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Abstract4

In this article, we propose a general predator-prey system with prey subject to Allee effects and disease
with the following unique features: (i) Allee effects built in the reproduction process of prey where in-
fected prey (I-class) has no contribution; (ii) Consuming infected prey would contribute less or negatively
to the growth rate of predator (P-class) in comparison to the consumption of susceptible prey (S-class).
We provide basic dynamical properties for this general model and perform the detailed analysis on a
concrete model (SIP-Allee Model) as well as its corresponding model in the absence of Allee effects
(SIP-no-Allee Model); we obtain the complete dynamics of both models: (a) SIP-Allee Model may have
only one attractor (extinction of all species), two attractors (bi-stability either induced by small values
of reproduction number of both disease and predator or induced by competition exclusion), or three
attractors (tri-stability); (b) SIP-no-Allee Model may have either one attractor (only S-class survives
or the persistence of S and I-class or the persistence of S and P-class) or two attractors (bi-stability
with the persistence of S and I-class or the persistence of S and P-class). One of the most interesting
findings is that neither models can support the coexistence of all three S, I, P-class. This is caused by
the assumption (ii), whose biological implications are that I and P-class are at exploitative competition
for S-class whereas I-class cannot be superior and P-class cannot gain significantly from its consumption
of I-class. In addition, the comparison study between the dynamics of SIP-Allee Model and SIP-no-Allee
Model lead to the following conclusions: 1) In the presence of Allee effects, species are prone to extinc-
tion and initial condition plays an important role on the surviving of prey as well as its corresponding
predator; 2) In the presence of Allee effects, disease may be able to save prey from the predation-driven
extinction and leads to the coexistence of S and I-class while predator can not save the disease-driven
extinction. All these findings may have potential applications in conservation biology.
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1. Introduction7

Allee effects, referred to a biological phenomenon characterized by a positive correlation between the8

population of a species’ size or density and its per capita growth rate at its low population sizes/densities9

[1, 56, 49], have great impacts in species’ establishment, persistence, invasion [3, 76, 24, 70, 62, 9, 49, 44]10

and evolutionary traits [22]. Empirical evidence of Allee effect has been reported in many natural11

populations including plants [25, 29], insects [52], marine invertebrates [67], birds and mammals [21].12

Various mechanisms at low population sizes/densities, such as the need of a minimal group size necessary13

to successfully raise offspring, produce seeds, forage, and/or sustain predator attacks, have been proposed14

as potential sources of Allee effects [42, 53, 60, 19, 65, 66, 61]. Recently, many researchers have studied15

the impact of Allee effects on population interactions [e.g., see [61, 80, 43, 51, 75, 45, 46, 44] as well as the16

interplay of Allee effects and disease on species’s establishment and persistence [38, 79, 37, 71, 47, 48].17

All these research suggest the profound effects of Allee effects in population dynamics, especially when18

it couples with disease.19
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Eco-epidemiology is comparatively a new branch in mathematical biology which simultaneously con-20

siders the ecological and epidemiological processes [5]. Hadeler and Freedman [33] first introduced a21

eco-epidemiological model regarding predator-prey interactions with both prey and predator subject to22

disease. Since the work of Hadeler and Freedman (1989), the research on eco-epidemiology as well as its23

biological importance has gained great attention [26, 7, 8, 32, 72, 13, 15, 78, 14, 73, 35, 39, 5, 69, 68].24

Many species suffer from Allee effects, disease and predation. For instance, the combined impact of25

disease and Allee effect has been observed in the African wild dog Lycaon pictus [12, 20] and the island26

fox Urocyon littoralis [17, 4]. Both the African wild dog and island fox should have their enemies in the27

wild. Thus, understanding the combined impact of Allee effects and disease on population dynamics of28

predator-prey interactions can help us have better insights on species’ abundance as well as the outbreak29

of disease. Therefore, we can make better policies to regulate the population and disease. Thus, for the30

first time, we propose a general predator-prey model with Allee effects and disease in prey to investigate31

how the interplay of Allee effects and disease in prey affect the population dynamics of both prey and32

predator. More specifically, we would like to explore the following ecological questions:33

1. How do Allee effects affect the population dynamics of both prey and predator?34

2. Which conditions allow healthy prey, infected prey and predator to coexist?35

3. In the presence of Allee effects, can disease save the population from predation-driven extinction?36

4. In the presence of Allee effects, can predation save the population from disease-driven extinction?37

We will try to answer the questions above by 1) obtaining a complete global picture of the population38

dynamics of the proposed susceptible prey-infected prey-predator interaction model (SIP-Allee Model) as39

well as its corresponding model without Allee effects (SIP-no-Allee Model); 2) comparing the dynamics40

of the model with Allee effects to the one without Allee effects.41

The rest of the paper is organized as follows: In Section 2, we provide the detailed formulation of42

a general prey-predator system with prey subject to Allee effects and disease; and we show the basic43

dynamical properties of such general model. In Section 3, we obtain the complete dynamics of a concrete44

model when it is disease free and/or predation free (i.e., the submodels of SIP-Allee Model); and we45

compare the dynamics to their corresponding models in the absence of Allee effects. In Section 4, we46

provide detailed analysis and its related numerical simulations to obtain the complete dynamical feature47

of this SIP-Allee model. Our results include sufficient conditions on its global attractors as well as its48

corresponding basins of attractions in different scenarios. In Section 5, we perform analysis of SIP-no-49

Allee Model under the same assumptions. In addition, we provide the biological implications on the50

impacts of Allee effects, disease and predation. In the last section, we conclude our findings and provide51

a potential future study.52

2. Development of the model53

We start from the assumption that prey is facing an infectious disease that can be captured by an SI54

(Susceptible-Infected) framework where predator (P-class) feeds on both susceptible prey (S-class) and55

infected prey (I-class). Let S be the normalized susceptible prey population; I, P denote the infected56

prey population and the predator population, respectively, both of which are relative to the susceptible57

prey population; and N = S + I denotes the total population of prey.58

In the absence of disease and predation, we assume that the population dynamic of prey can be59

described by the following generic single species population model with an Allee effect:60

dS
dt = rS(S − θ)(1− S) (1)

where S denotes the normalized health prey population; the parameter r denotes the maximum birth-61

rate of species, which can be scaled to be 1 by altering the time scale; the parameter 0 < θ < 1 denotes62
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the Allee threshold (normalized susceptible population). The population of (1) converges to 0 if initial63

conditions are below θ while it converges to 1 if initial conditions are above θ.64

We assume that a) disease does not have vertical transmission but it is untreatable and causes an65

additional death rate; b) I-class does not contribute to the reproduction of newborns; and c) the net66

reproduction rate of newborns is modified by the disease (e.g, infectivies compete for resource but do not67

contribute to reproduction). Then in the presence of disease (i.e., I > 0) and the absence of predation68

(i.e., P = 0), the formulation of susceptible prey population dynamics can be described by the following69

(2):70

dS

dt
= rS(S − θ)(1− S − I)︸ ︷︷ ︸

the net reproduction modified by disease

− φ(N)
I

N
S︸ ︷︷ ︸

new infections

(2)

where φ(N) is the disease transmission function that can be either density-dependent (i.e., φ(N) = βN71

which is also referred to the law of mass action) or frequency-dependent (i.e., φ(N) = β). Thus, the72

formulation of infective population can be described by the following (3),73

dI
dt = φ(N) IN S − µI︸︷︷︸

the natural mortality plus an additional mortality due to disease

.
(3)

In the presence of disease but in the absence of predation P = 0, a general SI model subject to Allee74

effects in prey can be represented as follows:75

dS
dt = rS(S − θ)(1− S − I)− φ(N) IN S

dI
dt = φ(N) IN S − µI

(4)

where the parameter µ denotes the death rate of I-class, which includes an additional disease-induced76

death rate. The SI model (4) is a special case of an SI model studied by Kang and Castillo-Chavez [48]77

where φ(N) = βN, ρ = 0, α1 = 0 and α2 = 1. This modeling approach is similar to the work by Boukal78

and Berec [11], Deredec and Courchamp [23], Courchamp et al. [18] and Hilker et al. [37] regarding the79

effects of Allee effects and disease (our detailed approach of the host population without disease and80

predation is represented in Appendix). There are many literatures using this phenomenological model81

(4) to study the disease dynamics as well as invasion of pest (e.g., see [54, 30, 2, 57, 36, 62, 27]).82

In the presence of predation, we assume that predator consumes S and I-class at the rate of h(S,N)
and h(I,N), respectively, where I-class has less or negative contribution to the growth rate of predator
in comparison to S-class. The functional responses h(S,N), h(I,N) can take the form of Holling-Type
I or II or III, i.e.,

Holling − Type I : h(S,N) = aS; h(I,N) = aI

Holling − Type II : h(S,N) = aS
k+S+I ; h(I,N) = aI

k+S+I

Holling − Type III : h(S,N) = aS2

k2+(S+I)2 ; h(I,N) = aI2

k2+(S+I)2

.

Therefore, a general predator-prey model where prey is subject to Allee effects and disease, is given by83

the following set of nonlinear differential equations:84

dS
dt = rS(S − θ) (1− S − I)− φ(N) IN S − h(S,N)P,

dI
dt = φ(N) IN S − h(I,N)P − µI,

dP
dt = P [ch(S,N) + γh(I,N)− d] .

(5)
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Figure 1: Schematic diagram of a general prey-predator model with prey subject to Allee effects and disease (see the
presentation of the model in (5)).

where all parameters except γ are nonnegative. The parameter d represents the natural death rate85

of predator; the parameter c ∈ (0, 1] is the conversion rate of susceptible prey biomass into predator86

biomass; and γ indicates that the effects of the consumption of infected prey on predator which could be87

positive or negative. More specifically, we assume that −∞ < γ < c; γ < 0 indicates the consumption of88

infected prey increases the death rate of the predator (see [16]), while γ > 0 indicates the consumption of89

susceptible prey increases the growth rate of the predator. The biological significance of all parameters90

in Model (5) is provided in Table 1. The conceptual schematic diagram of this general model is presented91

in the schematic diagram 1.92

In summary, the formulation of a general SIP model (5) subject to Allee effects in prey is based on93

the following three assumptions: (a) Disease does not have vertical transmission but it is untreatable94

and causes an additional death rate; (b) Allee effects are built in the reproduction process of S-class95

which I-class does not contribute to; (c) Predator consumes S and I-class at the rate of h(S,N) and96

h(I,N), respectively, whose growth rate is benefit less or even getting harm from I-class. Our modeling97

assumptions are supported by many ecological situations. For example, in Salton Sea (California),98

predatory birds get additional mortality though eating fish species that are infected by a vibrio class of99

bacteria and could also be subject to Allee effects (see more discussions in [16, 5]). In nature, it is also100

possible that predator captures infected prey who is given up by predator due to its unpleasant taste101

or malnutrition from infections. We would like to point out that the assumption (c) is critical to the102

dynamical outcomes of (5) as we should see from our analysis in the next few sections.103

To continue our study, let us define the state space of (5) as X = {(S, I, P ) ∈ R3
+} whose interior is104

defined as X̊ = {(S, I, P ) ∈ R3
+ : SIP > 0}. In the case that φ(N) = β, we define the state space as105
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X = {(S, I, P ) ∈ R3
+ : S + I > 0}. Notice that h(x,N) is chosen from Holling Type I or II or III and106

φ(N) = βN or β, then the basic dynamical property of (5) can be summarized as the following theorem:107

Theorem 2.1 (Basic dynamical features). Assume that

c ∈ (0, 1], d > 0, θ ∈ (0, 1), −∞ < γ < c, µ > rθ.

Then System (5) is positively invariant and uniformly ultimately bounded in X with the following property

lim sup
t→∞

S(t) + I(t) ≤ 1.

In addition, we have the following:108

1. If φ(N)
N ≤ µ, for all N > 0, then lim supt→∞ I(t) = 0.109

2. If S(0) < θ, then limt→∞max{S(t), I(t), P (t)} = 0.110

Proof. For any S ≥ 0, I ≥ 0, P ≥ 0, we have

dS

dt

∣∣∣∣
S=0

= 0,
dI

dt

∣∣∣∣
I=0

= 0 and
dP

dt

∣∣∣∣
P=0

= 0

which implies that S = 0, I = 0 and P = 0 are invariant manifolds, respectively. Due to the continuity111

of the system, we can easily conclude that System (5) is positively invariant in R3
+.112

Choose any point (S, I, P ) ∈ X such that S > 1, then due to the positive invariant property of (5),
we have

dS

dt

∣∣∣
S>1

= rS(S − θ) (1− S − I)− φ(N)
I

N
S − h(S,N)P < 0.

