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We formulate general plant–herbivore interaction models with monotone plant growth21

functions (rates). We study the impact of monotone plant growth functions in general22

plant–herbivore models on their dynamics. Our study shows that all monotone plant23

growth models generate a unique interior equilibrium and they are uniform persistent24

under certain range of parameters values. However, if the attacking rate of herbivore is25

too small or the quantity of plant is not enough, then herbivore goes extinct. Moreover,26

these models lead to noise sensitive bursting which can be identified as a dynamical27

mechanism for almost periodic outbreaks of the herbivore infestation. Montone and28

non-monotone plant growth models are contrasted with respect to bistability and crises29

of chaotic attractors.30

Keywords: Monotone growth models; uniformly persistent; Neimark–Sacker bifurcation;31

heteroclinic bifurcation; periodic infestations; bistability; noise bursting; crisis of chaos.32

1. Introduction33

Interactions between plants and herbivores have been studied by ecologists for many34

decades. One focus of research is the effects of herbivores on plant dynamics [5]. In35

contrast, there is strong ecological evidence indicating that the population dynamics36

of plants has an important effect on the plant–herbivore interactions. In this paper,37

we investigate how plants with different population dynamics contribute to the38

interactions. Models for plant growth vary strongly [6]: Table 1 lists eight discrete-39

time models of plant population growth. The first seven models are introduced in40
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Table 1. Growth models of plant population density.

Model f(P ) Number of parameters f(0) Equilibrium

1 1 + q − qP
K

2 1 + q K

2 eln (1+q)[1− P
K

] 2 1 + q K

3 eln (1+q)[1−ln (1+P )] 2 1 + q K

4 w
1+cP

2 w w−1
c

5 w
1+P b 2 w (w − 1)

1
b

6 w
(1+P )b 2 w w

1
b − 1

7 w
1+cP b 3 w w

1
b −1
c

8 wP b−1

1+P b 2 0 Positive roots of

wP b−1 = 1 + P b

the paper by Law and Watkinson [21] without inter-specific competition. All models1

are seasonal (discrete) models of the form Pt+1 = Ptf(Pt), where Pt is the density2

of a plant in season t and f(·) the per capita growth rate. In the absence of intra-3

specific competition the latter is given by f(0), i.e. 1 + q in models 1–3 and w in4

models 4–8. The equilibrium density of the plant is given by K. The parameter c is5

the space per plant at which interference with neighbors becomes appreciable [21].6

The interpretation of the power parameter b depends on the model. Generally, these7

models fall into two classes, depending on whether Pf(P ) is a monotone function8

of P or not. Models 1–3 are unimodal, i.e. they have a single hump. They lead9

to complicated dynamics including period doubling, period windows and chaos [9].10

Models 4–8 are monotone, leading to much simpler dynamics. Model 8 has a growth11

function of Holling type III [23].12

Notice that model 2 is the well-known Ricker model [24] which is unimodal and
usually written as

Pt+1 = Pte
r(1−Pt

K ) (1.1)

while model 4 is the Beverton–Holt model [3] usually written as

Pt+1 =
KPt

e−rK + Pt(1 − e−r)
(1.2)

The dynamics of the Ricker model (1.1) has been well studied. It shows period-13

doubling, chaos and period windows. A plant–herbivore model with Ricer dynamics14

in plant has been studied in [16] (also see similar models in [1, 20]) showing many15

forms of complex dynamics.16

There are fair amount of literatures on seasonal (discrete) multi-species interac-17

tion or stage structure models (e.g. [1, 7, 8, 15, 16, 20, 26, 27, 31]), among which a18

few studies are related to discrete prey–predator (or host-parasite) interaction mod-19

els (e.g. [15, 16, 20]). Tuda and Iwasa [31] developed scramble-type and contest-type20

models to examine an evolutionary shift in the mode of competition among the bean21
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weevils. Jang [15] studied a discrete-time Beverton–Holt stock recruitment model1

with Allee effects. Kang et al. [16] and Kon [20] studied a discrete plant–herbivore2

