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Dynamics of a plant–herbivore model

Yun Kang, Dieter Armbruster* and Yang Kuang

Department of Mathematics and Statistics, Arizona State University, Tempe, AZ, USA

We formulate a simple host–parasite type model to study the interaction of certain plants and herbivores. Our
two-dimensional discrete-time model utilizes leaf and herbivore biomass as state variables. The parameter
space consists of the growth rate of the host population and a parameter describing the damage inflicted
by herbivores. We present insightful bifurcation diagrams in that parameter space. Bistability and a crisis
of a strange attractor suggest two control strategies: reducing the population of the herbivore under some
threshold or increasing the growth rate of the plant leaves.
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1. Introduction

The usual framework for discrete-generation host–parasite models has the form

Pn+1 = λPnf (Pn, Hn), (1)

Hn+1 = cλPn [1 − f (Pn, Hn)] , (2)

where P and H are the population biomasses of the host (a plant) and the parasite (a herbivore) in
successive generations n and n + 1, respectively, λ is the host’s inherent rate of increase (λ = er

where r is the intrinsic rate of increase) in the absence of the parasites, c is the biomass conversion
constant and f is the function defining the fractional survival of hosts from parasitism. Throughout
the rest of this paper, n takes nonnegative integer values.

The simplest version of this model is that of Nicholson [13] and Nicholson and Bailey [14]
who explored in-depth a model in which the proportion of hosts escaping parasitism is given by
the zero-term of the Poisson distribution namely,

f (Pn, Hn) = e−aHn, (3)

where a is the mean encounters per host. Thus, 1 − e−aHn is the probability of a host will be
attacked. Substituting Equation (3) into the Equations (1) and (2) gives:

Pn+1 = λPne−aHn, (4)

Hn+1 = cλPn

[
1 − e−aHn

]
. (5)
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90 Yun Kang et al.

When λ > 1, the Nicholson–Bailey model has a positive equilibrium, which is unstable [7].
Beddington et al. [3] considered the following modified Nicholson–Bailey model

Pn+1 = λPne
(
− rPn

Pmax
−aHn

)
, (6)

Hn+1 = cλPn

(
1 − e−aHn

)
, (7)

where Pmax is the so-called environment imposed ‘carrying capacity’ for the host in the absence
of the parasite. What was an unstable positive equilibrium when no density-dependent is assumed
for host population growth becomes locally stable for a large set of parameter values [3]. For other
parameter values, the model can generate attractors of various complexity, ranging from a set of
limit cycles of various periods to strange and chaotic ones.

Observe that the structure of Equations (6) and (7) implies that the host density-dependence
acts at a particular time in their life cycle in relation to the stage attacked by the parasites. The Hn

herbivores search for Pn hosts before the density-dependent growth regulation takes effect. Hence,
the next generation of herbivores depends on Pn, the initial host population prior to parasitism.
This leads to the following general form:

Pn+1 = λPng(Pn)f (Hn), (8)

Hn+1 = cλPn [1 − f (Hn)] , (9)

where f (Hn) represents the fraction of hosts surviving parasitism, and the host density dependence
takes the form g(Pn) = e(1−rPn/Pmax).

In many observable plant–herbivore (host–parasite) interactions, herbivores (parasites) are not
attracted to and attack plants until their leaves form good canopies. Moreover, the feeding process
continues throughout most periods of the growing season. This argues for plant–herbivore (host–
parasite) models where the herbivory (parasitization) occurs after the density-dependent growth
regulation of the host takes place. The importance of the sequencing of events when constructing
discrete-time models is well known [5,7]. We propose the following discrete models for such
plant–herbivore interactions:

Pn+1 = λPng(Pn)f (Hn), (10)

Hn+1 = cλPng(Pn) [1 − f (Hn)]. (11)

May [11] introduced Equations (10) and (11). Here we assume that the consumed plant biomass
is fully converted to herbivore biomass, i.e. model (10) and (11) observes the conservation of
biomass production. This basic conservation law is often ignored in existing population models
without proper justification.

