 3.1, Theorem 2.1, 3.1,
3.2 lead us to conclude that the effects of parameters ρ, d, β, θ on the dynamics of System (9)-(10) can
be summarized as follows:

1. The values of the reproduction number of horizontal transmission Rh0 = β
d and the reproduction

number of vertical transmission Rv0 = ρ
d determine the dynamics of System (9)-(10):

• If 1 < Rh0 < 1
β and Rv0 <

4
(1−θ)2 , then System (9)-(10) has no boundary equilibrium on the

I-axis and it may have the disease-driven extinction in certain range of parameter values.

• If System (9)-(10) has the intermediate values of Rv0 , i.e., max

{
4

(1−θ)2 , c1

}
< Rv0 < c2, then

the system tends to have susceptible-free dynamics.

• The values of Rh0 determines whether System (9)-(10) can have unique interior equilibrium
(Rh0 >

1
β ) or two interior equilibria (1 < Rh0 <

1
β ).

2. The large values of ρ, θ, β and the small values of d can destablize System (9)-(10) (see Figure 11).

3. System (9)-(10) can have a stable limit cycle; an example is included in Figure 12.

5. Diffusive instability

The dynamics and evolution of host-pathogen or host-parasite systems is of theoretically challenging
for factors that include the impact of recurrent disease invasion, the ability of a parasite or pathogen to
modify a host’s mobility-tied fitness, or reducing life span, or limiting/eliminating reproductive ability.
Dispersal is capable of shaping the boundaries of habitats through increases or reductions on the size of
the sphere-of-influence of infectious hosts, a cumulative process possibly altering infection rates (reduc-
tions or increases in effective contact rates), or its ability to generate clusters, or disease-driven selection
of particular behavioral types (Altizer 2010; Diaz 2010; Levin 1974; Murray 2003).

Diffusive instability arises when diffusion or migration destabilizes stable situations (Segel and Jack-
son 1972; Levin 1974; Segel and Levin 1976). It may emerge as a result of the dynamics of meta-
population systems when coupled by dispersal or reaction-diffusion (Diaz 2010; Levin 1974; Murray
2003). The possible emergence of diffusive instability from two-patch systems, coupled by dispersal,
when the local dynamics are governed by variants of the general SI-FD or SI-DD systems, is briefly
address in this section.

Segel and Jackson (1972) using a simple predator-prey model studied the possibility of diffusive
instability in predator-prey systems. Hence, first, some classical results addressing the emergence of
diffusive instability in predator-prey systems, are revisited. Segel and Jackson (1972) showed that the
addition of random dispersal was enough to generate instability from an otherwise initially stable uniform
steady-state distribution. Diffusive instability, as shown by Levin (1974), also arises from the effects of
dispersal on predator-prey interactions under the pressure of Allee effects. Segel and Levin (1976) used
approximate methods and a multiple-time scale theoretical approach in their development of a small
amplitude nonlinear theory of prey-predator interactions under random dispersal; a process modeled
via diffusion-like terms in discrete and continuous settings. Segel and Levin (1976) showed that disper-
sal can destabilize spatially uniform states; diffusive instability moving the system to new nonuniform
steady states. Levin and Segel (1976 & 1985) noted that the emergence of diffusive instabilities may
explain some of the spatial irregularities observed in nature. The possibility of diffusive instability in
general SI models is briefly discussed since identifying conditions that lead to diffusive instability on
systems where disease and dispersal play a non-independent role are explored. The discussion below,
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we hope, will instigate further research on the study of diffusive instability in the settings introduced in
this manuscript.