(or host-parasite) interaction model with Ricker dynamics as the growth function3

of plant (or host in Kon [20]). In this paper, we investigate the impact of general4

monotone plant growth models on the dynamics of plant–herbivore interaction. Our5

study is different from others and our results are new. We show that all monotone6

plant growth models generate a unique interior equilibrium (Theorem 4.3) and they7

are uniformly persistent (see related definitions in [28]) for certain range of param-8

eters values (Theorem 4.5). If the attacking rate of herbivore is too small or the9

quantity of plant is not enough, then herbivore goes extinct (Theorem 4.2). In addi-10

tion, our numerical simulations suggest that these models lead to noise sensitive11

bursting which can be identified as a dynamical mechanism for almost periodic12

outbreaks of the herbivore infestation.13

The rest of paper is organized as follows. In Sec. 2 we define two classes of14

monotone dynamics of single plant species. In Sec. 3 we formulate general plant–15

herbivore models for the plant dynamics introduced in Sec. 2. In Sec. 4 we analyze16

the dynamic behavior of these two general models, e.g. the global stability of the17

boundary equilibrium and uniform persistence of these models. In Sec. 5 we apply18

the theoretical results from Sec. 4 to a Beverton–Holt model and a Holling type III19

model. The analysis and numerical simulations suggest that Beverton–Holt model20

goes through Neimark–Sacker bifurcation with unique periodic orbit for a certain21

set of parameters values; while Holling type III model goes through heteroclinic22

bifurcation for a certain set of parameters values. Our study also shows that noise23

is an important factor for outbreak of herbivore. Finally, we compare monotone24

plant growth models to unimodal and multimodal plant growth models regarding25

their influence of plant–herbivore dynamics.26

2. Monotone Growth Dynamics for a Single Plant Species27

Consider28

Pt+1 = Ptf(r, Pt) = F (r, Pt), t ≥ 0. (2.1)29

where Pt is the density of biomass in plant at generation t; F (r, Pt) is the growth30

function of biomass density and f(r, Pt) is the per capita growth rate of the biomass31

density. Without intra-specific competition, we have f(r, 0) = r, i.e. r is the maximal32

per capita growth rate of the plant. This simple formulation (2.1) can give rise to33

a great diversity of dynamical behavior, depending on the expression used for the34

growth function f(r, ·) and the values given to the parameters of that function.35

Several different functions have been considered. See [4] for a partial list of models36

with per capita growth rates that decline with increasing population density:37

∂f(r, P )
∂P

< 0, P ≥ 0. (2.2)38
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In biological terms, this means that the per capita growth rate f(r, P ) decreases1

due to negative density-dependent mechanism such as intra-specific competition2

between individuals within a population. For convenience, we use F (P ), f(P )3

instead of F (r, P ), f(r, P ) since r is a fixed parameter. The well-known proto-4

types of the model (2.1) under this biological assumption are the Beverton–Holt5

and Ricker models. The dynamics of Ricker model has been extensively studied6

(e.g. [16, 20, 24]). Here, we focus on the Beverton–Holt prototype, i.e. the dynam-7

ics of the plant is monotonically increasing,8

F ′(P ) =
d F (P )

d P
≥ 0, P ≥ 0. (2.3)9

We can characterize the growth models of a single plant with assumption H1 or10

H2 or both H1 and H2:11

H1: F (0) = 0, F (P )|P>0 > 0, F ′(P ) > 0 and limP→+∞ F (P ) = C > 0.12

H2: f(P )|P≥0 ≥ 0, f ′(P ) < 0 and limP→+∞ f(P ) = 0.13

In the biological sense, H1 implies that the population density in one year is a14

increasing function F (P ) of the density in the previous year and its per capita15

growth function f(P ) may be increasing or decreasing or both, which implies that16

plant suffers from the extremes of contest intra-specific competitive interaction (see17

[11]); H2 implies that the per capita growth function of the plant is a decreasing18

function due to intra-specific competition and the population density of a plant can19

be an increasing or decreasing function or both with respect to its density, which20

implies that plant suffers from the extremes of scramble intra-specific competitive21

interactions (see [11]). In this paper, we study the population dynamics associated22

with plants that satisfy H1 or H2 or both H1 and H2. The specific assumptions23

will be addressed in the models. The following proposition summarizes the dynamics24

of plant in the absence of herbivore.25

Proposition 2.1. (1) Assume that H1 holds and there are n + 1 consecutive,26

distinct and non-degenerate solutions P̄ i, i = 0, 1, . . . , n of P = F (P ) with the27

following property28

0 = P̄ 0 < P̄ 1 < · · · < P̄n.29

If P̄ 0 is stable (unstable) then the even P̄ i are stable (unstable) while the odd30

P̄ i are unstable (stable). In particular, P̄n is always stable. Moreover, define31

the map Pt+1 = F (Pt), then for any ε > 0, there exists N large enough, such32

that for all t > N, we have33

Pt+1 = F (Pt) ≤ P̄n + ε.34

(2) Assume that H2 holds, then P = Pf(P ) has at most two roots, i.e. P = 0 and35

the possible root of 1 = f(P ).36



1st Reading

August 8, 2011 19:8 WSPC S1793-5245 242-IJB 00123

Noise and Seasonal Effects on the Dynamics of Plant–Herbivore Models 5

Fig. 1. Possible configurations of the staircase diagrams.