2. A general plant–herbivore model and its boundary dynamics

In the following, we apply the above model framework to the interaction between a plant species
and a herbivore species. We are motivated by the gypsy moth, which is a notorious forest pest in
North Central United States whose outbreaks are almost periodic and cause significant damage
to the infested forests. In our discrete-time model, we assume that herbivore population growth
is a nonlinear function of herbivore feeding rate, and that plant population growth decreases
gradually with increasing herbivory.Also, in the absence of the herbivore, plant population density
is regulated by intraspecific competition [2,9,16], so we allow for density dependence in the plant.
We model the plant and herbivore dynamics through their biomass changes. We assume that the
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soil acts as an unlimited reservoir for biomass growth. A plant takes up the nutrient from the
soil and stores the nutrient in its stem, bark, twig and leaves. During spring, leaves emerge in a
deciduous forest. A herbivore in our model has a one year life cycle, like the insects. For example,
the gypsy moth larvae hatch from the egg mass after bud-break and feed on new leaves. At the
end of the season n, adult gypsy moths lay eggs and die. We make the following assumptions:

ASSUMPTION 1 Pn represents the plant population’s (nutritious) biomass after the attacks by the
herbivore but before its defoliation. Hn represents the biomass of the herbivore before they die at
the end of the season n.

ASSUMPTION 2 Without the herbivore, the biomass of the plant population follows the dynamics
of the Ricker model [15],

Pn+1 = Pner[1−Pn/Pmax], (12)

with a constant growth rate r and plant carrying capacity Pmax. The Ricker dynamics determines
the amount of new leaves available for consumption for the herbivore.

ASSUMPTION 3 We assume that the herbivores search for food randomly. The leaf area consumed
is measured by the parameter a, i.e., a is a constant that correlates the total amount of the biomass
that an herbivore consumes. The herbivore has a one year life cycle, the larger a, the faster the
feeding rate.

After attacks by herbivores, the biomass in the plant population is reduced to a fraction e−aH(n)

of that present in the absence of herbivores. Hence,

Pn+1 = Pner[1−Pn/Pmax]−aHn . (13)

The amount of decreased biomass in the plants is converted to the biomass of the herbivore.
Mathematically, the conversion parameter can be scaled away by a simple change of variable
Hn/c → Hn. Hence, for convenience, we assume below that the biomass conversion parameter
is 1. Therefore, at the end of the season n, we have

Hn+1 = Pner[1−Pn/Pmax]
[
1 − e−aHn

]
. (14)

In nature, densities of the host plants are usually high for long periods, during which insect
densities are correspondingly low. Periods of high plant abundance are punctuated by sudden
insect outbreaks, followed by a rapid crash and rapid recovery of the host plant [4,6,12]. The
system (13) and (14) captures these dynamics [1]. There are three parameters in our system r, a

and Pmax. We can scale Pmax away by setting xn = Pn/Pmax, yn = Hn/Pmax, a → aPmax. This
yields the following non dimensionalized system:

xn+1 = xner[1−xn]−ayn , (15)

yn+1 = xner[1−xn]
[
1 − e−ayn

]
. (16)

It is easy to see that if x0 = 0 (y0 = 0), then xn = 0 (yn = 0) for n > 0. We assume that
a > 0 and r > 0. Observe that xn+1 + yn+1 = xner(1−xn) ≤ er−1/r. We thus have the following
propositions:

PROPOSITION 2.1 Assume that a > 0, r > 0, x0 > 0 and y0 > 0, then xn > 0 and yn > 0 for all
n > 0. In addition, we have maxn∈Z+{xn, yn} ≤ er−1/r for n > 0.
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92 Yun Kang et al.

The exponential nonlinearity in Ricker-type models is a prototype for an ecological model
describing discrete-time populations with a one hump dynamics. One hump dynamics indicate
an optimal population size that maximizes reproductive success – deviations from which lead to
reduced populations in the next generation. This reflects limitations to population growth at high
densities such as limited food, water or space [1].