A general SI-model can be represented abstractly via the following set of equations

dS
dt = f(S, I)
dI
dt = g(S, I),

(19)

operating under the assumption that System (19) has a local asymptotically stable interior equilibrium
(S∗, I∗), an assumption formulated using the inequalities

fS + gI < 0 and fSgI − fIgS > 0 (20)

where fS = ∂f
∂S (S∗, I∗), fI = ∂f

∂I (S∗, I∗), gS = ∂g
∂S (S∗, I∗), gI = ∂g

∂I (S∗, I∗).
The inclusion of dispersal leads, for example, to the study of symmetric two-patch models. An

example of such a system is given by the following set of equations:

dS1

dt = f(S1, I1) + lS(S2 − S1)

dI1
dt = g(S1, I1) + lI(I2 − I1)

dS2

dt = f(S2, I2) + lS(S1 − S2)

dI2
dt = g(S2, I2) + lI(I1 − I2)

(21)

where lS is the dispersal rate of the S-class and lI is the dispersal rate of I-class. A typical pseudo
diffusion model analog, involving constant diffusion coefficients, is given by the following system:

∂S
dt = DS∆S + f(S, I)

∂I
dt = DI∆I + g(S, I)

(22)

where ∆ is the Laplacian; DS , DI are the constant diffusion coefficients for susceptibles and infectives,
respectively. We say the SI Model (19) supports diffusive instability (or Turing Effects) if (S∗, I∗) is
a locally asymptotically stable interior equilibrium of System (19) but (S∗, I∗, S∗, I∗) becomes unstable
when embedded in the symmetric two-patch model given by System (21) for certain values of lI , lS . We
can achieve similar results as long as the (S∗, I∗) equilibrium is unstable for the Diffusion System (22)
at least for some values of DS , IS . The following theorem provides conditions that support the diffusive
instability of System (7)-(8) and System(9)-(10):

Theorem 5.1 (Diffusive instability). The general SI model (19) can have diffusive instability only
if fSgI < 0. In particular, System (7)-(8) can support diffusive instability provided that the following
inequalities hold

β − d
1− ρ

< min

{
d

ρ
,

(1− θ)2

4

}
and

1 + θ

2
+

√
(1− θ)2 − 4(β−d)

1−ρ

2
<

(1 + θ) +
√

(1 + θ)2 − 3θ

3
.

System (9)-(10) does not support diffusive instability.

Proof. Recall that the general SI model (19) has locally asymptotically stable interior equilibrium (S∗, I∗)
if

fS + gI < 0 and fSgI − fIgS > 0.

A simple calculation shows that (S∗, I∗, S∗, I∗) is an interior equilibrium of its two-patch model (21)
with its stability being determined by the sign of
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Λ = fSgI − fIgS − 2(fSlI + gI lS) + 4lSlI .

Thus, diffusive instability can occur only if Λ < 0 which indicates that fSgI < 0, that is, if either
fS or gI , is positive then (fSlI + gI lS) > 0 can be made positive and large enough with the right

combination of lS , lI ; in other words, we conclude that for these parameter values, we have that Λ < 0.
For example, if fS > 0 then we can select the dispersal rate of the I-class lI large enough and the dispersal
rate of S-class lS small so that the condition Λ < 0 is met. Now, under gI > 0 diffusive instability may
be possible as long as lS is large and lI is small.

Relying on the discussion in Section 8.9 of Brauer and Castillo-Chavez (2012), we conclude that
(S∗, I∗) is a steady state of its reaction-diffusion model, namely Model (22), where the necessary and
sufficient conditions for diffusive instability are given by

fS + gI < 0, fSgI − fIgS > 0 and fSDI + gIDS >
√
DSDI (fSgI − fIgS)

which also implies that fSgI < 0.
From Theorem 3.2, we know that if an interior equilibrium (S∗, I∗) is locally asymptotically stable

then for System (7)-(8) or System (9)-(10).

N∗ = S∗ + I∗ >
1 + θ

2
.