Proof. Possible configurations of the staircase diagrams of Fig. 1 show the alter-1

nating stable and unstable equilibria. If H1 holds, then we have2

0 < lim
P→+∞

F (P ) = C < 1 and 0 < F ′(P̄n) < 1.3

This implies that the largest equilibrium P̄n is locally stable.4

If an initial condition P0 satisfies P0 ≤ P̄n, then H1 implies that5

P1 = F (P0) ≤ F (P̄n) = P̄n
6

and by induction, Pt ≤ P̄n for all t ≥ 1. In the case that the initial condition is7

larger than P̄n, i.e. P0 > P̄n, then H1 and the fact that P̄n is the largest positive8

root of P = F (P ) indicate that F (P ) < P for all P > P̄n. Thus, we have9

P̄n = F (P̄n) ≤ P1 = F (P0) < P0.10

Therefore, by induction, we know that the sequence {Pt}∞t=0 is decreasing and11

converges to P̄n as t → ∞. This indicates that for any ε > 0, there exists N large12

enough, such that for all t > N , we have Pt+1 = F (Pt) ≤ P̄n + ε. In other cases,13

we have Pt+1 = F (Pt) < P̄n for all t > 0.14

Since f(P ) is a differentiable and strictly decreasing function of P , thus 1 = f(P )15

has at most one solution. Therefore, the statement holds.16

3. Plant–Herbivore Models17

Insect and plant survival rates often appear to be nonlinear functions of plant and18

insect density, respectively (see [5, 10]). In our discrete-time models, we therefore19

assume that the plant population growth is a nonlinear function of herbivore and20

plant density, and that plant population growth decreases gradually with increasing21

herbivore density. Similarly, we assume that the density of herbivore population22
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depends on both the plant and herbivore’s density rather than only the herbivore1

density [5]. A final key feature of many plant–herbivore interactions is that, in the2

absence of the herbivore, we have a monotone growth dynamics as discussed in the3

previous section.4

Let Pt represent the density of edible plant biomass in generation t and Ht

represent the population density of herbivore. The effect of the herbivore on the
plant population growth rate is described by the function g(a, Ht) with g(a, 0) = 1.
Here the parameter a measures the damage caused by herbivore, e.g. feeding rate.
We assume that the herbivore population density is proportional to a function of
plant density h(Pt) and a nonlinear function of herbivore density l(Ht). Therefore,
the structure of our models is

Pt+1 = Ptf(Pt)g(a, Ht), (3.1)

Ht+1 = h(Pt)l(Ht). (3.2)

Many consumer–resource models assume a nonlinear relationship between resource5

population size and attack rate (see [2, 30]). For plants and insect herbivores,6

we similarly expect a nonlinear functional relationship, due to herbivore foraging7

time and satiation. The relationship is expressed in terms of plant biomass units8

rather than population size, because herbivores are unlikely to kill entire plants9

(see [5, 10]).10

Our model has the following features: without the herbivore, we assume a mono-
tone growth rate, i.e. H1 holds. The growth function F (Pt) determines the amount
of new leaves available for consumption for the herbivore in generation t. We assume
that the herbivores search for plants randomly. The area consumed is measured
by the parameter a, i.e. a is a constant that correlates to the total amount of
the biomass that an herbivore consumes. The herbivore has a one year life cycle,
the larger a, the faster the feeding rate. After attacks by herbivores, the biomass
in the plant population is reduced to

Pt+1 = Ptf(Pt)e−aHt , (3.3)

where g(a, Ht) in (3.1) is defined as

g(a, Ht) = e−aHt . (3.4)

The term h(Pt) in (3.2) describes how the biomass in the plants is converted to
the biomass of the herbivore. It differs depending on the relative timing of herbivore
feeding and growth. If the herbivore attacks the plant before the plant grows, then
we have h(Pt) = Pt, otherwise, h(Pt) = Ptf(Pt). Since the biomass of herbivore
comes from whatever they eat, h(Pt) is the available biomass of a plant that can
be converted into the herbivore’s biomass. The term l(Ht) describes the fraction
of h(Pt) that can be used by the herbivore, i.e. l(Ht) = 1 − e−aHt . Therefore, the
evolution of the plant–herbivore system is either described by Model I:

Pt+1 = F (Pt)e−aHt , (3.5)

Ht+1 = Pt[1 − e−aHt ], (3.6)
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describing the dynamics of a system where the plant is attacked before it has a
chance to grow while Model II:

Pt+1 = F (Pt)e−aHt , (3.7)

Ht+1 = F (Pt)[1 − e−aHt ] (3.8)

describes the dynamics when the plant grows first before being attacked.1

4. Mathematical Analysis2

First, we can easily see that R
2
+ is positively invariant for both Models I and II. In3

addition, we have the following lemma.4

Lemma 4.1. If H1 holds, then lim supt→∞ max{Pt, Ht} ≤ P̄n for both Models I5

and II.6

Proof. For Model I,7

Ht+1 = Pt[1 − e−aHt ] ≤ Pt8

and for Model II,9

Ht+1 = Ptf(Pt)[1 − e−aHt ] ≤ F (Pt).10

Since condition H1 holds for F (P ), then from Proposition 2.1, we can conclude that11

for any ε > 0, there exists N large enough, such that for all t > N , the following12

holds13

Pt+1 = F (Pt)e−aHt ≤ F (Pt) ≤ P̄n + ε.14

Therefore, we have lim supt→∞ max{Pt, Ht} ≤ P̄n for both Models I and II.15

4.1. Equilibria and their stability16

If, in the absence of the herbivore, there exist n+1 equilibria of the plant dynamics,17

then both Models I and II have n + 1 boundary equilibria of the form18

E00 = (0, 0) and Ei0 = (P̄ i, 0), i = 1, 2, . . . , n.19

Their local stability can be determined by the eigenvalues of their Jacobian20

matrices.21

It is easy to check that the Jacobian matrices of Models I and II are identical22

at these boundary equilibria: the eigenvalues of their associated Jacobian matrix at23

(0, 0) are F ′(0) and 0; the eigenvalues of their associated Jacobian matrix at (P̄ i, 0)24

are F ′(P̄ i) and aP̄ i. The following theorems summarize the global dynamics:25

Theorem 4.2. Assume that H1 holds for both Models I and II. If F ′(0) < 1 and26

(0, 0) is the only boundary equilibrium, then Models I and II are globally stable at27

(P̄ 0, 0) = (0, 0). More generally, if aP̄n < 1, n ∈ Z+, then limt→∞ Ht = 0 for both28

Models I and II.29
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Proof. From Lemma 4.1, we know that for any ε > 0, there exists N large enough,
such that for all t > N , we have

Pt+1 = F (Pt)e−aHt ≤ F (Pt) ≤ P̄n + ε (4.1)

Since aP̄n < 1, then for ε small enough, we have1

aPt ≤ a(P̄n + ε) < 1 and aF (Pt) ≤ a(P̄n + ε) < 1 for all t ≥ N.2

Thus, for Model I,

Ht+1 = Pt[1 − e−aHt ] = HtPt
[1 − e−aHt ]

Ht
≤ aHtPt ≤ a(P̄n + ε)Ht (4.2)

and for Model II,

Ht+1 = F (Pt)Ht
[1 − e−aHt ]

Ht
≤ aHtF (Pt) ≤ a(P̄n + ε)Ht. (4.3)

Therefore, we have Ht ≤ [a(P̄n + ε)]t−NHN , for all t > N. This indicates that3

limt→∞ Ht = 0 for both Models I and II. Hence solutions of Models I and II are4

globally attracted to the boundary dynamics.5

Theorem 4.2 indicates that herbivore cannot maintain its population if its6

attracting rate is too small or there is no enough food, i.e. aP̄n < 1. In addition,7

the special case of Theorem 4.2 when n = 1 leads to the following remarks.8

Remark. Assume that the hypotheses of Theorem 4.2 hold. If n = 1, then from9

Proposition 2.1, we have10

(1) If F ′(0) < 1, then P̄ 1 is a source;11

(2) If F ′(0) > 1, then P̄ 1 is a sink.12

Hence, if F ′(0) > 1 and n = 1, then (P̄ 1, 0) attracts all non-trivial solutions.13

4.2. Unique interior equilibrium14

Interior equilibria are determined by the intersections of the nullclines. Notice that15

if H1 holds, then y = F (P ) is a differentiable and monotone function of P and16

maps R
+ to [0, C). Its inverse exists and can be written as P = F−1(y) which17

maps [0, C) to R
+. Similarly, if H2 holds, then y = f(P ) is a differentiable and18

monotone function of P and maps R
+ to [0, M). Its inverse exists and can be written19

as P = f−1(y) which maps [0, M) to R
+. Here C = F (∞) and M = f(0) are some20

positive constants. If (P̄ , H̄) is an interior equilibrium, then it is the solution of the21

two equations:22

(1) For Model I,

P = f−1(eaH), (4.4)