The system (15) and (16) has the two boundary equilibria (0, 0) and (1,0) and possibly multiple
interior equilibria depending on the parameter values of r and a.

At the boundary equilibrium point (0, 0), the Jacobian matrix takes the form of

J |(0,0) =
[

er 0
0 0

]
(17)

with eigenvalues λ1 = er ≥ 1 and λ2 = 0 < 1. Hence, the origin is a saddle, which is stable on
the y-axis and unstable on the x-axis. This implies that plants cannot die out.

At the boundary equilibrium point (1, 0), the Jacobian matrix is

J |(1,0) =
[

1 − r −a

0 a

]
(18)

with eigenvalues λ1 = 1 − r and λ2 = a. As a result, we have two codimension-one bifurcations
from this equilibrium:

• Near r = 2 and a �= 1, the Taylor expansion of Equation (15) on the invariant manifold y = 0
gives

un+1 = (−1 − γ )un + 2u3
n

3
(19)

where γ = r − 2 and un = xn − 1. Equation (19) satisfies the necessary and sufficient
conditions for period doubling [17] consistent with the Ricker dynamics.

• Near a = 1 and r �= 0, 2, we can perform a center manifold reduction and obtain the equation
(if r = 2 then our system has a codimension-two bifurcation).

vn+1 = (1 + α)vn − (α + γ )v2
n

2
− v3

n

3
(20)

where γ = r − 2, α = a − 1 and vn = yn. For γ �= 0, Equation (20) satisfies the necessary
and sufficient conditions for a transcritical bifurcation. For α = γ = 0, we have a pitchfork
bifurcation.

• We can unfold the transcritical bifurcation to obtain a saddle-node bifurcations at

v = √−3α, γ = −4

3

√−3α − α, (21)

v = −√−3α, γ = 4

3

√−3α − α. (22)

Notice that the equilibrium (22) lies in the second quadrant and hence is biologically
uninteresting. Equilibrium (21) exists only when α < 0.

• When r = 2 and a = 1, we have the most degenerate case with eigenvalues λ1 = −1
and λ2 = 1.
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3. Interior equilibria

Let E = (x∗, y∗) be an interior equilibrium of model (15) and (16). From Equation (15), we obtain
x∗ = 1 − ay∗/r and from Equation (16), we obtain x∗ = y∗/(eay∗ − 1) (since ay∗ = r(1 − x∗)).
Let

f1(y) = 1 − ay

r
and f2(y) = y

eay − 1
.

Then the interior equilibria are the intersection points of these two functions in the first
quadrant Q+.

Clearly, f1(y) is a decreasing linear function. It is easy to show that f2(y) is also decreasing. In
addition, we have limy→0 f2(y) = 1/a and limy→0 f ′

2(y) = −1/2. Observe that if a = 1, r = 2,
f1(y) and f2(y) are tangent at the boundary equilibrium (1, 0) with a slope of −1/2. Straight-
forward computation shows that f ′′

2 (y) ≥ 0 and f ′
2(y) ∈ (−1/2, 0), for y > 0. Hence, the

intersection of f1(y) and f2(y) in the first quadrant Q+ has 0 (Figure 1a), 1 (Figure 1b) or 2
(Figure 1c) interior equilibria.

Parameter r measures growth rate of plants and a measures average area of leaves consumed
by a herbivore. If r, a are relatively small, for instance, a < 1 and r < 2, then herbivores die out
because of either not enough food for consumption or the herbivore consumption rate is not high
enough. This is the essence of the following proposition.

Figure 1. Interior equilibria.
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94 Yun Kang et al.

PROPOSITION 3.1 For 0 < r < 2, 0 < a < 1, model (15) and (16) has no positive equilibrium
(Figure 1a).

Proof We note that if 0 < a < 1, 0 < r < 2 and y ≥ 0, then

F(y) = f2(y) − f1(y) = y

eay − 1
+ ay

r
− 1 = N(y)

eay − 1
,

where

N(y) = y + ay

r
(eay − 1) − (eay − 1).