Thus, for System (7)-(8), its Jacobian matrix (12) evaluated at the interior equilibrium (S∗, I∗) gives

fS = S∗
[
1 + θ − 2N∗ +

βI∗

(N∗)2

]
and gI = I∗

[
ρ(1 + θ − 2N∗)− βS∗

(N∗)2

]
which implies that gI < 0 since N∗ > 1+θ

2 . Therefore the possibility of diffusive instability in System
(7)-(8) requires that fS > 0. Since

I∗ =
N∗(N∗ − θ) (1−N∗)

β
and N∗ =

1 + θ

2
+

√
(1− θ)2 − 4(β−d)

1−ρ

2
>

1 + θ

2
,

we have

fS > 0⇒ 1 + θ − 2N∗ +
βI∗

(N∗)2
= 1 + θ − 2N∗ +

(N∗ − θ) (1−N∗)
N∗

=
−3(N∗)2 + 2(1 + θ)N∗ − θ

N∗
> 0.

Since

−3(N∗)2 + 2(1 + θ)N∗ − θ = 0⇒ N∗ =
(1 + θ)±

√
(1 + θ)2 − 3θ

3
,

therefore fS > 0 requires that β−d
1−ρ < min

{
d
ρ ,

(1−θ)2
4

}
for the existence of N∗ based on Theorem 3.2

and

N∗ =
1 + θ

2
+

√
(1− θ)2 − 4(β−d)

1−ρ

2
<

(1 + θ) +
√

(1 + θ)2 − 3θ

3
.

For System (9)-(10), its Jacobian matrix (15) evaluated at (S∗, I∗) gives

fS = S∗(1 + θ − 2N∗) and gI = ρI∗(1 + θ − 2N∗)

which implies that fS < 0 and gI < 0 since N∗ > 1+θ
2 . Therefore, we conclude that System (9)-(10)

does not support diffusive instability.
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Remark: A direct application of the proof for Theorem 5.1 leads to the following statements:

1. If fS > 0 and gI < 0, then diffusive instability for the patchy Model (21) requires that lI
lS

is large

enough and lS <
fS
2 while diffusive instability for the reaction-diffusion Model (22) requires that

DI
DS

is large enough.

2. If fS < 0 and gI > 0, then diffusive instability for the patchy Model (21) requires lS
lI

to be large

enough and lI <
gI
2 while diffusive instability for the reaction-diffusion Model (22) requires DS

DI
to

be large enough.

In addition, Theorem 5.1 indicates that the SI System (7)-(8) with frequency-dependent horizontal
transmission can support diffusive instability under certain conditions. For example, when System (7)-
(8) has β = 1, d = 0.85, ρ = 0.05, θ = 0.2, then it has two interior equilibria

Ei1 = (S∗1 , I
∗
1 ) = (0.4666247185, 0.08749213472) and Ei2 = (S∗2 , I

∗
2 ) = (0.5439015973, 0.1019815495)

where Ei1 is a saddle and Ei2 is locally asymptotically stable with

fS = 0.0830521552 > 0, fI = −0.7590531079, gS = 0.02446282446 and gI = −0.1334319123 < 0.

Thus if we choose lI
lS

(or DI
DS

) large enough and lS <
fS
2 then diffusive instability occurs.

These results agree with the study of predator-prey systems by Timm and Okubo (1992), which
suggest that the existence of diffusive instability in such systems may require density effects on intra-
specific coefficients and on a predator’s diffusivity that must be sufficiently larger when compared to the
prey’s. There is a critical value involving the ratio of the prey/predator diffusivities that must be crossed
before diffusive instability sets in. An alternative SI Model (23)-(24) with Allee effects and horizontal
and vertical transmission disease that can also support diffusive instability is given by the system

dS

dt
= S(S − θ) (1− S − I)− βSI (23)

dI

dt
= βSI − dI + ρI(I − θ) (1− S − I) (24)

with a locally asymptotically stable interior equilibrium (S∗, I∗) given by

fS = S∗(1−N∗ − S∗ + θ), fI = −S∗(S∗ + β − θ),
gS = I∗(−ρI∗ + β + ρθ), gI = ρI∗(1−N∗ − I∗ + θ)

. (25)

For example, when β = .1, θ = .2, d = 0.095, ρ = 0.001, System (26)-(27) has a unique locally asymptot-
ically stable interior equilibrium (S∗, I∗) = (0.95, 0.044) with

fS = −0.70680 < 0, fI = −0.8075, gS = 0.004406864 and gI = 0.000006864 > 0.