P =
H

1 − e−aH
. (4.5)
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(2) For Model II,

P =
H

eaH − 1
, (4.6)

P = F−1

(
H

1 − e−aH

)
. (4.7)

If F (P ) is monotonically increasing, i.e. H1 holds, then F−1( H
1−e−aH ) is an increas-1

ing function of H which attains its minimum at H = 0, i.e.2

min
H≥0

{
F−1

(
H

1 − e−aH

)}
= F−1

(
H

1 − e−aH

)∣∣∣∣
H=0

= F−1

(
1
a

)
.3

Similarly, if f(P ) is monotonically decreasing, i.e. H2 holds, then f−1(eaH) is a4

decreasing function of H which attains its maximum at H = 0, i.e.5

max
H≥0

{f−1(e−aH)} = f−1(e−aH)|H=0 = f−1(0).6

Theorem 4.3. (a) Assume that both H1 and H2 hold for Model I, then Model I7

has at most one interior equilibrium which occurs when f−1(0) > 1
a . The inte-8

rior equilibrium emerges generically through a transcritical bifurcation from the9

largest boundary equilibrium P̄n when P̄n = 1
a , where n ≥ 1.10

(b) Assume that H1 holds for Model II, then Model II has at most one inte-11

rior equilibrium which occurs when F−1( 1
a ) < 1

a . The interior equilibrium12

emerges generically through a transcritical bifurcation from the largest boundary13

equilibrium P̄n when P̄n = 1
a , where n ≥ 1.14

Proof. The proofs for (a) and (b) are similar. We show case (b): the interior15

equilibria of Model II are determined by the intersections of the nullclines (4.6) and16

(4.7). Since (4.6) is a decreasing function and (4.7) is an increasing function, they17

have only one interior intersection if the following inequality holds18

min
H≥0

{
F−1

(
H

1 − e−aH

)}
< max

H≥0

{
H

eaH − 1

}
⇒ F−1

(
1
a

)
<

1
a
.19

The Jacobian matrix of Model II evaluated at the boundary equilibrium
(P̄ i, 0) is

J |(P̄ i,0) =

[
F ′(P̄ i) −aP̄ i

0 aP̄ i

]
(4.8)

with its eigenvalues as λ1 = aP̄ i and λ2 = F ′(P̄ i). Thus, at the largest boundary20

equilibrium (P̄n, 0), we have21

(1) λ1|(P̄ n,0) = aP̄n and λ2|(P̄ n,0) = F ′(P̄n) < 1;22

(2) ∂λ1
∂a |(P̄ n,0) = P̄n and ∂λ2

∂a |(P̄ n,0) = 0.23
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In the case that P̄n = 1
a , we have λ1|(P̄ i,0) = aP̄ i < 1, i = 1, . . . , n − 1 and1

λ2|(P̄ n,0) = aP̄n < λ1|(P̄ n,0) = 1 and
∂λ1

∂a

∣∣∣∣
(P̄ n,0)

= P̄n =
1
a

> 0.2

The eigenvector associated with the eigenvalue λ1|(P̄ n,0) = aP̄n is

V |λ1=aP̄ n =


−aP̄n − F ′(P̄n)

aP̄n
x2

x2


. (4.9)

If aP̄n = 1, then the two components of (4.9) have opposite signs. This implies3

that by choosing x2 > 0, the unstable manifold of En0 points toward the interior of4

X11. Therefore, apply Theorem 13.5 in the book by Smoller [29], the unique interior5

equilibrium of Model II emerges generically through a transcritical bifurcation from6

the largest boundary equilibrium P̄n when P̄n = 1
a , where n ≥ 1.7

4.3. Uniform persistence of Models I and II8

We define the sets

X = {(P, H) : P ≥ 0, H ≥ 0},
X11 = {(P, H) ∈ X : PH > 0},

∂X11 = X\X11

and consider the additional hypothesis:9

H3: The smallest positive root P̄ 1 of P = F (P ) = Pf(P ) satisfies aP̄ 1 > 1, and10

in addition, f(0) > 1.11

In the following, we show that Models I and II are uniformly persistent with respect12

to (X11, ∂X11) if both H1 and H3 hold, i.e. for any initial condition (P0, H0) ∈ X11,13

there exists some ε > 0 such that lim inft→∞ min{Pt, Ht} ≥ ε.14

Lemma 4.4. X11 and ∂X11 are positively invariant for (3.5)–(3.6) and (3.7)–(3.8).15