Since 0 < a < 1, we see that N(0) = 0, N ′(0) = 1 − a > 0. Since 0 < r < 2, we see that
N ′′(y) = a2eay(ay/r + 2/r − 1) > 0. Hence, F(y) > 0, y ∈ R+. This shows that model (15)
and (16) has no positive equilibrium points. �

If herbivores consume the plant at a faster rate, e.g., a > 1, which amounts to saying that
herbivores eat enough food during their growth season, then the following proposition suggests
that herbivores may persist.

PROPOSITION 3.2 For a > 1, model (15) and (16) has an unique positive equilibrium (Figure 1b).

Proof For a > 1, we see that f2(0) < f1(0). Moreover, f ′
2(y) ∈ (−1/2, 0), f ′′

2 (y) ≥ 0, f ′
1(y) =

−a/r and f2(r/a) > f1(r/a) = 0. �

By the Jury test [7], we see that the interior equilibrium is locally asymptotically stable if

2 > 1 + det(J ) = 1 + ax∗(1 − rx∗)eay∗
> |tr(J )| = |1 + (a − r)x∗|. (23)

The biological implication of inequality (23) is simple: if it holds, then the plant-herbivore
interaction exhibit simple stable steady state dynamics. However, it is not clear what biologically
mechanisms ensure that the inequalities in (23) holds, since the dynamical outcomes are very
sensitive to the two parameters r and a (Figure 2).

3.1. Codimension one: Neimark–Sacker bifurcation

The condition for a Neimark–Sacker bifurcation is that λ · λ = 1 and λ is not a real number. This
translates into the three equations

r(1 − x) − ay = 0, (24)

x(eay − 1) = y, (25)

a(1 − rx)(x + y) = 1, (26)

and the inequality

|1 + (a − r)x| < 2. (27)

Equations 24–26 cannot be solved in closed form but it is easy to solve them numerically for
x and y values in the first quadrant. It is easy to check that the Trace condition (23) is always
satisfied for those values of x and y. The curve drawn with small circles in Figure 2 that forms the
boundary between region 6 and 7 depicts the numerical solutions for these equations and hence
represents the codimension one parameter set for the Neimark–Sacker bifurcation.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
2
3
:
4
5
 
3
0
 
S
e
p
t
e
m
b
e
r
 
2
0
1
0



Journal of Biological Dynamics 95

Figure 2. Bifurcation diagram of parameters r and a.

Figure 3. Periodic solution with period 9 for r = 2.7, a = 2.1.

Neimark–Sacker bifurcations generate dynamically invariant circles. As a result, we may find
isolated periodic orbits as well as trajectories that cover the invariant circle densely. Figure 3
shows a period 9 orbit while Figure 4 illustrates a dense orbit resembling an invariant circle.

There exists no bifurcation with codimension higher than one in the interior of parameter space
(r, a) except the point (2, 1). The most degenerated case occurs at the boundary equilibrium (1, 0),
which simultaneously undergoes a pitchfork and a period doubling bifurcation at (r, a) = (2, 1).

3.2. Bifurcation diagram in the (r, a) – parameter space

The codimension-one bifurcations discussed in Section 3.1 allow us to determine regions in
parameter space r and a for which the dynamics of the system are topologically equivalent.
Figure 2 shows the relevant (r, a) space.

Recall that the dynamics on the invariant manifold y = 0 is a unimodal map (the Ricker model)
yielding a period doubling cascade to chaos as the parameter r is increased [8]. In Figure 2, the
parameter region for which the equilibrium in the Ricker model is stable (r < 2) is to the left of
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96 Yun Kang et al.

Figure 4. Dense orbit in phase space for r = 2.45, a = 1.5.

shaded region. The parameter region exhibiting stable periodic orbits in the Ricker model defined
by 2 ≤ r < rc is indicated by a a strong shaded region. For r > rc, the Ricker model generates
progressively more complex dynamics including chaotic behaviour (light shading). In addition,
Figure 2 shows the following codimension-one curves.