Thus, if we choose lS
lI

(or DS
DI

) large enough and lI <
gI
2 , then diffusive instability occurs. This suggests

that the existence of diffusive instability in (23)-(24) requires that susceptible’s diffusivity is sufficiently
larger than that of infectives with a critical value involving the ratio of the susceptible/infectives diffu-
sivities moving beyond a threshold after which diffusive instability sets in.

The SI System (26)-(27) with Allee effects and disease modified fitness studied by Kang and Castillo-
Chavez (2013a) is given by

dS

dt
= f(S, I) =

{ (S + ρI)(S + α1I − θ) (1− S − α2I)− βSI

0, if S = 0 and (α1I − θ) (1− α2I) ≤ 0
, (26)

dI

dt
= g(S, I) = βSI − dI, (27)
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where the assumptions of the model and the detailed biological meaning of parameters can be found in
Kang and Castillo-Chavez (2013a), cannot support diffusive instability. The model can have a locally
asymptotically stable interior equilibrium (S∗, I∗) with

fS = [2S∗ + (α1 + ρ)I∗ − θ] (1− S∗ − α2I
∗)− (S∗ + ρI∗)(S∗ + α1I

∗ − θ)− βI∗,

fI = [(ρ+ α1)S∗ + 2ρα1I
∗ − θ] (1− S∗ − α2I

∗)− α2(S∗ + ρI∗)(S∗ + α1I
∗ − θ)− βS∗,

gS = βI∗, gI = 0.

(28)

However, if we replace density-dependent transmission with frequency-dependent transmission in the SI
System (26)-(27) then we obtain the following SI System (29)-(30) by letting ρ = 0, α1 = α2 = 1:

dS

dt
= f(S, I) = S(N − θ)(1−N)− βSI

N
(29)

dI

dt
= g(S, I) =

βSI

N
− dI, (30)

who supports the unique locally asymptotically stable interior equilibrium

(S∗, I∗) = (
dN∗

β
,
N∗(N∗ − θ)(1−N)

β
) where

d

β
< 1, N∗ =

1 + θ +
√

(1− θ)2 − 4(β − d)

2

and

fS = ∂f
∂S

(S∗, I∗) = S∗
(
1 + θ − 2N∗ + βI∗

(N∗)2

)
, fI =

∂f
∂I

(S∗, I∗) = S∗
(
1 + θ − 2N∗ − βS∗

(N∗)2

)
< 0

gS = ∂g
∂S

(S∗, I∗) = β(I∗)2

(N∗)2 > 0, gI =
∂g
∂I

(S∗, I∗) = −βS∗I∗

(N∗)2 < 0

. (31)

Thus, System (29)-(30) can have diffusive instability if

fS > 0⇒ 1 + θ − 2N∗ +
βI∗

(N∗)2
= 1 + θ − 2N∗ +

βI∗

(N∗)2
=
−3(N∗)2 + 2(1 + θ)N∗ − θ

N
> 0.

Therefore, according to the proof of Theorem 5.1 and the discussion on System (7)-(8), we can conclude
that sufficient conditions leading to diffusive instability are that lI

lS
(or DI

DS
) is large enough and the

following inequalities hold

lS <
fS
2
,
d

β
< 1,

1 + θ +
√

(1− θ)2 − 4(β − d)

2
<

(1 + θ) +
√

(1 + θ)2 − 3θ

3
.