In addition, since we have dS
dt

∣∣∣
S=1,I=0,P=0

= 0 and dS
dt

∣∣∣
S=1,I+P>0

< 0, thus we can conclude that

lim sup
t→∞

S(t) ≤ 1.

Now we define the following two functions as N(t) = S + I and Z(t) = S + I + P , then we have113

dN(t)

dt
= rS(S − θ) (1−N)− µI − P [h(S,N) + h(I,N)] ≤ rS(S − θ) (1−N)− µI (6)

dZ(t)

dt
= rS(S − θ) (1−N)− µI − dP − P [h(S,N) + h(I,N)− ch(S,N)− γh(I,N)] . (7)

Since µ > rθ > rθ2

4 and lim supt→∞ S(t) ≤ 1, then for any ε > 0, there is a T large enough such that for
any t > T , we have

dN(t)

dt
≤ rS(S − θ + µ/r)− [rS(S − θ) + µ]N ≤ r(1 + ε)(1 + ε− θ + µ/r)−

[
−rθ

2

4
+ µ

]
N.

By applying the theory of differential inequality [10] (or Gronwalls inequality) and letting ε → 0, we
obtain

lim sup
t→∞

N(t) = lim sup
t→∞

S(t) + I(t) ≤ r − rθ + µ

µ− rθ2

4

.

This implies that both N(t) and I(t) are uniformly ultimately bounded. Similarly, since c ∈ (0, 1] and
−∞ < γ < c, then we have for any ε > 0, there is a T large enough such that for any t > T ,

dZ(t)
dt = rS(S − θ) (1−N)− µI − dP − P [h(S,N) + h(I,N)− ch(S,N)− γh(I,N)]

≤ rS(S − θ) (1−N)− µI − dP = Lε −min{µ, d}Z
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where
Lε = max

{0≤S≤1+ε,0≤N≤ r−rθ+µ
µ− rθ2

4

+ε}

{
rS(S − θ) (1−N) + min{µ, d}S

}
.

This implies that lim supt→∞ Z(t) = lim supt→∞ S(t) + I(t) + P (t) ≤ L
min{µ,d} where

Lε = max
{0≤S≤1,0≤N≤ r−rθ+µ

µ− rθ2
4

}

{
rS(S − θ) (1−N) + min{µ, d}

}
.

Thus P (t) is also uniformly ultimately bounded. Therefore, System (5) is positively invariant and114

uniformly ultimately bounded in X.115

The fact that

dS
dt = rS(S − θ) (1− S − I)− φ(N) IN S − h(S,N)P ≤ rS (1− S − I) (S − θ)− φ(N) IN S

dI
dt = φ(N) IN S − h(I,N)P − µI ≤ φ(N) IN S − µI ≤ I

(
φ(N)
N S − µ

)
implies that the dynamics of the SI model (4) can govern the dynamics of S, I-class in Model (5). If
φ(N)
N ≤ µ, then the SI model (4) has no interior equilibrium since lim supt→∞ S(t) ≤ 1. Then according

to Poincaré-Bendixson Theorem [31], any trajectory of (4) converges to either a locally asymptotically
stable equilibrium or a limit cycle. However, no interior equilibrium and no equilibrium on I-axis
indicates that any trajectory converges to a boundary equilibrium located on S-axis. Thus, we have

lim sup
t→∞

I(t) = 0 if
φ(N)

N
≤ µ.

Assume that the initial susceptible prey population is less than θ and the initial infective population
is large enough, the susceptible prey population can increase at the beginning due to the possibility of

dS

dt

∣∣∣
t=0

= rS(0)

[
(S(0)− θ) (1− S(0)− I(0))− φ(N(0))

N(0)
I(0)

]
> 0.

However, the susceptible prey population can never increase to θ since

dS

dt

∣∣∣
S=θ

= rS

[
(S − θ) (1− S − I)− φ(N)

N
I

] ∣∣∣
S=θ

= −φ(N)

N
SI
∣∣∣
S=θ

< 0.

This implies that
S(t) < θ whenever S(0) < θ, for all t > 0.

Since φ(N)
N ≤ µ implies that lim supt→∞ I(t) = 0, thus the limiting dynamics is

dS

dt
= rS(S − θ) (1− S) with S(t) < θ.

This indicates the susceptible prey population will eventually converge to 0. Therefore, we have

lim
t→∞

max{S(t), I(t), P (t)} = 0.

Now assume that φ(N)
N > µ, for all N > 0. Since µ > rθ and lim supt→∞ S(t) ≤ θ, then we have

dS
dt ≤ S

[
r(S − θ) (1− S − I)− φ(N)

N I
]

< rS [(S − θ) (1− S)− (S − θ + µ/r)I]

≤ rS [(S − θ) (1− S)− (−θ + µ/r)I] < rS(S − θ) (1− S)

.
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This implies that limt→∞ S(t) = 0. Therefore, we have

lim
t→∞

max{S(t), I(t), P (t)} = 0 whenever S(0) < θ.

In the case that S(0) = θ, then we have S(t) < θ if I(0) + P (0) > 0 or S(t) = θ if I(0) + P (0) = 0.116

Without loss of generality, let us assume S(0) + I(0) > 1 and I(0) > 0. Then according to the
argument above, we have

lim
t→∞

max{S(t), I(t), P (t)} = 0⇒ lim sup
t→∞

S(t) + I(t) ≤ 1 whenever there exists a T such that S(T ) ≤ θ.

Now assume that S(t) > θ, for all t ≥ 0, then we have

dN(t)

dt
= rS(S−θ) (1−N)−µI−P [h(S,N) + h(I,N)] ≤ rS(S−θ) (1−N)−µI < 0 whenever N(0) > 1.

Therefore, we have
lim sup
t→∞

N(t) = lim sup
t→∞

S(t) + I(t) ≤ 1.

117

Notes: The assumption of µ > rθ follows from the fact that the natural mortality rate of the susceptible
prey is rθ (see the derivation of this assumption in the Appendix A). Theorem 2.1 indicates that our
general prey-predator model with Allee effects and disease in prey has a compact global attractor living
in the set{

(S, I, P ) ∈ X : 0 ≤ S + I ≤ 1, 0 ≤ S + I + P ≤
max{0≤N≤1}

{
rS(S − θ) (1−N) + min{µ, d}

}
min{µ, d}

}
.

In addition, Theorem 2.1 implies that initial population of susceptible prey plays an important role in118

the persistence of S, or I or P due to Allee effects in prey. One direct application of Theorem 2.1 is119

presented as the following corollary:120

Corollary 2.1. [Range of susceptible and infective population] Assume that

c ∈ (0, 1], d > 0, θ ∈ (0, 1), −∞ < γ < c, µ > rθ.

Then a necessary condition for the endemicity of the disease of System (5) is as follows:

lim inf
t→∞

S(t) > θ and lim sup
t→∞

I(t) < 1− θ.

Theorem 2.1 and its corollary 2.1 provide the basic dynamical features of the general prey-predator121

model (5). In order to explore more complete dynamics of (5), we will focus on the case when φ(N) = βN122

and h(x,N) = ax. Then, in the presence of both disease and predator, depending on whether infectives123

have a positive or negative impact on the growth rate of predator (i.e., the sign of γ being positive or124

negative), the predator-prey model subject to Allee effects (e.g., induced by mating limitations) and125

disease (5) can be written as the following if we scale away r (i.e., r = 1) :126

dS
dt = S(S − θ) (1− S − I)− βSI − aSP = S [(S − θ) (1− S − I)− βI − aP ] = Sf1(S, I, P ),

dI
dt = βSI − aIP − µI = I [βS − aP − µ] = If2(S, I, P ),

dP
dt = a (cS + γI)P − dP = P [bS + αI − d] = Pf3(S, I, P )

(8)

where the parameter a indicates the attack rate of predator. For convenience, we let b = ac ∈ (0, a] and127

α = aγ ∈ (−∞, ac]. Variables and parameters used in Model (8) (SIP-model) are presented in Table 1.128

7



Variables/Parameters Biological meaning
S Density of susceptible prey
I Density of infected prey
P Density of predator
θ Allee threshold
β Rate of infection
a Attack rate of predator
b The total effect to predator by consuming susceptible prey
µ Death rate of infected prey
c Conversion efficiency on susceptible prey
γ Conversion efficiency on infected prey
α The total effect to predator by consuming infected prey
d Natural death rate of predator

Table 1: Variables and parameters used Model (8)

Notes: The term S(S − θ)(1 − S − I) of dS
dt in (8) models the net reproduction rate of newborns, a129

term that accounts for Allee effects due to mating limitations as well as reductions in fitness due to the130

competition for resource from infectives. Our model normalizes the susceptible population to be 1 in131

a disease-free environment; and defines the infected prey population as well as the predator population132

relative to this normalization. Our modeling approach (see the Appendix A) and assumptions (a), (b),133

(c) require that the parameters of (8) are subject to the following condition:134

135

H: 0 < θ < 1, µ > θ, 0 < b = ac ≤ a and −∞ < α < b.136

137

The features outline above include factors not routinely considered in infectious-disease models. Allee138

effects are found in the epidemiological literature (e.g., see [35, 71, 37]) as well as in the predator-prey139

interaction models [9, 75]. The rest of our article is focus on studying the dynamics of this simple SIP140

model (8) that incorporates Allee effects in its reproduction process, disease-induced additional death,141

and disease-induced effects on predation.142

3. Dynamics of submodels143

In order to understand the full dynamics of (8), we should have a complete picture of the dynamics144

of the following two submodels:145

1. The predator-prey model in the absence of the disease in (8) is represented as146

dS
dt = S [(S − θ) (1− S)− aP ] = Sf1(S, 0, P ),
dP
dt = P [bS − d] = Pf3(S, 0, P ).

(9)

The submodel (9) has been introduced by other researchers (e.g., [9, 74, 75]). For convenience, we
introduce a disease-free demographic reproduction number for predator

RP0 =
b

d

which gives the expected number of offspring b of an average individual predator in its lifetime 1
d .147

The reproduction number RP0 is based upon the assumptions that the susceptible prey is at unit148

density (i.e. S = 1) and the disease is absent (i.e. I = 0). The value of RP0 < 1 indicates that the149

predator cannot invade while the value of RP0 > 1 indicates that the predator may invade.150
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2. The SI model in the absence of predation in (8) is represented as151

dS
dt = S [(S − θ) (1− S − I)− βI] = Sf1(S, I, 0),
dI
dt = I [βS − µ] = If2(S, I, 0).

(10)

Kang and Castillo-Chavez [48] have studied a simple SI model with strong Allee effects (where they
consider a susceptible-infectious model with the possibility that susceptible and infected individuals
reproduce with the S-class being the best fit, and also infected individuals loose some ability to
compete for resources at the cost imposed by the disease. The submodel (10) is a special case of
the SI model studied by them where ρ = 0, α1 = 0 and α2 = 1. We adopt the notations in Kang
and Castillo-Chavez [48] and introduce the basic reproductive ratio

RI0 =
β

µ

whose numerator denotes the number of secondary infections βS∗ = β per unit of time (at the152

locally asymptotically stable equilibrium S∗ = 1) and denominator denotes the inverse of the153

average infectious period µ. The value of RI0 < 1 indicates that the infection cannot invade while154

RI0 > 1 indicates that the disease can invade.155

A direct application of Theorem 2.1 to the submodels (9) and (10) gives the following corollary:156

Corollary 3.1 (Positiveness and boundedness of submodels). Assume that both (9) and (10) are
subject to Condition H. Then both submodels are positively invariant and uniformly ultimately bounded
in R2

+. In addition, the submodel (10) has the following property:

lim sup
t→∞

S(t) + I(t) ≤ 1.

In the next two subsections, we explore the detailed dynamics of both submodels (9) and (10).157

3.1. Equilibria and local stability158

It is easy to check that both submodels (9) and (10) have (0, 0), (θ, 0) and (1, 0) as their boundary
equilibria. For convenience, for Model (9), we denote

EP0 = (0, 0), EPθ = (θ, 0), EP1 = (1, 0) and EPi =

(
1

RP0
,

1

a

(
1

RP0
− θ
)(

1− 1

RP0

))
while for Model (10), we denote

EI0 = (0, 0), EIθ = (θ, 0), EI1 = (1, 0) and EIi =

 1

RI0
,

(
1
RI0
− θ
)(

1− 1
RI0

)
1
RI0
− θ + β


where EPi , E

I
i are interior equilibria for the submodel (9) and (10), respectively, provided their existence.159

The local stability of equilibria of both submodels (9) and (10) can be summarized in the following160

proposition:161

Proposition 3.1. [Local stability of equilibria for submodels (9) and (10)] The local stability of boundary162

equilibria of both submodels (9) and (10) is summarized in Table 2 while the local stability of interior163

equilibrium of both submodels (9) and (10) is summarized in Table 3. Moreover, the equilibria EPi of164

the submodel (9) undergoes a supercritical Hopf-bifurcation at RP0 = 2
θ+1 and the equilibria EIi of the165

submodel (10) undergoes a supercritical Hopf-bifurcation at RI0 =
β−θ+

√
β2−βθ+β

β+βθ−θ2 .166
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Boundary Equilibria Stability Condition
EP0 and EI0 Always locally asymptotically stable

EPθ Saddle if RP0 < 1
θ ; Source if RP0 > 1

θ

EIθ Saddle if RI0 <
1
θ ; Source if RI0 >

1
θ

EP1 Locally asymptotically stable if RP0 < 1; Saddle if RP0 > 1
EI1 Locally asymptotically stable if RI0 < 1; Saddle if RI0 > 1

Table 2: The local stability of boundary equilibria for both submodels (9) and (10)

Interior Equilibrium Condition for existence Condition for local asymptotic stability
EPi 1 < RP0 < 1

θ 1 < RP0 < 2
θ+1

EIi 1 < RI0 <
1
θ 1 < RI0 <

β−θ+
√
β2−βθ+β

β+βθ−θ2 .