The following theorem is the main result of this subsection.16

Theorem 4.5. If aP̄1 > 1, then (3.5)–(3.6) and (3.7)–(3.8) are uniformly persistent17

with respect to (X11, ∂X11) provided that they satisfy both H1 and H3.18

Proof. From Lemma 4.4 and Proposition 4.1, we obtain that the systems (3.5)–19

(3.6) and (3.7)–(3.8) are point dissipative. This combined with the fact that the20

semiflow generated by these systems is asymptotically smooth (this is automatic,21

since the state space is in R
2
+), gives the existence of the compact attractors of22

points for both systems (see [28]).23

Notice that the omega limit set of S1 = {(P, H) ∈ R
2
+ : P = 0} is the trivial24

boundary equilibrium E00. Let L(P, H) = P be an average Lyapunov function,25
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then we have L(P, H)|S1 = 0. Since the system satisfies H3, then the following1

inequality holds2

sup
t≥0

lim inf
(P0,H0)→(0,0)

Pt

P0
= sup

t≥0
lim inf

(P0,H0)→(0,0)

t−1∏
j=0

f(Pj)e−aHj = sup
t≥0

(f(0))t > 1,3

where (P0, H0) ∈ X\S1. Therefore, by applying Theorem 2.2 in [14] and its corol-4

lary to the systems (3.5)–(3.6) and (3.7)–(3.8), we obtain persistence of the plant5

population, i.e. for any initial condition P0 > 0, we have lim inft→∞ Pt ≥ ε.6

The fact that the plant population is uniformly persistent implies that the sys-7

tem (3.5)–(3.6) or (3.7)–(3.8) can be restricted in X ∩ {(P, H) ∈ R
2
+ : P ≥ ε}.8

According to Proposition 2.1, we can conclude that the omega limit sets of9

S2 = {(P, H) ∈ ∂X11 : P > 0} are {Ei0, 1 ≤ i ≤ n}. Since aP̄ 1 > 1, condition10

H3 indicates that aP̄ i > 1, 1 ≤ i ≤ n. Now define L(P, H) = H as an average Lya-11

punov function, then we have L(P, H)|S2 = 0. Moreover, for the model (3.5)–(3.6),12

we have13

sup
t≥0

lim inf
(P0,H0)→(P̄ i,0)

Ht

H0
= sup

t≥0
lim inf

(P0,H0)→(P̄ i,0)


t−1∏

j=0

Pj
1 − eaHj

Hj




t

= sup
t≥0

(aP̄ i)t > 114

and for the model (3.7)–(3.8) we have15

sup
t≥0

lim inf
(P0,H0)→(P̄ i,0)

Ht

H0
= sup

t≥0
lim inf

(P0,H0)→(P̄ i,0)


t−1∏

j=0

F (Pj)
1 − eaHj

Hj




t

= sup
t≥0

(aP̄ i)t > 1,16

where (P0, H0) ∈ X11. Therefore, according to Theorem 2.2 and its Corollary 2.317

in [14], we can show that the systems (3.5)–(3.6) and (3.7)–(3.8) are uniformly18

persistent. Hence, the statement holds.19

Remark. The arguments used to prove Theorem 4.5 are standard, which can be20

found in many literatures (e.g. [12, 17, 19]).21

5. Application and Simulations22

5.1. The Beverton–Holt and Holling type III models23

In this section, we focus on two typical models for the plant dynamics and apply24

our results:25

(1)

Pt+1 = F (Pt) =
rPt

1 + Pt
(5.1)

is the Beverton–Holt model, where F (Pt) satisfies the assumptions of H1 and26

f(Pt) satisfies those of H2. The two equilibria are P̄ 0 = 0 and P̄ 1 = r−1. From27

Proposition 2.1, we know that P̄ 0 is a sink if r < 1; P̄ 0 is a source if r > 1. In28

addition, P̄ 1, if it exists, is always a sink.29
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(2) A Holling type III model is given by

Pt+1 = F (Pt) =
rP 2

t

1 + P 2
t

, (5.2)

where F (Pt) satisfies H1. The equilibria are P̄ 0 = 0, P̄ 1 = r−√
r2−4
2 and P̄ 2 =1

r+
√

r2−4
2 . If r < 2, then P̄ 0 is the only equilibrium and it is globally stable. If2

r > 2; P̄ 0 is a sink, P̄ 1 is a source and P̄ 2 is a sink.3

The plant–herbivore models with (5.1) and (5.2) as plant dynamics become:4

Model I:5

(1)