Since SI-disease and prey-predator interaction models share structural similarities, we first look at
the following two patch prey-predator model (32) with differential migration coefficients µ, ν introduced
by Levin (1974):

dxi
dt = xi(K − axi − byi) + µ(xj − xi) = f(xi, yi) + µ(xj − xi)

dyi
dt = yi(−L+ cxi + dyi) + ν(yj − yi) = g(xi, yi) + ν(yj − yi)

(32)

which supports the equilibrium:

x∗ = x̄1 = x̄2 =
Lb−Kd
bc− ad

, y∗ = ȳ1 = ȳ2 =
Kc− La
bc− ad
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and

fS = ∂f
∂xi

(x∗, y∗) = −ax∗ < 0, fI = ∂f
∂yi

(x∗, y∗) = −bx∗ < 0

gS = ∂g
∂xi

(x∗, y∗) = cy∗ > 0, gI = ∂g
∂yi

(x∗, y∗) = dy∗ > 0

. (33)

According to Theorem 5.1, we conclude that diffusive instability arises if ν < gI
2 , µν is large enough and

the following equalities hold

a

c
<
K

L
< min

{
b

d
,
a(b+ d)

d(a+ c)

}
, bc > ad.

Notice that the positivity of gI comes from the assumption that yi is able to survive without xi, i.e.,
yi → ∞ if yi(0) > L/d. If there is no Allee effects, i.e., d = 0, then the prey-predator Model (32)
does not have diffusive instability. However, if we replace a Holling-Type I functional response with a
Beddington-DeAngelis type functional response in the Prey-predator Model (32) with d = 0, then we
obtain the following two-patch prey predator model that can have diffusive instability :

dxi
dt = xi

(
K − axi − byi

1+h1xi+h2yi

)
+ µ(xj − xi) = f(xi, yi) + µ(xj − xi)

dyi
dt = yi

(
−L+ cxi

1+h1xi+h2yi

)
+ ν(yj − yi) = g(xi, yi) + ν(yj − yi)

(34)

which supports a unique locally asymptotically stable interior equilibrium (x∗, y∗) whenever

ch2 > bh1,
cK

a+ h1K
> L,µ = ν = 0

and

fS = ∂f
∂xi

(x∗, y∗) = x∗
(
−a+ bh1y

∗

(1+h1x∗+h2y∗)2

)
, fI = ∂f

∂yi
(x∗, y∗) = − bx∗(1+h1x

∗)
(1+h1x∗+h2y∗)2 < 0

gS = ∂g
∂xi

(x∗, y∗) = cy∗(1+h2y
∗)

(1+h1x∗+h2y∗)2 > 0, gI = ∂g
∂yi

(x∗, y∗) = − ch2x
∗y∗(1+h1x

∗)
(1+h1x∗+h2y∗)2 < 0

. (35)

For example, if K = .5, L = 0.01, c = 2.5, a = .1, h1 = 1.5, h2 = 1., b = 1, µ = ν = 0, then Prey-
predator Model (32) has a unique locally asymptotically stable interior equilibrium (x∗, y∗, x∗, y∗) =
(0.008084, 1.008, 0.008084, 1.008) with fS = 0.0022 > 0, gI = −0.005.

In this section, we have discussed diffusive instability in the context of five different SI-models and
three different Prey-predator models. So, what are the criterions and mechanisms leading to diffusive
instabilities? Comparisons between models supporting diffusive instability [SI-Models (7)-(8), (23)-(24),
(29)-(30); the prey-predator models (32), (34)] and models not supporting diffusive instability [SI-models
(9)-(10), (26)-(27); the prey-predator model (32) with d = 0] are summarized in Table 5.