Table 3: The local stability of interior equilibrium for both submodels (9) and (10)

Proof. The Jacobian matrix of the submodel (9) at its equilibrium (S∗, P ∗) is presented as follows167

JP |(S∗,P∗) =

[
(S∗ − θ)(1− S∗)− aP ∗ + S∗(1− 2S∗ + θ) −aS∗

bP ∗ bS∗ − d

]
(11)

while the Jacobian matrix of the submodel (10) at its equilibrium (S∗, I∗) is presented as follows168

JI |(S∗,I∗) =

[
(S∗ − θ)(1− S∗ − I∗)− βI∗ + S∗(1− 2S∗ − I∗ + θ) S∗(−S∗ + θ − β)

βI∗ βS∗ − µ

]
. (12)

After substituting (S∗, P ∗) = EPu , u = 0, θ, 1, i into (11), we obtain the eigenvalues for each equilibrium:169

1. EP0 = (0, 0) is always locally asymptotically stable since both eigenvalues associated with (11) at
EP0 are negative, i.e.

λ1 = −θ and λ2 = −d.

2. EPθ = (θ, 0) is a saddle if RP0 < 1
θ and is a source if RP0 > 1

θ since both eigenvalues associated with
(11) at EPθ can be represented as follows:

λ1 = θ (1− θ) (> 0)

λ2 = dθ
(
RP0 − 1

θ

) {<0 if RP0 <
1
θ

>0 if RP0 >
1
θ .

3. EP1 = (1, 0) is locally asymptotically stable if RP0 < 1 and is a saddle if RP0 > 1 since both
eigenvalues associated with (11) at EP1 can be represented as follows:

λ1 = (θ − 1) (< 0)

λ2 = d
(
RP0 − 1

) {<0 if RP0 <1

>0 if RP0 >1.

4. The unique interior equilibrium EPi = (S∗, P ∗) =
(

1
RP0
, 1
a

(
1
RP0
− θ
)(

1− 1
RP0

))
exists only if170

1 < RP0 < 1
θ . The Jacobian matrix evaluated at EPi is given by171

JP
∣∣∣
EPi

=

[
A −B
C 0

]
=

 1
RP0

(
1 + θ − 2

RP0

)
− a
RP0

b
a

(
1
RP0
− θ
)(

1− 1
RP0

)
0


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whose characteristic equation is given by

λ2 −Aλ+BC = 0

where BC > 0 and

A > 0 if RP0 >
2

1 + θ
while A < 0 if RP0 <

2

1 + θ
.

This indicates that the eigenvalues of JP
∣∣∣
EPi

are

λ1 =
A−
√
A2 − 4BC

2
and λ2 =

A+
√
A2 − 4BC

2
when A2 > 4BC

or

λ1 =
A− i

√
4BC −A2

2
and λ2 =

A+ i
√

4BC −A2

2
when A2 < 4BC.

Therefore, EPi exists and is locally asymptotically stable if

1 < RP0 < min{1

θ
,

2

1 + θ
} =

2

1 + θ
.

Notice that A = 0 when RP0 = 2
1+θ , and172

dA

d
(
RP0
) =

(θ + 1)RP0 − 2
(
θRP0 +RP0 − 2

)(
RP0
)3 with

dA

d
(
RP0
) ∣∣∣
RP0 = 2

1+θ

=
(θ + 1)3

4
> 0,

thus according to Theorem 3.1.3 in Wiggins [77], we know that the submodel (9) undergoes a173

Hopf-bifurcation at RP0 = 2
θ+1 . Then apply Theorem 3.1 from Wang et al. [75], we can conclude174

that the Hopf-bifurcation is supercritical.175

Similarly, after substituting (S∗, I∗) = EIu, u = 0, θ, 1, i into (12), we obtain the eigenvalues for each176

equilibrium:177

1. EI0 = (0, 0) is always locally asymptotically stable since both eigenvalues associated with (12) at
EI0 are negative, i.e.

λ1 = −θ and λ2 = −µ.

2. EIθ = (θ, 0) is a saddle if RI0 <
1
θ and is a source if RI0 >

1
θ since both eigenvalues associated with

(12) at EIθ can be represented as follows:

λ1 = θ (1− θ) (> 0)

λ2 = µθ
(
RI0 − 1

θ

) {<0 if RI0<
1
θ

>0 if RI0>
1
θ .

3. EI1 = (1, 0) is locally asymptotically stable if RI0 < 1 and is a saddle if RI0 > 1 since both eigenvalues
associated with (12) at EI1 can be represented as follows:

λ1 = (θ − 1) (< 0)

λ2 = µ
(
RI0 − 1

) {<0 if RI0<1

>0 if RI0>1.
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4. The unique interior equilibrium EIi = (S∗, I∗) =

 1
RI0
,

(
1

RI0

−θ
)(

1− 1

RI0

)
1

RI0

+β−θ

 exists only if 1 < RI0 <
1
θ

since from Condition H, we have

1

RI0
+ β − θ =

µ

β
+ β − θ > θ2

4β
+ β − θ =

θ2 + 4β2 − 4θβ

4β
=

(θ − 2β)
2

4β
≥ 0.

The Jacobian matrix evaluated at EIi is given by178

JI
∣∣∣
EIi

=

[
A −B
C 0

]
=


1
RI0

1− 2
RI0
−

(
1

RI0

−θ
)(

1− 1

RI0

)
1

RI0

+β−θ + θ

 − 1
RI0

( 1
RI0

+ β − θ)

β

(
1

RI0

−θ
)(

1− 1

RI0

)
1

RI0

+β−θ 0


whose characteristic equation is given by

λ2 −Aλ+BC = 0

where BC > 0 and

A =
1

RI0

1− 2

RI0
−

(
1
RI0
− θ
)(

1− 1
RI0

)
1
RI0

+ β − θ
+ θ

 =
(β + βθ − θ2)(RI0)2 − 2RI0(β − θ)− 1

(RI0)2
(
1 +RI0(β − θ)

) ,

=
1(

RI0
)2 (

1 +RI0 (β − θ)
) (RI0 − (β − θ) +

√
β2 − βθ + β

β + βθ − θ2

)(
RI0 −

(β − θ)−
√
β2 − βθ + β

β + βθ − θ2

)
.

Thus, we have

A > 0 if RI0 >
β − θ +

√
β2 − βθ + β

β + βθ − θ2
while A < 0 if RI0 <

β − θ +
√
β2 − βθ + β

β + βθ − θ2
.

This indicates that the eigenvalues of JI
∣∣∣
EIi

are

λ1 =
A−
√
A2 − 4BC

2
and λ2 =

A+
√
A2 − 4BC

2
when A2 > 4BC

or

λ1 =
A− i

√
4BC −A2

2
and λ2 =

A+ i
√

4BC −A2

2
when A2 < 4BC.

Therefore, EIi exists and is locally asymptotically stable if

1 < RI0 < min{1

θ
,
β − θ +

√
β2 − βθ + β

β + βθ − θ2
} =

β − θ +
√
β2 − βθ + β

β + βθ − θ2
.

Notice that A = 0 when RI0 =
β−θ+

√
β2−βθ+β

β+βθ−θ2 and

dA

d
(
RI0
) ∣∣∣
RI0=

β−θ+
√
β2−βθ+β

β+βθ−θ2

=
2
√
β(β − θ) + β

(β + θ (β − θ))
(
RI0
)2 (

1 +RI0 (β − θ)
)2 > 0.

Thus according to Theorem 3.1.3 in Wiggins [77] and Theorem 3.1 in Wang et al. [75] again,179

we can conclude that the submodel (10) undergoes a supercritical Hopf-bifurcation at RI0 =180

β−θ+
√
β2−βθ+β

β+βθ−θ2 .181
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182

Notes: Local analysis results provided in Proposition 3.1 and Table 3 suggest that the coexistence of
prey and predation at the equilibrium EPi in the subsystem (9) is determined by the Allee threshold
θ since EPi is locally asymptotically stable if

1 < RP0 <
2

θ + 1
since

2

θ + 1
<

1

θ
.

And the coexistence of health prey and infected prey at the equilibrium EIi in the subsystem (10) is
determined by both the Allee threshold θ and the disease transmission rate β since EIi is locally
asymptotically stable if

1 < RI0 <
β − θ +

√
β2 − βθ + β

β + βθ − θ2
since

β − θ +
√
β2 − βθ + β

β + βθ − θ2
<

1

θ
.

3.2. Disease/predation-driven extinctions and global features of submodels183

In this subsection, we focus on the disease/predation-driven extinctions as well as the features of184

global dynamics of both submodels. First, we have the following theorem regarding the extinction of185

one or both species:186

Theorem 3.1. [Extinction] Assume that both submodels (9) and (10) subject to Condition H. Then187

1. If RP0 ≤ 1, then the population of predator in the submodel (9) goes extinction for any initial188

condition taken in R2
+ [see Figure 2(a)]. Similarly, if RI0 ≤ 1, then the population of infectives in189

the submodel (10) goes extinction for any initial condition taken in R2
+ [see Figure 2(c)].190

2. If RP0 ≥ 1
θ , then System (9) converges to (0, 0) for any initial condition taken in the interior of191

R2
+, which is predation-driven extinction [see Figure 2(b)]. Similarly, if RI0 ≥ 1

θ , then System (10)192

converges to (0, 0) for any initial condition taken in the interior of R2
+, which is disease-driven193

extinction [see Figure 2(d)].194

3. If S(0) < θ, then all species in both submodels (9) and (10) converge to (0, 0).195

Proof. The detailed proof for the submodel (9) is similar to the proof for the submodel (10), thus we196

only focus on the submodel (10).197

According to Proposition 3.1, if RI0 ≤ 1 or RI0 ≥ 1
θ , then the submodel (10) only has three boundary198

equilibria EIu, u = 0, θ, 1 where EIθ is a saddle and EI1 is locally asymptotically stable when RI0 < 1199

while EIθ is a source and EI1 is a saddle when RI0 > 1. For RI0 = 1, EI1 is nonhyperbolic with one zero200

eigenvalue and the other negative while EIθ remains saddle. For RI0 = 1
θ , EIθ is nonhyperbolic with one201

zero eigenvalue and the other positive while EI1 remains saddle.202

According to Theorem 2.1, the submodel (10) has a compact global attractor. Thus, from an ap-203

plication of the Poincaré-Bendixson theorem [31] we conclude that the trajectory starting at any initial204

condition living in the interior of R2
+ converges to one of three boundary equilibria EIu, u = 0, θ, 1 when205

(10) has no interior equilibrium. This implies that lim supt→∞ I(t) = 0 when RI0 ≤ 1 or RI0 ≥ 1
θ . Since206

EI0 is the only locally asymptotically stable boundary equilibrium when RI0 ≥ 1
θ , therefore, System (10)207

converges to (0, 0) for any initial condition taken in the interior of R2
+.208

The third part of Theorem 3.1 can be a direct application of results from Theorem 2.1. Therefore,209

the statement holds.210

211
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(a) Predation free for the submodel (9)
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(b) Predation-driven extinction for the submodel (9)
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(c) Disease free for the submodel (10)
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(d) Disease-driven extinction for the submodel (10)

Figure 2: Phase portraits of submodel (9) (first row) and (10) (second row) when β = 0.6, θ = 0.4, a = 1 and b = 0.1.
(a)-EP0 ∪ EP1 is the global attractor when RP0 = 0.6 for the submodel (9); (b)-EP0 is the global attractor when RP0 = 3;
(c)-EI0 ∪EI1 is the global attractor when RI0 = 0.5 for the submodel (10); (d)-EI0 is the global attractor when RI0 = 2.6 for

the submodel (10). Notice that RP0 = b
d

and RI0 = β
µ

.
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Notes: The second item in the statement of Theorem 3.1 is disease/predation-driven extinctions due to212