Pt+1 =
rPt

1 + Pt
e−aHt , (5.3)

Ht+1 = Pt[1 − e−aHt ], (5.4)

(2)

Pt+1 =
rP 2

t

1 + P 2
t

e−aHt , (5.5)

Ht+1 = Pt[1 − e−aHt ]. (5.6)

Model II:6

(1)

Pt+1 =
rPt

1 + Pt
e−aHt , (5.7)

Ht+1 =
rPt

1 + Pt
[1 − e−aHt ], (5.8)

(2)

Pt+1 =
rP 2

t

1 + P 2
t

e−aHt , (5.9)

Ht+1 =
rP 2

t

1 + P 2
t

[1 − e−aHt ]. (5.10)

Applying the results of the previous section, we have the following two corollaries.7

Corollary 5.1. The three models (5.3)–(5.4), (5.7)–(5.8) and (5.9)–(5.10) have at8

most one interior equilibrium. The interior equilibria of Model I (5.3)–(5.4) and9

Model II (5.7)–(5.8) emerge through a transcritical bifurcations from the boundary10

equilibrium (P̄ 1, 0) = (r − 1, 0) when a(r − 1) = 1 and r > 1; the interior equilib-11

rium of Model II (5.9)–(5.10) emerges through a transcritical bifurcations from the12

boundary equilibrium (P̄ 2, 0) = ( r+
√

r2−4
2 , 0) when a r+

√
r2−4
2 = 1 and r > 2.13
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Corollary 5.2. If a(r − 1) > 1, the systems (5.3)–(5.4) and (5.7)–(5.8) are1

uniformly persistent with respect to (X11, ∂X11).2

5.2. Periodic orbits and heteroclinic bifurcations3

The stability of the single interior equilibrium of models (5.3) to (5.10) depends on4

the values of the parameters r and a. As the values of r or a increase, the interior5

equilibrium goes through a Neimark–Sacker bifurcation generating an invariant6

cycle.7

Since Models I and II have similar dynamics, we only focus on Model II and8

discuss the Beverton–Holt model (5.1) and the Holling type III model (5.2), respec-9

tively. The main difference between the Beverton–Holt model and the Holling type10

III model is that the Holling type III model can show a heteroclinic bifurcation11

where a periodic orbit grows until it becomes a heteroclinic connection between12

boundary equilibria whereas the Beverton–Holt model does not show such a bifur-13

cation. Figure 2 shows the heteroclinic bifurcation schematically: when a = 0.7114

and r = 2.5, the system has a stable interior equilibrium (the dark dot that is in the15

middle of the figure, which is generated by the Matlab); when we increase r to 3.516

and keep a = 0.71, the system has an invariant orbit (the grey orbit in the figure,17

which is generated by the Matlab); however, if we continue to increase the values18

of a or r, the invariant orbit disappears and the system converges to the boundary19

equilibrium (0, 0). This suggests that a heteroclinic bifurcation occurs (the dark20

line with arrows in the figure, which is generated schematically).21
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Plant–Herbivore model with Holling–type III model as plant dynamics
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Fig. 2. Schematic of the heteroclinic bifurcation of Holling type III model happens at
a = 0.71, r = 3.5.
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Fig. 3. The periodic orbit for the Beverton–Holt model when a = 2, r = 2.5, 2.7, 2.8, 3.

Since the Beverton–Holt model only has the origin as a saddle and one other1

boundary equilibrium and since the stable manifold of the origin is the H-axis which2

is an invariant manifold, the periodic orbit in the interior cannot become hetero-3

clinic. However, it can become very large and pass the origin arbitrarily close to the4

coordinate axes as shown in Fig. 3. Figure 3 is the numerical simulations generated5

by the Matlab for 2000 generations when a = 2 and r = 2.5, 2.7, 2.8, 3. When a = 26

and r = 2.5, the system has a stable interior equilibrium as shown in the figure7

(small dark dot); when r = 2, 7, 2.8, 3, the system has an invariant orbit. Numerical8

simulations of this case hint at an interesting phenomenon: a standard numerical9

simulation shows the periodic orbit disappearing and the trajectory approaching10

the non-trivial boundary equilibrium as time increases. However, that boundary11

equilibrium is a saddle and the trajectory should leave into the interior but it does12

not do so over any simulation time that we checked. The resolution of the puzzle13

comes from the considerations of the accuracy of the simulations: as the limit cycle14

gets closer to the origin, the herbivore values become so small that they are approx-15

imated as zero. Hence the dynamics is reduced to the dynamics of the plant which16

has a stable equilibrium on the invariant manifold determined by H = 0 and hence17

the trajectory never leaves.18
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(a) The bifurcation diagram for the (b) The bifurcation diagram for the
Beverton–Holt model. Holling type III model.