6. Conclusion

Parasites and pathogens are sometimes effective “regulators of natural populations” (Anderson and
May 1979; Dwyer et al 1990). Hence, it is of theoretical and empirical interest to study when multiple
transmission modes are preferred; or whether pathogen/disease transmission depends on either host
population density or its frequency; or the role of small populations (Allee effects) on populations living
under the selection pressures placed by pathogens or parasites. Answers to such questions are needed to
assess the role and impact of selection on populations, communities and ecosystems. In this manuscript,
we explore the contributions of some of these factors on the dynamics of host-parasite interactions within
a controlled setting, namely a general SI model that includes: (a) Horizontally and vertically-transmitted
disease modes, (b) Net reproduction terms that account for the limitations posed by Allee effects, (c)
Disease induced death rates, and (d) Disease-driven reductions in reproduction ability. The analyses
carried out in the prior sections leads to the following conclusions and observations:
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• Density- versus frequency-dependent horizontal transmission: From Theorem 3.2, we
know that System (7)-(8) can have two interior equilibria, one a saddle and one a locally asymp-
totically stable equilibrium. System (9)-(10) can support stable limit cycles that emerge via Hopf-
Bifurcation (see Figure 6 and 12). In other words, the SI model with density-dependent horizontal
transmission turns out to support more complicated outcomes than its frequency-dependent coun-
terpart.

• Effects of ρ, β, d and θ: Rh0 = β
d is identified as the horizontal-transmission reproduction number

and Rv0 = ρ
d as the vertical-transmission reproduction number.

1. Theorem 2.1 and its Corollary 2.1 assert that for the SI System (7)-(8) and the SI System (9)-
(10), sufficiently large initial conditions (N(0) = S(0) + I(0)) and Rv0 can prevent extinction.

2. Proposition 3.1, Theorem 3.1 and Theorem 3.2 imply that whenever Rh0 ≤ 1 we can expect
disease-free dynamics in System (7)-(8) and System (9)-(10).

3. The SI-FD given by System (7)-(8) tends to support susceptible-free dynamics under large
values of Rv0 ; coexistence of susceptibles and infectives under intermediate values of Rv0 ; and
disease-driven extinction for small values of Rv0 .

4. The SI-DD System (9)-(10) supports the following outcomes: (i)No boundary equilibrium
on the I-axis and possibly disease-driven extinction for a range of parameter values whenever
1 < Rh0 < 1

β and Rv0 < 4
(1−θ)2 . (ii) Susceptible-free dynamics for Rv0-intermediate values;

values that satisfy the inequality max

{
4

(1−θ)2 , c1

}
< Rv0 < c2. (iii) An unique interior

equilibrium whenever Rh0 >
1
β and possibly two interior equilibria if 1 < Rh0 <

1
β . (iv) Large

values of ρ, θ, β and small values of d can destabilize the system (bifurcation diagrams; Figure
11).

• Horizontal versus vertical modes of transmission in SI Systems: Small values of the hor-
izontal transmission rate can lead to the susceptible-free dynamics (in System (7)-(8) and System
(9)-(10)) with low reproductive rates for infectives leading, under certain conditions, to disease-
driven extinction.

System (7)-(8) and System (9)-(10) have similar dynamics to those of the SI-model

dS
dt = S(N − θ) (1−N)
dI
dt = ρI(N − θ) (1−N)− dI (36)

whenever the horizontal-transmission reproductive number is not greater than 1 (Rh0 ≤ 1) and the
vertical-transmission reproduction number is dominant. In this case, System (36) has E0,0 ∪ E1,0

as its global attractor (susceptible-free dynamics).

If horizontal transmission is dominant, that is, the vertical transmission rate is small due to the low
reproductive ability (ρ) of those infected (Rv0 ≥ 4

(1−θ)2 ) then System (7)-(8) and System (9)-(10)

have similar dynamics to those supported by the SI-Models (37) and (38), respectively:

dS
dt = S(N − θ) (1−N)− βSI

N
dI
dt = βSI

N − dI (37)

and

dS
dt = S(N − θ) (1−N)− βSI
dI
dt = βSI − dI. (38)
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Model (37) and (38) can in fact have the disease-driven extinction, under some conditions.