Allee effects of the susceptible population. The predation-driven extinction is also called “overexploita-213

tion” where both prey and predator go extinct dramatically due to large predator invasion [74, 75], i.e.,214

predator reproduces fast enough to drive the prey population below its Allee threshold, thus lead to215

the extinction of both species. The biological explanation of disease-driven extinction is credited to the216

large disease transmission rate (i.e., the basic reproduction number RI0 is large) while the reproduction217

of the susceptible population is not fast enough to sustain its own population. Thus, the susceptible218

population drops below its Allee threshold and decreases to zero, which eventually drives the infected219

population extinct eventually. The third item in the statement of Theorem 3.1 does not always hold if220

Condition H does not hold. For example, if we drop the assumption µ > θ, then the condition S(0) < θ221

does not always lead to the extinction of both susceptible and infective population in the submodel (10).222

3.2.1. Global features of submodels (9) and (10)223

The dynamics of global features of submodels (9) and (10) are similar. Fix β = 0.6, θ = 0.4, a =224

1, b = 0.1, and vary the basic reproduction numbers RP0 , R
I
0 for the submodel (9), the submodel (10),225

respectively:226

1. For the submodel (9):227

(a) 0 < RP0 ≤ 1: This leads to the predation free dynamics with EP0 ∪EP1 as attractors according228

to Theorem 3.1 [see Figure 2(a)].229

(b) 1 < RP0 < 1.428571 = 2
1+θ : There is a transcriptical bifurcation at RP0 = 1. When increasing230

the value of RP0 from 1, EP1 becomes unstable and the unique and locally asymptotically231

stable interior equilibrium EPi occurs is locally asymptotically stable [see Proposition 3.1 and232

Figure 3(b)].233

(c) 1.428571 = 2
1+θ < RP0 < 1.437398001: There is a supercritical Hopf-bifurcation at RP0 =234

1.428571 = 2
1+θ which leads to the unique stable limit cycle [see Proposition 3.1 and Figure235

3(b)]. Wang et al. [75] has provided the proof of the uniqueness of the limit cycle.236

(d) At RP0 = 1.437398001: There is a heteroclinic bifurcation at RP0 = 1.437398001 [see Figure237

3(c)], i.e., there is a heteroclinic orbit connecting EP1 to EPθ . The disappearance of the unique238

stable limit cycle is associated with the occurrence of heteroclinic connections: Outside the239

heteroclinic cycle the trajectory goes asymptotically to extinction equilibrium EP0 , while for240

initial conditions inside the heteroclinic cycle the trajectory converges towards the heteroclinic241

cycle. Sieber and Hilker [63] and Wang et al. [75] have provided the proof of the existence of242

the heteroclinic orbit.243

(e) 1.437398001 < RP0 < 1
θ = 2.5: The predation-driven extinction occurs: the heteroclinic orbit244

is broken and all trajectories in the interior of R2
+ converge to EP0 : For initial condition inside245

the curve bounded by the stable manifold of EP1 , the orbit oscillates before finally converging246

slowly to EP0 while all orbits above the unstable manifold of EP1 converge towards EP0 [see247

Figure 3(d)].248

(f) RP0 ≥ 1
θ = 2.5: The predation-driven extinction occurs and the system has no interior249

equilibrium any more. All trajectories in the interior of R2
+ converge to EP0 [see Figure 2(b)].250

2. For the submodel (10):251

(a) The submodel (10) exhibits exactly the same dynamics feature as the submodel (9) when we252

increase the value of RI0 from 0: A transcritical bifurcation occurs at RI0 = 1, For 1 < RI0 <253

β−θ+
√
β2−βθ+β

β+βθ−θ2 = 1.5420, the unique interior equilibrium EIi is locally asymptotically stable254

[see Figure 3(e)]. At RI0 =
β−θ+

√
β2−βθ+β

β+βθ−θ2 = 1.5420, a supercritical Hopf-bifurcation occurs255
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(a) Stable interior equilib-
rium for the submodel (9)
when RP0 = 1.42222
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(b) Stable limit cycle for
the submodel (9) when
RP0 = 1.431
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the submodel (9) when
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(d) Predation-driven ex-
tinction for the submodel
(9) when RP0 = 1.4373981
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(e) Stable interior equilib-
rium for the submodel (10)
when RI0 = 1.52
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(f) Stable limit cycle for
the submodel (10) when
RI0 = 1.548
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(g) Heteroclinic orbit for
the submodel (10) when
RI0 = 1.569462683
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(h) Disease-driven extinc-
tion for the submodel (10)
when RI0 = 1.569462684

Figure 3: Phase portraits of submodels (9) (the first row) and (10) (the second row) when β = 0.6, θ = 0.4, a = 1 and

b = 0.1. Notice that RP0 = b
d

and RI0 = β
µ

.

which leads to a unique stable limit cycle for 1.5420 < RI0 < 1.569462683 [see Figure 3(f)].256

The heteroclinic bifurcation occurs at RI0 = 1.569462683 [see Figure 3(g)] and disease-driven257

extinction occurs when RI0 > 1.569462683 [see Figure 3(h) and 2(d)].258

The impact of Allee effects: Without Allee effects, the submodels (9) and (10) can be represented259

as the following two models:260

dS
dt = S [1− S − aP ] , dS

dt = S [1− S − I − βI]
dP
dt = P [bS − d] , dI

dt = I [βS − µ]
. (13)

The two models above have the same dynamics as the traditional Lotka-Volterra Pedator-Prey model:261

If Rk0 ≤ 1, k = P, I, then both models of (13) has global stability at (1, 0); while if Rk0 > 1, k = P, I,262

then both models of (13) has global stability at its unique interior equilibrium. Compare this simple263

dynamics to the dynamics of submodels (9) and (10), we can conclude that the effects of Allee effects:264

1. Importance of initial conditions: Allee effects in the susceptible population, requires its initial265

condition being above the Allee threshold to persist.266

2. Destabilizer: The nonlinearity induced by Allee effects destablizes the system which lead to267

fluctuated populations (e.g., stable limit cycle).268

3. Disease/predation-driven extinction: This occurs when the basic reproduction number of269

disease or predation is large enough to drive the susceptible population below its Allee threshold,270

thus all species go extinct.271
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4. Dynamics of the full S-I-P model272

After obtaining a complete dynamics of disease/predation free dynamics of the full SIP model (8) in
the previous section, we continue to study the dynamics of the full model. We start with the boundary
equilibria and their stability of (8). It is easy to check that System (8) has the following boundary
equilibria:

E0 = (0, 0, 0), Eθ = (θ, 0, 0), E1 = (1, 0, 0), EiP =

(
1

RP0
, 0,

1

a

(
1

RP0
− θ
)(

1− 1

RP0

))
and

EiI =

 1

RI0
,

(
1
RI0
− θ
)(

1− 1
RI0

)
1
RI0

+ β − θ
, 0

 .

The existence of EiP requires 1 < RP0 < 1
θ while the existence of EiI requires 1 < RI0 <

1
θ .273

Proposition 4.1. [Boundary equilibrium and stability] Sufficient conditions for the existence and the274

local stability of boundary equilibria for System (8) are summarized in Table 4.

Boundary Equilibria Stability Condition
E0 Always locally asymptotically stable
Eθ Source if RP0 > 1

θ and RI0 >
1
θ ; otherwise is saddle

E1 Locally asymptotically stable if RP0 < 1 and RI0 < 1

EiP Locally asymptotically stable if 1 < RP0 < 2
1+θ and

RI0
RP0

< 1 +

(
1

RP0

−θ
)(

1− 1

RP0

)
µ

EiI Locally asymptotically stable if 1 < RI0 <
β−θ+

√
β2−βθ+β

β+βθ−θ2 and

RP0
RI0

< 1−
α

(
1

RI0

−θ
)(

1− 1

RI0

)
d( 1

RI0

+β−θ)

Table 4: Sufficient conditions for the existence and local stability of boundary equilibria for System (8)

275

Proof. The local stability of equilibrium can be determined by the eigenvalues λi, i = 1, 2, 3 of the276

Jacobian matrix of System (8) evaluated at the equilibrium. By simple calculations, we have follows:277

1. The equilibrium E0 = (0, 0, 0) is always locally asymptotically stable since its eigenvalues are

λ1 = −θ (< 0) , λ2 = −µ (< 0) , λ3 = −d (< 0)

2. The equilibrium Eθ = (θ, 0, 0) is always unstable since its eigenvalues are

λ1 = θ (1− θ) (> 0) , λ2 = µθ

(
R1

0 −
1

θ

)
{<0 if RI0<

1
θ

>0 if RI0>
1
θ

, λ3 = dθ

(
RP0 −

1

θ

)
{<0 if RP0 <

1
θ

>0 if RP0 >
1
θ

3. The equilibrium E1 = (1, 0, 0) is locally asymptotically stable if RI0 < 1 and RP0 < 1 since its
eigenvalues are

λ1 = (θ − 1) (< 0) , λ2 = µ
(
RI0 − 1

)
{<0 if RI0<1

>0 if RI0>1
, λ3 = d

(
RP0 − 1

)
{<0 if RP0 <1

>0 if RP0 >1
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where the sign of λi indicates its eigenvector pointing toward (< 0) or away from (> 0) the equilibrium278

in S-axis (i = 1), I-axis (i = 2) and P -axis (i = 3), respectively.279

According to Proposition 3.1, the equilibrium EiP =
(

1
RP0
, 0, 1

a

(
1
RP0
− θ
)(

1− 1
RP0

))
is locally asymp-

totically stable if it is locally asymptotically stable in the submodel (9) and

dI

Idt

∣∣∣
EiP

=
β

RP0
−
(

1

RP0
− θ
)(

1− 1

RP0

)
− µ < 0⇔ RI0

RP0
< 1 +

(
1
RP0
− θ
)(

1− 1
RP0

)
µ

which indicates that disease is not able to invade at EiP .280

Similarly, the equilibrium EiI =

 1
RI0
,

(
1

RI0

−θ
)(

1− 1

RI0

)
1

RI0

+β−θ , 0

 is locally asymptotically stable if it is

locally asymptotically stable in the submodel (10) and

dP

Pdt

∣∣∣
EiI

= bS + αI − d =
b

RI0
+
α
(

1
RI0
− θ
)(

1− 1
RI0

)
1
RI0

+ β − θ
− d < 0⇔ RP0

RI0
< 1−

α
(

1
RI0
− θ
)(

1− 1
RI0

)
d( 1
RI0

+ β − θ)

which indicates that predator is not able to invade at EiI .281

Therefore, we can conclude that EiP is locally asymptotically stable if

1 < RP0 <
2

1 + θ
and

RI0
RP0

< 1 +

(
1
RP0
− θ
)(

1− 1
RP0

)
µ

and EiI is locally asymptotically stable if

1 < RI0 <
β − θ +

√
β2 − βθ + β

β + βθ − θ2
and

RP0
RI0

< 1−
α
(

1
RI0
− θ
)(

1− 1
RI0

)
d( 1
RI0

+ β − θ)
.

282

Notes: Notice that
2

1 + θ
<
β − θ +

√
β2 − βθ + β

β + βθ − θ2
<

1

θ
,

thus according to Proposition 4.1, both EiP and EiI can be locally asymptotically stable if

1 < RP0 <
2

1 + θ
, 1 < RI0 <

β − θ +
√
β2 − βθ + β

β + βθ − θ2

and
d
RI0

( 1
RI0

+ β − θ)

d( 1
RI0

+ β − θ)− α
(

1
RI0
− θ
)(

1− 1
RI0

) < 1

RP0
<

1

RI0

1 +

(
1
RP0
− θ
)(

1− 1
RP0

)
µ

 .

For convenience, let d = µ = 1, β = 1.5, θ = 0.2, then, according to Condition H, we have

1 < RI0 =
β

µ
= 1.5 <

β − θ +
√
β2 − βθ + β

β + βθ − θ2
≈ 1.794, RP0 =

b

d
= b ≥ α, 2

1 + θ
=

5

3
≈ 1.667,
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and
d

RI0

( 1

RI0

+β−θ)

d( 1

RI0

+β−θ)−α
(

1

RI0

−θ
)(

1− 1

RI0

) = 1.967
2.95−0.233α ,

1
RI0

1 +

(
1

RP0

−θ
)(

1− 1

RP0

)
µ

 =
2

(
1+

(
1

RP0

−0.2

)(
1− 1

RP0

))
3 .

Thus, according to Proposition 4.1, we have the following statement when d = µ = 1, β = 1.5, θ = 0.2:283

1. Both EiP and EiI are locally asymptotically stable if the following inequalities hold [see the blue
region of Figure 4(a)]

1 < b = RP0 < 1.67,
3b2

2b2 + 2 (1− 0.2b) (b− 1)
< b <

2.95− 0.233α

1.967
, −∞ < α ≤ b.