(1) The transcritical bifurcation at a = 1 is shown as a dashed-dotted line.
(2) The saddle-node bifurcation emanating from the pitchfork bifurcation at a = 1, r = 2 is

drawn dashed. Only the part that leads to a saddle-node bifurcation in the first quadrant is
shown.

(3) The Neimark–Sacker bifurcation generated numerically is shown as circles.
(4) The black line connects simulations shown as small rectangles representing values of r and a

when a strange attractor collapses. The line approximately indicates the collapse of a strange
attractor through a crisis.

These bifurcation curves divide the parameters space (r, a) into seven regions labelled one to
seven in Figure 2.

Our simulation results suggest the following:

(1) The boundary equilibrium (1, 0) is a globally stable attractor for 0 < r < 2, 0 < a < 1.
In this parameter region, herbivores cannot coexist with plants. The biological interpreta-
tion for this is that both values of r, a are relatively small, which implies that either the plant
cannot produce enough food for the herbivores because of the small growth rate r or the
herbivores’ feeding rate a is too small to provide enough food for its persistence.

(2) The system has no interior equilibrium and the Ricker dynamics is globally attracting to
either periodic orbits or to chaotic orbits on the x-axis. While the value of r producing such
dynamics is larger than the values producing the simple global dynamics described in (1), it
cannot compensate the small value of a, leading to the demise of the herbivores.

(3) Further increasing the plant growth rate enables the system to gain two interior equilibria.
The one with the larger y-value is stable. The boundary equilibrium is still stable with respect
to perturbations into the y-direction. In this case, the value of r is large enough to compensate
for the low herbivore feeding rate.

(4) The stable interior equilibrium loses stability through a Neimark–Sacker bifurcation.
We numerically find stable periodic orbits (isolated and dense) for some moderate values
of r and a, and strange attractors for larger values of r and a.
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(5) The transition between region 4 and the region 5 is the numerically generated curve where the
strange attractor collapses in a crisis bifurcation. Inside region 5, there is no attractor in the
interior of the phase space. All interior points are attracted to x-axis which exhibits mostly
chaotic dynamics.

(6) The system has only one interior equilibrium which is unstable. There is an invariant loop
around the unstable interior equilibrium. As the values of r and a increase, that invariant loop
becomes unstable and forms a strange attractor. The transition between the region 6 and the
region 7 is again through a Neimark–Sacker bifurcation.

(7) The system has a stable interior equilibrium which appears to be the global attractor.
Herbivores can consume enough food to coexist with plant. The transition between the regions
5, 6, 7 and the regions 1, 2, 3, 4 is a transcritical bifurcation.

4. Bistability and chaos

In the following two subsections, we focus on the frequently observed dynamics: bistability and
chaos.

4.1. Bistability

Theorem 4.1 below implies that when model (15) and (16) has an attractor in the interior of the
phase space, and a < 1, it produces bistability between the attractor in the interior and the attractor
on the x-axis. This is true for regions 3 and 4 where we have stable interior attractors (equilibria,
periodic orbits and strange attractors) and stable attractors in the x-boundary Ricker dynamics
(periodic orbits and strange attractors).

The eigenvalue governing the local transverse stability of an otherwise attracting periodic orbit
of model (15) and (16) on the invariant manifold y = 0 is given by �n=N

n=1 axner(1−xn) where the
set {xn} denotes all iterations of a periodic orbit and N denotes its period. If this eigenvalue is less
than 1, then we say that the periodic orbit on the invariant manifold is transversally stable.

THEOREM 4.1 If a < 1, then all periodic orbits on the invariant manifold y = 0 are transversally
stable.

Proof Since xner(1−xn) = xn+1, we see that the transverse eigenvalue for a periodic orbit of period
N is �n=N

n=1 axn. At the equilibrium x = 1, the eigenvalue becomes a and hence the equilibrium
is attractive in the y-direction for a ≤ 1. It is known that for the Ricker map, the time average
of cycles is identical to the positive fixed point [10]. An application of the inequality between
arithmetic and geometric means yields

(
�n=N

n=1 axn

) 1
N ≤ 1

N

n=N∑
n=1

axn = a,

implying that if a < 1, then all the period orbits on the invariant manifold y = 0 are transversally
stable. �

Numerically, we find that, for a < 1 any set that is an attractor on the invariant manifold is
transversally stable and hence a local attractor.