• Diffusive instability: Sufficient conditions leading to diffusive instability (Theorem 5.1 in Section
5) require that SI/Prey-Predator models support a locally asymptotically stable interior equilib-
rium with the product of the diagonal entries of the Jacobian matrix (evaluated at this interior
equilibrium) being negative. In this manuscript, we have investigated possible ways for diffusive
instability to emerge in five different SI-models while contrasting their behavior with those of three
different prey-predator models. The results of these comparisons have been summarized (Table 5).
From Table 5 we conclude that:

1. In the context of our SI models, asymmetricity and nonlinearity that emerge as a result
of frequency-dependent horizontal transmission or some forms of vertical transmission in
populations under Allee effects, can generate diffusive instability.

2. In the context of Prey-Predator models, asymmetricity and nonlinearity arising from certain
forms of functional responses such as Beddington-DeAngelis type functional response or Allee
effects in the predator population, can generate diffusive instability.

In conclusion, the presence of asymmetricity and nonlinearity such as nonlinear density dependent
factors including Allee effects, could be critical for the generation of diffusive instabilities in both
SI models and Prey-Predator models.
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Figure 6: An example of two dimensional bifurcation diagram (d− ρ) of System (9)-(10) when β = 0.1 and θ = 0.15. The
black area indicates that the reproduction number of vertical transmission Rv0 = ρ

d
is large, i.e., Rv0 > max{ 4

(1−θ)2 , c2};
the cyan area indicates that Rv0 has intermediate values, i.e., max{ 4

(1−θ)2 , c1} < Rv0 < c2; the green area indicates that

Rv0 has small values, i.e., 4
(1−θ)2 < Rv0 < c1 and the white area indicates that Rv0 <

4
(1−θ)2 . The green dots indicate that

System (9)-(10) has only one interior equilibrium which can be a source, saddle or sink while the red dots indicate that
System (9)-(10) has two interior equilibria where one is a saddle and the other one can be a sink or source.
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Models fS fI
Diffusive

Instability
Potential Mechanisms

SI-model
(7)-(8)

fS =

S∗
[
1 + θ − 2N∗ + βI∗

(N∗)2

]
> 0

gI =

I∗
[
ρ(1 + θ − 2N∗)− βS∗

(N∗)2

]
< 0

Yes

Asymmetricity and
nonlinearity arise from
frequency-dependent

horizontal transmission

SI-System
(9)-(10)

fS = S∗(1+θ−2N∗) < 0 gI = ρI∗(1 + θ − 2N∗) < 0 No

Symmetricity arises from
certain forms of vertical
transmission with Allee
effects; Linearity arises
from density-dependent

vertical transmission

SI-System
(23)-(24)

fS =
S∗(1−N∗ − S∗ + θ) < 0

gI =
ρI∗(1−N∗ − I∗ + θ) > 0

Yes

Asymmetricity and
nonlinearity of arise from
certain forms of vertical
transmission with Allee

effects

SI-System
(26)-(27)

fS =
[2S∗ + (α1 + ρ)I∗ − θ]

(1− S∗ − α2I
∗)−

(S∗+ρI∗)(S∗+α1I
∗−θ)

−βI∗ < 0

gI = 0 No
Linearity arises from

density-dependent
horizontal transmission

SI-System
(29)-(30)

fS =

S∗
(

1 + θ − 2N∗ + βI∗

(N∗)2

)
> 0

gI = −βS
∗I∗

(N∗)2 < 0 Yes

Asymmetricity and
nonlinearity arise from
frequency-dependent

horizontal transmission
PP-Model

(32)
fS = −ax∗ < 0 gI = dy∗ > 0 Yes

Nonlinearity arises from
Allee effects in predator

PP-Model
(32) with
d = 0

fS = −ax∗ < 0 gI = 0 No
Linearity arises from a

Holling Type I functional
response

PP-Model
(34)

fS =

x∗
[
−a+ bh1y

∗

(1+h1x∗+h2y∗)2

]
> 0

gI = − ch2x
∗y∗(1+h1x

∗)
(1+h1x∗+h2y∗)2 < 0 Yes

Asymmetricity and
nonlinearity arise from a
Beddington-DeAngelis

type functional response

Table 5: Summary of diffusive instability for SI-models and Prey-Predator models
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