2. EiP is locally asymptotically stable and EiI is locally asymptotically stable in the SI-plane but is
unstable in R3

+ if the following inequalities hold [see the green region of Figure 4(a)]

1 < b = RP0 < 1.67, b > max
{2.95− 0.233α

1.967
,

3b2

2b2 + 2 (1− 0.2b) (b− 1)

}
, −∞ < α ≤ b.

3. EiI is locally asymptotically stable and EiP is locally asymptotically stable in the SP -plane but is
unstable in R3

+ if the following inequalities hold [see the yellow region of Figure 4(a)]

1 < b = RP0 < 1.67, b < min
{2.95− 0.233α

1.967
,

3b2

2b2 + 2 (1− 0.2b) (b− 1)

}
, −∞ < α ≤ b.

According to Proposition 4.1, sufficient conditions for EiP and EiI being locally asymptotically stable
in the SP -plane, SI-plane, respectively, but being unstable in R3

+ are as follows:

1 < RP0 <
2

1 + θ
, 1 < RI0 <

β − θ +
√
β2 − βθ + β

β + βθ − θ2

and

1 < 1 +

(
1
RP0
− θ
)(

1− 1
RP0

)
µ

<
RI0
RP0

<
d( 1
RI0

+ β − θ)

d( 1
RI0

+ β − θ)− α
(

1
RI0
− θ
)(

1− 1
RI0

)
which is impossible when α ≤ 0 since

d( 1
RI0

+ β − θ)

d( 1
RI0

+ β − θ)− α
(

1
RI0
− θ
)(

1− 1
RI0

) ≤ 1 when α ≤ 0.

In addition, numerical simulations suggest that even if α ≥ 0, EiP and EiI cannot be locally asymptotically284

stable in the SP -plane, SI-plane, respectively, but being unstable in R3
+.285

4.1. Global features286

In this subsection, we first explore sufficient conditions that lead to the extinction of at least one287

species of S, I, P. Our study gives the following theorem:288

Theorem 4.1. [Basic global features]Assume that System (8) is subject to Condition H. Then289
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Figure 4: Fix β = 1.5;µ = d = 1; θ = 0.2 and a = 3. The left graph indicates the stability regions of the boundary
equilibria EiP and EiI : i) In the blue region, both equilibria are locally asymptotically stable; ii) In the green region, EiP
is locally asymptotically stable while EiI is unstable; iii) In the yellow region, EiP is locally asymptotically stable while EiI
is unstable. The blue region in the right graph is the region when System (8) has a unique interior equilibrium which is a
saddle; while the white region in the right graph indicates no interior equilibrium.
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1. If RI0 ≤ 1, then limt→∞ I(t) = 0. If, in addition, RP0 ≤ 1, then

lim
t→∞

max{I(t), P (t)} = 0.

While if RI0 ≤ 1 and RP0 > 1
θ , then limt→∞ (S(t), I(t), P (t)) = E0.290

2. If α < 0 and RP0 ≤ 1, then limt→∞ P (t) = 0. If, in addition, RI0 ≤ 1, then

lim
t→∞

max{I(t), P (t)} = 0.

If α < 0, RP0 ≤ 1 and RI0 >
1
θ , then for any initial condition taken in the interior of R3

+, we have

lim
t→∞

(S(t), I(t), P (t)) = E0.

While if α > 0 and RP0 + α(1−θ)
d ≤ 1, then limt→∞ P (t) = 0. If, in addition, RI0 ≤ 1, then

lim
t→∞

max{I(t), P (t)} = 0.

If α > 0, RP0 + α(1−θ)
d ≤ 1 and RI0 >

1
θ , then for any initial condition taken in the interior of R3

+,
we have

lim
t→∞

(S(t), I(t), P (t)) = E0.

3. All trajectories of System (8) converge to E0 if S(0) < θ.291

Proof. If RI0 ≤ 1, then β = φ(N)
N ≤ µ. According to Theorem 2.1, we have limt→∞ I(t) = 0, i.e., the

limiting dynamics of System (8) is the submodel (9) which has only boundary equilibrium (0, 0), (θ, 0) and
(1, 0) when RP0 ≤ 1. Then Poincaré-Bendixson Theorem [31] to (9), we can conclude that limt→∞ P (t) =
0. Therefore, we have

lim
t→∞

max{I(t), P (t)} = 0 if RI0 ≤ 1 &RP0 ≤ 1.

While if, in addition, we have RP0 > 1
θ instead, then from Theorem 3.1 we can conclude that the omega292

limit set of SP -plane is E0 ∪ Eθ ∪ E1. Since RI0 ≤ 1 indicates that, for any ε > 0, all trajectories enter293

into the compact set [0, B]× [0, ε]× [0, B] when time large enough, therefore, the condition RI0 ≤ 1 and294

RP0 > 1
θ indicates that, for any ε > 0, all trajectories enter into the compact set M = [0, 1]× [0, ε]× [0, ε]295

when time large enough. Choose ε small enough, then the omega limit set of the interior of M is E0296

since E0 is locally asymptotically stable and Eθ, E1 is unstable according to Proposition 3.1. Therefore,297

the condition RI0 ≤ 1 and RP0 > 1
θ indicates that limt→∞ (S(t), I(t), P (t)) = E0.298

If α > 0, then from the proof of Theorem 3.1 and Corollary 2.1, we can conclude that lim supt→∞ I(t) <
1− θ. This indicates that for any ε > 0, there exists a time T such that

dP

Pdt
< b(1 + ε) + α(1− θ + ε)− d = d

(
RP0 +

α(1− θ)
d

+
ε(b+ α)

d
− 1

)
for all t > T

which implies that limt→∞ P (t) = 0 if RP0 + α(1−θ)
d < 1. If RP0 + α(1−θ)

d = 1, then we can apply Poincaré-299

Bendixson Theorem [31] to (10) to obtain that limt→∞ P (t) = 0. The rest of the second item of Theorem300

4.1 can be shown by applying the similar arguments of the proof for the first item in Theorem 4.1.301

The third item of Theorem 4.1 can be shown by a direct application of Theorem 2.1, i.e., all trajec-302

tories converge to E0 whenever S(0) < θ.303

Notes: A direct implication of Theorem 4.1 is that the coexistence of S, I, P population in System 8
requires RI0 > 1 and

RP0 > 1 when α < 0; RP0 > 1− α(1− θ)
d

when α > 0.
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One interesting question is that if α > 0 but 1− α(1−θ)
d < RP0 ≤ 1, then what happens to the dynamics304

of System 8, e.g., can predator be able to persist under certain conditions? This has been partially305

answered by Theorem 4.2: System 8 has no interior equilibrium as long as RP0 ≤ 1. In fact, predator is306

not able to survive in this case.307

4.2. The interior equilibrium308

If System (8) has a locally stable interior equilibrium, then we can say that S, I, P-class can coexist
under certain conditions. Thus, in this subsection, we explore sufficient conditions for the existence of
the interior equilibrium and its stability for System (8). For convenience, let

B = −(β − θ) +
d
α − 1
b
α − 1

, C =
µ− θ − d(β−θ)

α
b
α − 1

and Eik = (S∗k , I
∗
k , P

∗
k ) , k = 1, 2

where

S∗1 =
B −

√
B2 − 4C

2
, S∗2 =

B +
√
B2 − 4C

2
, P ∗k =

β

a

(
S∗k −

1

RI0

)
, I∗k =

b

α

(
1

RP0
− S∗k

)
, k = 1, 2.

If β > µ, i.e., RI0 > 1, then we have follows

B2 − 4C =
(
d−α
b−α − (β − θ)

)2

− 4α(µ−θ)−4d(β−θ)
b−α

= (β − θ)2 + (d−α)2

(b−α)2 + 4d(β−θ)−4α(µ−θ)−2(d−α)(β−θ)
b−α{<(β−θ)2+

(d−α)2

(b−α)2
+

4d(β−θ)−4α(β−θ)−2(d−α)(β−θ)
b−α =( d−αb−α−(β−θ))

2 if α<0

>(β−θ)2+
(d−α)2

(b−α)2
+

4d(β−θ)−4α(β−θ)−2(d−α)(β−θ)
b−α =( d−αb−α−(β−θ))

2 if α>0

.

Therefore, we can conclude that when RI0 > 1, we have309

S∗2 <
d− α
b− α

if α < 0 S∗2 >
d− α
b− α

if α > 0. (14)

In the case that µ = β (i.e., RI0 = 1), we have S∗2 = d−α
b−α and S∗1 < 0. Now we have the following theorem310

regarding the number of interior equilibrium and its local stability:311

Theorem 4.2. [Interior equilibrium]Assume that Condition H holds for System (8).312

1. System (8) has no interior equilibrium if one of the following conditions is satisfied:313

(a)
{
RI0 ≤ 1

}
or
{
RP0 ≤ 1, α < b

}
or314

(b)
{
α > 0, RP0 ≥ 1

θ

}
or
{
α > 0, RP0 > RI0

}
or315

(c)

{
α < 0, RP0 = d

b <
d−α
b−α < max

{
θ, 1

RI0

}}
or316

(d)

{
α > d

µ−θ
β−θ

}
or

{
µ < θ +

(b−α)
(
(θ−β+ d−α

b−α )
2
+

4d(β−θ)
b−α

)
4α

}
.317

In the case that α > 0, RP0 > 1
θ and RI0 >

1
θ , every trajectory of System (8) with an initial condition

taking in the interior of R3
+ converges to E0, i.e.,

lim
t→∞

(S(t), I(t), P (t)) = E0.
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2. System (8) has at most one interior equilibrium Ei2 = (S∗2 , I
∗
2 , P

∗
2 ). The existence of Ei2 requires

α <
d(β − θ)
µ− θ

=
d
µ−θ
β−θ

provided that

max{θ, 1

RI0
} < S∗2 < min{1, 1

RP0
} when α > 0, or , 1 > S∗2 > max

{
θ,

1

RI0
,

1

RP0

}
when α < 0.

In addition, the real parts of all eigenvalues of the Jacobian Matrix evaluated at Ei2 can never be318

all negative.319

Proof. Direct applications of Theorem 4.1 imply that System (8) has no interior equilibrium if

RI
0 < 1 or (α < 0,RP

0 < 1) or (α > 0,RP
0 +

α(1− θ)
d

< 1).

Thus, we omit the detailed proof for these cases.320

If (S∗, I∗, P ∗) is an interior equilibrium for System (8), then S∗ is a positive root of the quadratic321

equation322

(S − θ)
(

1− S − b

α

(
1

RP0
− S

))
− β b

α

(
1

RP0
− S

)
− β

(
S − 1

RI0

)
= 0⇔ S2 −BS + C = 0 (15)

provided that

B = −(β − θ) +
d
α − 1
b
α − 1

, C =
µ− θ − d(β−θ)

α
b
α − 1

and323

P ∗ =
β

a

(
S∗ − 1

RI0

)
> 0, I∗ =

b

α

(
1

RP0
− S∗

)
> 0. (16)

The equation (16) implies that a necessary condition for the existence of the interior equilibrium
(S∗, I∗, P ∗) is as follows:

1

RI0
< S∗ <

1

RP0
if α > 0; while S∗ > max

{ 1

RI0
,

1

RP0

}
if α < 0.

In the case that RI0 = µ
β = 1, we have S∗ = d−α

b−α , thus the interior equilibrium (S∗, I∗, P ∗) exists if

1 < S∗ <
1

RP0
if α > 0; while S∗ > max

{
1,

1

RP0

}
if α < 0.

This is a contradiction to lim supt→∞ S(t) ≤ 1 according to Theorem 2.1. This implies that there is
no interior equilibrium if RI0 = 1. Notice that Theorem 4.1 indicates that one necessary condition for
System (8) having an interior equilibrium is that RI0 ≥ 1 otherwise limt→∞ I(t) = 0, thus, there is no
interior equilibrium if

RI
0 ≤ 1.

Recall that Theorem 2.1 and Theorem 4.1 indicate that θ < S∗ < 1. Therefore, the existence of an
interior equilibrium (S∗, I∗, P ∗) requires RI0 > 1 (i.e., µ < β) and

max{θ, 1

RI0
} < S∗ < min{1, 1

RP0
} if α > 0; while 1 > S∗ > max

{
θ,

1

RI0
,

1

RP0

}
if α < 0.
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This implies that there is no interior equilibrium (S∗, I∗, P ∗) if

max{θ, 1

RI0
} > min{1, 1

RP0
} when α > 0

or

max
{
θ,

1

RI0
,

1

RP0

}
≥ 1 when α < 0.