Figure 5 a–d shows an example of bistability between a period two orbit on the x-axis and
a stable interior equilibrium. The Table 1 illustrates the different cases of bistable phenomena
in regions 6 and 7 with a = 1.5 and r varying from r < 2 up to r = 3.6. Figure 6 shows the
associated phase space dynamics.
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Figure 5. Bistability in region 3.

Table 1. Bistability table.

Interior attractor vs. boundary attractor Value of r Value of a

Case 1. an invariant loop vs. period 2 2.6265 1.5
Case 2. an invariant loop vs. period 4 2.65 1.5
Case 3. period 21 vs. chaotic on x-axis 2.81 1.5
Case 4. period 6 vs. chaotic on x-axis 2.98 1.5

4.2. Strange attractor and its collapse

Simulations in regions 4 and 6 show strange attractors. The small rectangles in Figure 2 are the
result of a manual search for the stability boundary of the interior strange attractor. These points
represent the values of a and r where the strange attractor collapses. The black curve connects
these points. If the values of r or a are in region 5 in Figure 2, the strange attractor disappears
and the population of yn goes to zero.

Figure 7a–c gives an indication of how the strange attractor collapses. For a = 0.95, r = 3.8,
we have bistability between two strange attractors, an interior one and a boundary one, i.e. the
�-limit sets of some solutions with initial conditions in the interior are on the x-axis. The shaded
set of Figure 7a is the interior strange attractor while the streaks of iteration points outside lie on
the stable manifold of the strange attractor on the x-axis. It is highly likely that in the empty space
between these two sets of trajectories there is a periodic orbit of saddle type with high period.
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Figure 6. Bistability in regions 6 and 7.

As the interior strange attractor becomes larger (Figure 7b), it will collide with that unstable
periodic orbit, leading to a ‘leakage’ of the strange attractor towards the x-axis in Figure 7c.

5. Discussion

This paper considers a general plant–herbivore model, partly motivated by the dynamics of a
gypsy moth infestation through biomass transfer from plants to the gypsy moth. Our discrete 2D
model is controlled by the two parameters r , the nutrient uptake rate of the plant, and a the amount
of leaves eaten by the herbivore. Mathematical analysis and simulations of this model provides
us with biological insights that may be used to devise control strategies to regulate the population
of the herbivore. Our results suggest the following two strategies:

(1) Exploiting bistability. In region 3, 4, 6 and 7 of Figure 2, the system shows bistability
between attractors with nonzero population sizes for the herbivore corresponding to coexis-
tence between plant and herbivore, and attractors on the x-axis corresponding to the extinction
of the herbivores. Hence, if the population of the herbivores initially is small, it may eventu-
ally die out. This suggests control procedures to reduce the herbivore population by actions
such as spraying of pesticides. Bistable dynamics is often generated in models through an
explicit introduction of a threshold level below which the herbivore will die out regardless of
the plant population levels. The bistability dynamics in our model (15) and (16) resulted from
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Figure 7. How interior attractor collapses as r increases.

the intricate and plausible interaction of the plant and herbivore species. Namely, complex
dynamics in a plant–herbivore model can lead to a multiple attractor case.

(2) Exploiting the crisis of the strange attractor. For all values of a, as the parameter r becomes
large enough, the interior dynamics becomes unstable and all trajectories starting in the
interior eventually approach the x axis, corresponding again to the extinction of the herbivore
population. As r represents the growth rate of the plant species an increase could correspond
to a natural occurrence of highly favourable growing conditions but also could be supported
by fertilizing the plants. This seems to agree with the observation that herbivores such as
gypsy moths produce outbreaks often in the year following some draught period and when
plants suffer a period of sustained slow growth. Indeed, draught is regarded as the main culprit
the severe gypsy moth outbreak in Maryland in summer 2007, US [18].
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