Therefore, there is no interior equilibrium if

(RI
0 ≤ RP

0 , α > 0) or (RP
0 ≥

1

θ
, α > 0) or (RP

0 ≤ 1, α < 0).

Since we assume that System (8) satisfies Condition H, thus we have

0 < θ < 1, µ > θ, 0 < b ≤ a and −∞ < α < b.

The requirement RI0 > 1 implies that θ < µ < β. The equation (15) has only one positive root

S∗2 = B+
√
B2−4C
2 if

C =
µ− θ − d(β−θ)

α
b
α − 1

=
α(µ− θ)− d(β − θ)

b− α
< 0⇔ 0 < α <

d(β − θ)
µ− θ

=
d
µ−θ
β−θ

.

Therefore, System (8) has a unique interior equilibrium Ei2 = (S∗2 , I
∗
2 , P

∗
2 ) where S∗2 = B+

√
B2−4C
2 if

α <
d
µ−θ
β−θ

, max{θ, 1

RI
0

} < S∗2 < min{1, 1

RP
0

} when α > 0, or, 1 > S∗2 > max
{
θ,

1

RI
0

,
1

RP
0

}
when α < 0.

In the case that α < 0, it is easy to check that C < 0 since θ < µ < β implies that α < d
µ−θ
β−θ

holds

whenever α < 0. Thus, it is impossible that (15) has two positive roots when α < 0. If (15) has two
positive roots

S∗1 =
B −

√
B2 − 4C

2
< S∗2 =

B +
√
B2 − 4C

2
,

then it requires that α > 0 and

B > 0⇔ −(β − θ) + d−α
b−α > 0⇔ 0 < β − θ < d−α

b−α s.t. α < min{b, d},
C > 0⇔ α(µ−θ)−d(β−θ)

b−α > 0⇔ 0 < β − θ < α(µ−θ)
d ,

B2 > 4C ⇔ (β − θ)2 +
(
d−α
b−α

)2

+ 2(β−θ)(d+α)−4α(µ−θ)
b−α > 0.

Thus, B > 0 and C > 0 require that

0 < β − θ < d− α
b− α

s.t. 0 < α < min{b, d} and 0 < β − θ < α(µ− θ)
d

< µ− θ

which is a contradiction since 0 < µ − θ < β − θ and b > α. Therefore, System (8) has at most one324

interior equilibrium Ei2 and System (8) has no interior equilibrium if C > 0 or B2 < 4C which implies325

follows:326

1. C > 0⇔ α > d
µ−θ
β−θ

.327

2. B2 − 4C < 0⇔ µ < θ +
(b−α)

(
(θ−β+ d−α

b−α )
2
+

4d(β−θ)
b−α

)
4α328
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The argument above implies that System (8) has at most one interior equilibrium Ei2 with S∗2 =
B+
√
B2−4C
2 . From (14), we have

S∗2 >
d− α
b− α

if α > 0; S∗2 <
d− α
b− α

if α < 0

which implies that

S∗2 >
d− α
b− α

≥ 1 when b > α > 0, d ≥ b(i.e., RP0 ≤ 1).

This is a contradiction to the fact that lim supt→∞ S(t) ≤ 1. Therefore, System (8) has no interior
equilibrium if RP0 ≤ 1, α > 0. Combining the discussions above, we can conclude that System (8) has no
interior equilibrium if

RP
0 ≤ 1, α < b.

The existence of Ei2 requires

max{θ, 1

RI0
} < S∗2 < min{1, 1

RP0
} if α > 0; while 1 > S∗2 > max

{
θ,

1

RI0
,

1

RP0

}
if α < 0

which implies that System (8) has no interior equilibrium if

S∗2 <
d− α
b− α

< max
{
θ,

1

RI
0

,
1

RP
0

}
= max

{
θ,

1

RI
0

}
when RP

0 > 1, α < 0

since
1

RP0
=
d

b
<
d− α
b− α

when RP0 > 1, α < 0.

The above argument also implies that System (8) has no interior equilibrium if

α > 0, RP0 >
1

θ
and RI0 >

1

θ

which implies that, according to Proposition 3.1, the only possible boundary equilibria for System (8)329

are E0, Eθ and E1 where only E0 is locally asymptotically stable; Eθ is a source and E1 is a saddle with330

one stable manifold on S-axis. This implies that all trajectories of System (8) that are not living on the331

stable manifold of E1 converge to E0.332

The local stability of the interior equilibrium Ei2 =
(
S∗2 ,

b
α

(
1
RP0
− S∗2

)
, βa

(
S∗2 − 1

RI0

))
can be deter-333

mined by the eigenvalues of the Jacobian Matrix of (8) evaluated at this equilibrium, i.e., JEi2 :334

JEi2 =


S∗2
(
1 + θ − d

α + ( bα − 2)S∗2
)

S∗2 (θ − β − S∗2 ) −aS∗2

β(d−bS∗
2 )

α 0 −a(d−bS∗
2 )

α

b(βS∗
2−µ)
a

α(βS∗
2−µ)
a 0

 (17)

where its characteristic equation reads as follows:335

−λ3 +
S∗
2 [α(1+θ)−d+(b−2α)S∗

2 ]
α λ2 − βS∗

2 (S∗
2−θ+β)(d−bS∗

2 )+αd(βS∗
2−µ)

α λ

+
S∗
2 (d−bS∗

2 )(βS∗
2−µ)[α−d+(β−θ+2S∗

2 )(b−α)]
α = (λ1 − λ)(λ2 − λ)(λ3 − λ) = 0.

(18)

with λi, i = 1, 2, 3 being roots of (18). If all real part of λi, i = 1, 2, 3 are negative, then we have

∑3
i=1 λi =

S∗
2 [α(1+θ)−d+(b−2α)S∗

2 ]
α < 0⇔ S∗2

{ < d−α(1+θ)
b−2α if 0 < α < min{b/2, d/(1 + θ)}

> α(1+θ)−d
2α−b if α > max{b/2, d/(1 + θ)}

> d−α(1+θ)
b−2α if α < 0
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∑3
i,j=1,i6=j λiλj =

βS∗
2 (S∗

2−θ+β)(d−bS∗
2 )+αd(βS∗

2−µ)
α = βS∗2 (S∗2 − θ + β)

(d−bS∗
2 )

α + d(βS∗2 − µ) > 0

∏3
i=1 λi =

d−bS∗
2

α S∗2 (βS∗2 − µ) [α− d+ (β − θ + 2S∗2 )(b− α)] < 0⇔ S∗2 <
d−α
b−α−(β−θ)

2 = B/2

Notice that the existence of Ei2 requires C < 0 (since it is impossible for (15) having two positive roots),
thus, we have

S∗2 =
B +

√
B2 − 4C

2
> B/2

which is a contradiction to the fact that all real part of λi, i = 1, 2, 3 being negative requires S∗2 < B/2.336

Therefore, the real parts of eigenvalues of JEi2 can never be all negative.337

Notes: Theorem 4.2 suggests that System (8) has at most one interior equilibrium which is always338

unstable (see Figure 4(b) as an example), thus the coexistence of S, I, P seems impossible. In fact, the339

existence of the unique interior equilibrium indicates the tri-stability of the system, i.e., any trajectory340

starting from the interior of R3
+ either converges to E0 or SP -plane or SI-plane. For example, let341

β = 1.5;µ = d = 1; θ = 0.2; a = 2;α = 0.5; b = 1.35, then we can obtain follows regarding System (8):342

1. The locally asymptotically stable boundary equilibria:

E0 = (0, 0, 0), EiI = (0.66667, 0.079096, 0) and EiP = (0.74074, 0, 0.070096).

2. The unique interior equilibrium Ei2 = (0.7329, 0.0211, 0.0497) where the eigenvalues of JEi2 are

λ1 = −0.1146 + 0.3713i, λ2 = −0.1146− 0.3713i and λ3 = 0.018896 > 0.

3. System (8) has only three attractors E0, E
i
I and EiP where their basins of attractions are presented343

in Figure 5(b): The white regions are the basins of attraction of E0; the blue regions are the basins344

of attraction of EiI ; and the green regions are the basins of attraction of EiP .345

In addition, the second part of Theorem 4.2 implies that the full SIP system has only one attractor346

E0 when its subsystem (9) has predation-driven extinction and its subsystem (10) has disease-driven347

extinction in the case that α > 0, i.e., Rk0 >
1
θ , k = P, I.348

349

Based on our analysis and numerical simulations, the predator-prey system (8) with prey subject to350

Allee effects and disease can have one (i.e., extinction of all species), two (i.e., competition exclusion351

or bi-stability) or three (i.e., tri-stability) attractors but can never have the coexistence of S, I, P-352

populations. We summarize the global dynamical features of System (8) as follows (also see Table353

5):354

1. The importance of initial conditions: From Theorem 4.1, we know that if S(0) < θ, then355

the trajectory converges to E0, i.e., the extinction of S, I, P occurs. In addition, when System356

(8) exhibits bi-stability or tri-stability (see below), different initial conditions may lead to different357

attractors.358

2. The extinction state E0 is always an attractor due to Allee effects in prey according to Propo-359

sition 4.1. In addition, Theorem 4.1 and Theorem 4.2 implies that E0 is a global attractor if360

(RI0 ≤ 1, RP0 > 1/θ) or (α < 0, RP0 ≤ 1, RI0 > 1/θ) or (α > 0, RP0 + α(1−θ)
d ≤ 1, RI0 > 1/θ) or361

(α > 0, RP0 > 1/θ,RI0 > 1/θ).362

3. The bi-stability occurs in the absence of an interior equilibrium in the following two cases:363

(a) Only susceptible prey is able to survive: According to Theorem 4.1, this occurs when364

both the reproduction number of disease and predator are small, i.e., both RI0 ≤ 1 and365

RP0 ≤ 1.366
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Figure 5: The left graph is presenting the basins of attractions of E0 (white regions) and EiI (blue regions) when β =

1.5; θ = 0.2; d = µ = 1;α = −100; b = 5.5 < a = 6 (RP0 > 1
θ
, RI0 = 1.5) and S(0) ∈ [0.70, 0.75], I(0) = [0.001, 0.05], P (0) =

[0.002, 0.05]; The right graph is presenting the basins of attractions of E0 (white regions),EiP (green regions) and EiI (blue

regions) when β = 1.5; θ = 0.2; d = µ = 1; a = 2;α = 0.5; b = 1.35 (RP0 = 1.35, RI0 = 1.5) and S(0) ∈ [0.70, 0.75], I(0) =
[0.001, 0.1], P (0) = [0.002, 0.1].
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(b) Competition exclusion: In this case System (8) has two attractors: one is E0 and the367

other one is either in SP -plane or in SI-plane which can be a locally asymptotically stable368

boundary equilibrium EiI (or EiP if in SP -plane) or the unique stable limit cycle around EiI369

(or around EiP if in SP -plane). See Figure 5(a) as an example.370

4. The tri-stability in the presence of the unique interior equilibrium: Theorem 4.2 indicates that371

System (8) can have at most one interior equilibrium which is always unstable; thus (8) has no372

coexistence of S, I, P-populations. In this case, (8) has three attractors: one is E0, the second373

one is a locally asymptotically stable boundary equilibrium EiI or the unique stable limit cycle374

around EiI that locates in SI-plane and the third one is a locally asymptotically stable boundary375

equilibrium EiP or the unique stable limit cycle around EiP that locates in SP -plane (see Figure376

5(b) as an example).377

5. The effects of disease & predation-driven extinction: Theorem 4.1 and Theorem 4.2 indicate378

that all populations go extinction if (RI0 ≤ 1, RP0 > 1/θ) or (α < 0, RP0 ≤ 1, RI0 > 1/θ) or379

(α > 0, RP0 + α(1−θ)
d ≤ 1, RI0 > 1/θ) or α > 0, RP0 > 1/θ,RI0 > 1/θ). In addition, there is no380

interior equilibrium if (α > 0, RP0 > 1/θ) or (α < 0, d−αb−α < max{θ, 1
RI0
}). The interesting question381

is that what population dynamics of System (8) in the following two cases:382

(a) α < 0,RP
0 > 1

θ and 1 < RI
0 <

1
θ : In this case, competition exclusion occurs, i.e., only S and

I-class are able to coexist while P-class goes extinction. In fact, EiI can be locally asymptot-
ically stable if α < 0 and |α| large enough such that the following condition satisfied (from
Proposition 4.1)

1 < RI0 <
β − θ +

√
β2 − βθ + β

β + βθ − θ2
and

1

θ
< RP0 < RI0

1−
α
(

1
RI0
− θ
)(

1− 1
RI0

)
d( 1
RI0

+ β − θ)

 .

For example, let β = 1.5;µ = d = 1; θ = 0.2;α = −100; b = 5.5 < a = 6, then we can obtain383

follows regarding System (8):384

i. The locally asymptotically stable nontrivial boundary equilibria: EiI = (0.66667, 0.079096, 0)385

ii. The unique interior equilibrium Ei2 = (0.7231, 0.0298, 0.014104) where the eigenvalues of
JEi2 are

λ1 = −0.38780 + 0.66810i, λ2 = −0.38780− 0.66810i, and λ3 = 0.57608.

iii. System (8) has only two attractors E0 and EiI where their basins of attractions are386

presented in Figure 5(a): The white regions are the basins of attraction of E0 and the387

blue regions are the basins of attraction of EiI .388

(b) 1 < RP
0 < 1

θ < RI
0: According to Proposition 4.1, EiP cannot be locally asymptotically stable

since it requires

RI0 < RP0

1 +

(
1
RP0
− θ
)(

1− 1
RP0

)
µ

 .

Let F (RP0 ) = RP0

1 +

(
1

RP0

−θ
)(

1− 1

RP0

)
µ

 , 1 < RP0 < 1
θ , then we have

max
1≤RP0 ≤

1
θ

{F (RP0 )} = F (
1

θ
) =

1

θ
since F ′(RP0 ) =

1 + (RP0 )2(µ− θ)
µ(RP0 )2

> 0.
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However, we have 1
θ < RI0, thus it is impossible that RI0 < F (RP0 ) holds. Numerical simula-389

tions suggest that System (8) has global stability at E0 and there is a orbit connecting EiP to390

E0.391

6. The parameter a does not affect the existence and local stability of EiP , E
i
I and the unique interior392

equilibrium Ei2.393

Attractor(s) Sufficient Condition Biological Implications
E0 From Theorem 4.1: 1. RI0 ≤ 1, RP0 >

1
θ ; 2. α < 0, RP0 ≤ 1, RI0 > 1

θ ; 3.

0 < α < b,RP0 + α(1−θ)
d ≤ 1, RI0 >

1
θ ;

From Theorem 4.2: 4. α > 0, RP0 >
1
θ , R

I
0 >

1
θ ; From Simulations: 5. 1 <

RP0 < 1
θ < RI0.

No interior equilibrium & No EiP , E
i
I ;

Predation/Disease-Driven extinction
combined with the low reproduction
value leads to the extinction of all
species.

E0 ∪ E1 From Theorem 4.1: RP0 ≤ 1 and RI0 ≤ 1 No interior equilibrium & No EiP , E
i
I ;

Low reproduction values of disease and
predation makes susceptible prey be the
only possible survivor.

E0 ∪ EiP From Proposition 4.1 and Theorem 4.1
combined with simulations: 1 <

RP0 < 2
1+θ ,

RI0
RP0

< 1 +

(
1

RP0

−θ
)(

1− 1

RP0

)
µ

1. Competition exclusion: No in-
terior equilibrium; EiI exists; Predator
wins and disease free; 2. Predation
can not save prey from disease-
induced extinction: No interior equi-
librium; Predator is the inferior com-
petitor

E0 ∪ EiI From Proposition 4.1 and Theorem 4.1-
4.2 combined with simulations: 1 <

RI0 <
β−θ+

√
β2−βθ+β

β+βθ−θ2 ,
RP0
RI0

< 1 −

α

(
1

RI0

−θ
)(

1− 1

RI0

)
d( 1

RI0

+β−θ) and { 1. RP0 ≤ 1; or

2. RP0 > 1
θ}

1. Competition exclusion: No in-
terior equilibrium; EiP exists; Predator
wins and disease free; 2. Disease can
save prey from predation-induced
extinction: the unique interior equi-
librium exists, no EiP , disease is the su-
perior competitor.

E0 ∪ EiI ∪ EPi From Proposition 4.1: 1 < RP0 <

2
1+θ ,

RI0
RP0

< 1 +

(
1

RP0

−θ
)(

1− 1

RP0

)
µ and

1 < RI0 <
β−θ+

√
β2−βθ+β

β+βθ−θ2 ,
RP0
RI0

< 1 −

α

(
1

RI0

−θ
)(

1− 1

RI0

)
d( 1

RI0

+β−θ)

Tri-stability: Unique unstable in-
terior equilibrium; Has both EiI and
EiI ; Different initial conditions lead to
predator wins or disease wins

Table 5: From the analysis of the stability of equilibria and numerical simulations, sufficient condition for the global
attractors for System (8) as well as its corresponding biological implications
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5. The impact of Allee effects, disease and predation394

First, we would like to explore the impact of Allee effects by comparing the dynamics of (8) to the395

following model without Allee effects in prey:396

dS
dt = S (1− S − I)− βSI − aSP = S [1− S − (1 + β)I − aP ] = Sg1(S, I, P ),
dI
dt = βSI − aIP − µI = I [βS − aP − µ] = If2(S, I, P ),
dP
dt = a (cS + γI)P − dP = P [bS + αI − d] = Pf3(S, I, P )

(19)

where the biological meaning of all parameters are listed in Table 1. The SIP-model without Allee effects397

(19) has the following boundary equilibria: Ena0 = (0, 0, 0), Ena1 = (1, 0, 0) and398

(EiP )na =
(

1
RP0
, 0,

RP0 −1

aRP0

)
=
(
d
b , 0,

b−d
ab

)
,

(EiI)
na =

(
1
RI0
,

RI0−1

(1+β)RI0
, 0
)

=
(
µ
β ,

β−µ
β(1+β) , 0

) (20)

as well as the unique interior equilibrium399

(Ei)
na =

(
bRI0(1+β)−αRP0 (RI0+β)

RP0 R
I
0(1+β)(b−α)

,
b[RP0 (β+RI0)−RI0(1+β)]

RP0 R
I
0(1+β)(b−α)

,
β[b(1+β)(RI0−R

P
0 )−αRP0 (RI0−1)]

aRP0 R
I
0(1+β)(b−α)

)
=

(
d(1+β)−α(1+µ)

(1+β)(b−α) , b(1+µ)−d(1+β)
(1+β)(b−α) , (1+β)(dβ−bµ)−α(β−µ)

a(1+β)(b−α)

)
= (S∗, I∗, P ∗).

(21)

Therefore, (EiP )na exists if and only if RP0 > 1 while (EiI)
na exists if and only if RI0 > 1. In addition,400

we can conclude that (Ei)
na exists if and only if the following inequalities hold401

d(1+β)−α(1+µ)
(1+β)(b−α) > 0⇔ d(1 + β)− α(1 + µ) > 0⇔ 1+β

1+µ >
α
d ,

b(1+µ)−d(1+β)
(1+β)(b−α) > 0⇔ b(1 + µ)− d(1 + β) > 0⇔ 1+β

1+µ <
b
d ⇔ dβ − bµ < b− d,

(1+β)(dβ−bµ)−α(β−µ)
a(1+β)(b−α) > 0⇔ (1 + β)(dβ − bµ)− α(β − µ) > 0⇔ dβ − bµ > α(β−µ)

1+β .

(22)

since we assume that b > α holds for (19) (e.g., predator hunts less infective prey than healthy prey and402

may even be harmed by infective prey due to the disease). Now we summarize main global dynamics of403

Model (19) as the following theorem:404

Theorem 5.1. [Dynamics of SIP-model without Allee effects]Assume that a > b > α. Then the405

following statements hold:406

1. Model (19) is positively invariant in X and bounded by [0, 1]×[0, 1]×[0, b
amin{1,d} ]with the following

property
lim sup
t→∞

S(t) + I(t) ≤ 1.

2. If RI0 ≤ 1, then the infective population of Model (19) goes extinct. In addition, if RP0 ≤ 1, then
Model (19) has global stability at Ena1 ; while if RP0 > 1 instead, then Model (19) has global stability
at (EiP )na. Similarly, the prey population of Model (19) goes extinct if

(RP0 ≤ 1, α ≤ 0) or (RP0 ≤ 1− α

d
, α > 0).

In addition, Model (19) has global stability at (EiI)
na if

(α > 0, RP0 ≤ 1− α

d
, RI0 > 1) or (α ≤ 0, RP0 ≤ 1, RI0 > 1).

3. The existence of the unique interior equilibrium (Ei)
na requires RI0 > 1, RP0 > 1 and both nontrivial407

boundary equilibria (EiP )na and (EiI)
na are locally asymptotically stable. In addition, the interior408

equilibrium (Ei)
na is always unstable.409
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4. If (EiP )na is unstable, then (EiI)
na exists and is stable; while if (EiI)

na is unstable, then (EiP )na410

exists and is stable.411

Proof. It is easy to check that (19) is positively invariant in R3
+ since S = 0, P = 0, I = 0 are invariant

manifolds, respectively. For any initial conditions taken in R3
+, we have

dS

dt
≤ S(1− S)⇒ lim sup

t→∞
S(t) ≤ 1.

Thus, for any ε > 0, then there exists some time T large enough such that

dS

dt
+
dI

dt
≤ (1 + ε)(1− S − I) for all t > T ⇒ lim sup

t→∞
S(t) + I(t) ≤ 1.

Now define V = b(S+I)
a + P , then we have

dV

dt
≤ bS(1− S − I)

a
− bIP − bµ

a
I + αPI − dP ≤ b/a− b/a(S + I)− dP ⇒ lim sup

t→∞
V (t) ≤ b

amin{1, d}
.

This indicates that lim supt→∞ V (t) ≤ b
amin{1,d} . Thus, the first statement of Theorem 5.1 holds.412

From the positive invariant property of (19), we have follows

dS
dt = S (1− S − I)− βSI − aSP ≤ S [1− S − (1 + β)I] ,
dI
dt = βSI − aIP − µI ≤ [βS − µ] .

Thus the infective population of (19) is always less or equal to (if P = 0) the infective population of the
following dynamics:

dS
dt = S [1− S − (1 + β)I]
dI
dt = [βS − µ]

which is the well-known Lotka-Volterra prey predator system that has limt→∞ I(t) = 0 if RI0 ≤ 1 (see
the detailed proof in Kang and Wedekin [50]). Therefore, the infective population of (19) goes extinct
if RI0 ≤ 1. This implies that the limiting system of (19) is the well-known Lotka-Volterra prey predator
system again:

dS
dt = S [1− S − aP ]
dP
dt = P [bS − d]

which has global stability at (1, 0) when RP0 ≤ 1 and has global stability at
(

1
RP0
,
RP0 −1

aRP0

)
when RP0 > 1

by using the local stability of boundary equilibria, Poincaré-Bendixson Theorem and Dulac’s criterion
[31]. The detailed proof can be found in Kang and Wedekin [50]. Similarly, we can prove the dynamical
properties of (19) when

(RP0 ≤ 1, α ≤ 0) or (RP0 ≤ 1− α

d
, α > 0).

Thus, the second part of of Theorem 5.1 holds.413

The argument above indicates that one necessary condition for (19) having an interior equilibrium
(Ei)

na = (S∗, I∗, P ∗) (see the detailed expression of (Ei)
na in (21)) is that RI0 > 1, i.e., β > µ. Thus

from (22), we can conclude that (Ei)
na exists if and only if

dβ − bµ > α (β − µ)

1 + β
and max{1, α

d
} < 1 + β

1 + µ
<
b

d
since β > µ, b > α.

Now if RP0 ≤ 1, i.e., d ≤ b, then we have 1 < 1+β
1+µ <

b
d ≤ 1 which is impossible. Thus, the existence of

(Ei)
na requires

RI0 > 1 and RP0 > 1
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which indicates the existence of (EiI)
na and (EiP )na.414

Notice that (EiI)
na is globally stable in the SI-plane (i.e., P = 0) and (EiP )na is globally stable in415

the SP -plane (i.e., I = 0), therefore, the locally stability of (EiI)
na and (EiP )na is determined by the416

signs of dP
dt

∣∣
(EiI)na

, dIdt
∣∣
(EiP )na

, respectively, i.e.,417

dP

dt

∣∣∣
(EiI)na

= −aP
∗(1 + β)(b− α)

β
,

dI

dt

∣∣∣
(EiP )na

= −I
∗(1 + β)(b− α)

b
. (23)

This implies that if we have (Ei)
na = (S∗, I∗, P ∗) ∈ intR3

+, then dP
dt

∣∣
(EiI)na

< 0 and dI
dt

∣∣
(EiP )na

< 0,418

thus, both (EiI)
na and (EiP )na are locally asymptotically stable whenever (EiP )na exists. Therefore, the419

existence of (Ei)
na requires RI0 > 1, RP0 > 1 and both (EiI)

na and (EiP )na being locally asymptotically420

stable. If one of (EiI)
na and (EiP )na is unstable, then there is no interior equilibrium, thus, (19) can421

never be permanent due to Schauder fixed point theorem [see Theorem 6.3 by Hutson and Schmitt [41]]422

when b > α.423

Let J(Ei)na be the Jacobian matrix of System (19) evaluated at (Ei)
na = (S∗, I∗, P ∗), then by simple

calculations, we can obtain that

det(J(Ei)na) = aS∗I∗P ∗ (1 + β) (b− α) > 0.

Therefore, (Ei)
na is always unstable whenever it exists.424

Assume that (EiP )na is unstable, then from (21), (22) and (23), we have the following inequalities
hold

b > d and dβ − bµ = dµ
(
RI0 −RP0

)
≥ b− d > 0.

Therefore, we have RI0 > RP0 > 1, i.e., β > µ, thus (EiI)
na exists. Then (EiI)

na has to be stable,425

otherwise, (19) is permanent which is impossible. Therefore, if (EiP )na is unstable, then (EiI)
na exists426

and is stable.427

Assume that (EiI)
na is unstable, then from (21), (22) and (23), we have the following inequalities

hold

β > µ and dβ − bµ = dµ
(
RI0 −RP0

)
≤ α(β − µ)

1 + β
.

If d ≥ b, i.e., RP0 ≤ 1, then we have

α < b ≤ d⇒ dβ − bµ ≥ b(β − µ) >
α(β − µ)

1 + β

which is impossible. Thus, we have RP0 > 1 which implies that (EiP )na exists and is stable.428

429

Notes: Theorem 5.1 suggests that it may be impossible for System (19) to have the coexistence of S, I,
P-population under the assumption that b > µ since the permanence of (19) may occur only if

α > b > 0 and RI0 > RP0 .

In addition, Theorem 5.1 and numerical simulations suggests that the dynamics of System (19) with430

b > α can be classified into the following three cases:431

1. Only S-population persists: This occurs only if both RP0 ≤ 1 and RI0 ≤ 1.432

2. Competition exclusion: either S and P persist or S and I persist. This occurs if

RP0 > 1, RI0 > 1, and dµ
(
RI0 −RP0

)
> b− d > 0⇒ S and P persist

or

RP0 > 1, RI0 > 1, and dµ
(
RI0 −RP0

)
<
α(β − µ)

1 + β
⇒ S and I persist.
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3. Bi-stability: This occurs when both (EiI)
na and (EiP )na are locally asymptotically stable, i.e.,

RP0 > 1, RI0 > 1, and
α(β − µ)

1 + β
< dµ

(
RI0 −RP0

)
< b− d.

Depending on initial conditions, the trajectories may converge to (EiI)
na or (EiP )na.433

By comparing the population dynamics of System (8) (with Allee effects in prey) to the population434

dynamics of (19) (no Allee effects in prey), we are able to obtain the following conclusion:435

1. The impacts of Allee effects in the full SIP model: Not surprisingly, Allee effects make the436

system prone to extinction and initial conditions playing an extreme important role in the surviving437

of S health prey, or the surviving of I, P when System (8) has tri-stability. In addition, System (8)438

has more complicated disease-free or predator-free dynamics (e.g., limit cycle, heteroclinic orbit,439

disease/predation-driven extinction) than (19) does due to the nonlinearity introduced by Allee440

effects.441

2. The impacts of disease and predation: Notice that both System (8) (with Allee effects in442

prey) and System (19) (no Allee effects in prey) can not have the coexistence of S, I, P-population.443

This interesting phenomenon is due to the assumption b > α, i.e., predator cannot distinguish444

the infected and healthy prey but the consumption of the infected prey has less or even harm the445

growth of predator. The proofs of our analytical results imply that the coexistence of all S, I,446

P-population is possible only if b < α, i.e., predator can have more benefits in the capture and447

consumption of the infected prey than the healthy prey. In fact, if b > α, then under certain values448

of parameters, both System (8) and (19) can exhibit the locally asymptotically interior equilibrium449

or stable interior limit cycle (see the coexistence condition and its related numerical simulations450

in Hethcote et al. [35], Singh et al. [64]).451

3. The impacts of Allee effects, disease and predation: In the presence of Allee effects and452

predation-driven extinction (i.e., RP0 > 1
θ ) in the subsystem (9) of System (8), disease may be453

able to save the predation-driven extinction and have the coexistence of both S and I. However,454

predation can not save the disease-driven extinction (i.e., RI0 >
1
θ ). This suggests that disease may455

be the superior competitor and predator is the inferior competitor.456

6. Discussion457

Mathematical modeling has been a great tool for understanding species’ interactions as well as the458

disease dynamics, which allow us to obtain useful biological insights and enable us to make correct459

policies to maintain the diversity in nature. Many mathematical models have been used to understand460

the impacts of Allee effects on species’ abundance and persistence [24, 70, 9, 49, 51] especially in the461

presence of disease [38, 79, 37, 71, 47]. Recently, there is significant research on eco-epidemiological462

models [26, 13, 15, 35, 37, 5, 68] that incorporate both the interactions of species and disease since the463

first work introduced by Hadeler and Freedman [33]. For example, recently Bairagi et al. [5] studied the464

role of infection on the stability of predator-prey systems with different response functions. In this article,465

we propose a general predator-prey model with prey subject to Allee effects and disease. There are three466

unique features of our assumptions: (a) Disease has no vertical transmission but it is untreatable and467

causes additional mortality in infected prey; (b) Allee effects built in the reproduction of health prey468

while infected prey has no reproduction; (c) Predator captures health and infected prey at the same469

rate but the consumption of infected prey has less benefits or even causes harm to predator. These470

assumptions contribute great impacts on the dynamical outcomes of the proposed model. To explore471

how interplay among Allee effects, disease and predation affect species’ abundance and persistence, we472

focus on a concrete system with additional two assumptions: (d) disease transmission follows the law473

of mass action; (e) prey and predator have Holling-Type 1 functional responses. In a nutshell, we474

summarize our main findings as well as their related biological implications as follows:475
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1. Based on assumptions (a), (b), (c), we propose a general model described by nonlinear equations476

(5) whose schematic presentation is showned in Figure 1. Model (5) is general enough to cover477

all common scenarios: i) prey and predator can have Holling-Type I or II or III; ii) the disease478

transmission can be density-dependent or frequency-dependent, whose basic dynamical properties479

have been given in Theorem 2.1. Theorem 2.1 and its corollary 2.1 indicate that Allee effects in480

prey make initial conditions being extremely important for the persistence of prey as well predator,481

which partially answers the first question listed in the introduction regarding the impact of Allee482

effects.483

2. Proposition 3.1 and Theorem 3.1 combined with numerical simulations [see Figure 2, 3] provide us484

a full picture on the dynamics of of the concrete model (8) when it’s disease-free or predation-free:485

these subsystems have very complicated features due to the nonlinearity introduced by Allee ef-486

fects. By comparing to their corresponding models without Allee effects, we can conclude that Allee487

effects can destablize systems and make the system prone to extinction through disease/predation-488

driven extinction or small initial conditions. These results not only provide us an access to inves-489

tigate the full system but also partially answer the first question listed in the introduction.490

3. Proposition 4.1 and Theorem 4.1 combined with numerical simulations [see Figure 4] indicates491

that the full system can have the extinction of all species (caused by the combinations of the low492

reproduction number, disease and predation-driven extinctions), bistability (caused by the low493

reproduction numbers of both disease and predator, competition exclusions or disease/predation-494

driven extinctions) and tri-stability. One of our most interesting findings is that disease may be495

able to save prey from predation-driven extinction and leads to the coexistence of S and I-class496

while predation cannot save the disease-driven extinction. These answer the last two questions497

listed in the introduction regarding how the interplay among Allee effects, disease and predation498

may promote species’ persistence. In addition, Theorem4.2 and numerical simulation [see Figure499

5] suggests that there is no coexistence of health prey, infected prey and predator. This answers500

the second question listed in the introduction regarding the possibility of coexistence.501

4. Theorem 5.1 gives us the global picture of the dynamics of the SIP model without Allee effects.502

The comparison study between the concrete SIP model with its corresponding model without Allee503

effects implies that no coexistence of S, I, P-population is not caused by Allee effects but it is504

caused by our assumption (c): predation on infected prey has less or negative contribution to the505

growth rate of predator, i.e., b > α > −∞. The biological explanation for this is that I and P-class506

are at exploitative competition for S-class whereas I-class cannot be superior and P-class cannot507

gain significantly from its consumption of I-class. Further more, our analysis and simulations508

show that the coexistence of S, I, P-class occurs only if b < α and the interior attractors can be509

very complicated, e.g., limit cycles. This result complement the previous study on SIP systems510

without Allee effects but with assumption that predator may gain more benefits from hunting511

weak/sick prey, which may promote prey surviving and avoid the disease-driven extinctions [see512

more discussions in [35]].513

6.1. Potential future work514

Transmission of disease is influenced by aggregation patterns in the host population as well as its515

social organization. Two different types of incidence rate (new infections per unit time) are usually516

distinguished [6, 34, 55, 58]: density-dependent transmission (also called mass action transmission) is the517

case when contact rate between susceptible and infective individuals increases linearly with population518

size; while frequency-dependent transmission (also called standard incidence or proportionate mixing) is519

the case when number of contacts is independent of population size. We focused on a concrete example520

when disease has density-dependent transmission in this article. It will be interesting to explore how521

frequency-dependent incidence rate may generate different dynamics in the presence of Allee effects and522

predation in the future.523

34



Holling-Type I functional response in predator-prey interaction occurs when predator’s handling time524

can be ignored, which has the form h(N) = aN with a being the attack rate of predator and N being the525

prey density. This functional responses implies that there is no upper limit to the prey consumption rate526

and satiation of the predator. While Holling-Type II or III functional response has predator satiation at527

the high density of prey [40]: Holling-Type II represents an asymptotic curve that decelerates constantly528

as prey number increases, e.g., h(N) = aN
k+N with k being the half-saturation constant, while Holling-529

Type III functional response is sigmoidal, rising slowly when prey are rare, accelerating when more530

abundant and last reaching a saturated upper limit, e.g., h(N) = aN2

k2+N2 , which is suitable to describe531

predation when switching prey and learning ability are more common to predator [59]. The predation532

satiation property of both Holling-Type II or III functional responses can be mechanisms of generating533

Allee effects in prey [28]. It will be interesting to explore how double Allee effects may arise from534

predation satiation and Allee effects built in the reproduction of prey, and thus, may produce different535

dynamical outcomes.536
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Appendix A- an approach of Model (4)708

In the absence of disease and predation, we assume that the population dynamic of prey can be709

described by the following generic single species population model with an Allee effect:710

dS
dt = r(1 + θ)S2

(
1− S

1 + θ

)
︸ ︷︷ ︸

combined reproduction effort due to mating limitations (i.e., Allee effects) and limited resource

− rθS︸︷︷︸
natural mortality

= rS(S − θ)(1− S)

(24)

where S denotes the normalized susceptible prey population; the parameter r denotes the maximum711

birth-rate of species, which can be scaled to be 1 by altering the time scale; the parameter 0 < θ <712

1 denotes the Allee threshold (normalized susceptible population). This approach assumes that the713

susceptible prey population has a constant mortality rate rθ. This property is inherited by the infected714

prey I-class, thus in the presence of disease, I-class has a constant mortality µd + rθ which is a sum of715

the natural mortality and the additional mortality due to disease.716
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We assume that a) disease does not have vertical transmission but it is untreatable and causes an717

additional death rate; b) I-class does not contribute to the reproduction of newborns; and c) the net718

reproduction rate of newborns is modified by the disease (e.g, infectivies compete for resource but do719

not contribute to reproduction). In the presence of disease (i.e., I > 0) and the absence of predation720

(i.e., P = 0), the formulation of susceptible prey population dynamics can be described by the following721

(25):722

dS

dt
= rS(S − θ)(1− S − I)︸ ︷︷ ︸

the net reproduction modified by disease due to the competition for resource

− φ(N)
I

N
S︸ ︷︷ ︸

new infections

(25)

where φ(N) is the disease transmission function that can be either density-dependent (i.e., φ(N) = βN723

which is also referred to the law of mass action) or frequency-dependent (i.e., φ(N) = β). Thus, the724

formulation of infective population can be described by the following (26),725

dI
dt = φ(N)

I

N
S︸ ︷︷ ︸

Infected population per unit time

− rθI︸︷︷︸
natural mortality

− µdI︸︷︷︸
additional mortality due to disease

= φ(N) IN S − (rθ + µd) I

= φ(N) IN S − µI︸︷︷︸
the natural mortality plus an additional mortality due to disease

.

(26)

where the parameter µ > rθ denotes the death rate of I-class, which includes an additional disease-726

induced death rate. This modeling approach is similar to the work by Boukal and Berec [11], Deredec727

and Courchamp [23], Courchamp et al. [18] and Hilker et al. [37] as well as many others [54, 30, 2, 57,728

36, 62, 27] regarding the effects of Allee effects and disease.729
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