Fig. 4. The Neimark–Sacker bifurcation and heteroclinic bifurcations.

Figure 4(a) shows a “bifurcation diagram” for the Beverton–Holt model, which1

describes the Neimark–Sacker bifurcation curve (dashed line) and the “collapse2

curve” (solid line). The latter represents an interpolation of numerical simulations3

with a and r values for which a standard Matlab numerical precision simulation does4

not detect a population of the herbivore. Figure 4(b) is a bifurcation diagram for5

a Holling type III model showing interpolations of the Neimark–Sacker bifurcation6

curve (dashed line) and the heteroclinic bifurcation (solid line), respectively.7

5.3. Noise-generated outbreaks8

The extreme sensitivity of the periodic orbit in the Beverton–Holt model suggests9

that noise may play a much bigger role than previously discussed in the outbreaks10

of herbivore infestations. Once the periodic orbit disappears due to accuracy issues,11

we can make it re-appear by adding small amount of noise to the simulation:12

(1) Noise: We use positive white noise to make sure the system stays positive, i.e.13

we sample from a normal distribution but discard any negative noise sample.14

(2) Population of herbivores : For each generation, we add the noise to the
herbivore, i.e.

Ht+1 =
rPte

−aHt

1 + Pt
+ ωRn, (5.11)

where Rn is a positive white noise as defined above and ω is the amplitude of15

the noise. See Fig. 5, for example, in this case, the amplitude of the positive16

white noise is ω = 0.01.17
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Fig. 5. Time series of the herbivore population for the Beverton–Holt model. The parameters
are a = 3.95, r = 4.55 and a noise level of w = 0.01.

At that time the trajectories look like a randomly occurring bursting phenomenon1

that nevertheless has a well-defined average periodicity (see Fig. 5). Given by the2

exact nature of the model there will be a threshold at which the population of the3

herbivore cannot be detected in nature. We define the resident time as the time4

interval for which the population of the herbivore stays below some threshold, e.g.5

0.01 and the resident time ratio as the ratio of the residence time to the period of6

the bursting. Table 2 shows the period as a function of the mean square amplitude7

of the noise level. Figure 6 shows the resident time ratio as a function of the noise8

amplitudes. The figure is generated by calculating the resident time ratio for each9

noise amplitude for 50 trajectory with 1000 generations. Figure 6 shows that over10

many orders of magnitude the residence ratio stays around 80% indicating that the11

herbivore is dormant for most of the time and only appears for about 20% of its12

periodic cycle. Table 2 indicates that by choosing a particular noise level, we can13

control the apparent periodicity of the bursts.14

In particular, time intervals of the herbivore outbreaks around 8–12 years can15

be generated, which fits the ecological data for gypsy moth outbreaks [22]. Also, for16

Table 2. Average period of the herbivore dynamics when a = 3.95, r = 4.55.

Amplitude of noise w 0.01 0.001 0.0001 0.00001 0.000001 0.0000001

Period t 8 10 12 14 17 19
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Fig. 6. The resident time ratio as a function of the noise amplitude when a = 3.95, r = 4.55 with
a threshold of 0.01.

larger noise levels, the distribution of the periods is rather broad, which also seems1

to be happening for real data (see [18, 25]).2

6. Conclusions and Additional Features3

For most plant species, it is conceivable that there is density-dependent regulation4

of its growth. However, very few plants show periodic or strongly chaotic variation of5

the plant density from generation to generation. Hence it is important to determine6

the influence of models of monotone growth dynamics on the plant–herbivore inter-7

action model. We proved three key features of such interactions that are important8

for model building:9

• All monotone growth models generate a unique interior equilibrium.10

• Monotone growth models with just one sustainable equilibrium for the plant11

population (e.g. the Beverton–Holt model) lead to noise sensitive bursting. This12

certainly happens for many plant–herbivore systems and the dynamical mech-13

anism discussed here has not been noticed before in plant–herbivore systems14

(however, see [25]).15

• Models I and II have a uniformly persistent property if they satisfy both H116

and H3. In particular, the Beverton–Holt model is uniformly persistent and the17

Holling type III model is not.18
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• The Beverton–Holt model does not have more complicated dynamics than a1

periodic orbit in the interior of the phase space. Although we cannot prove this,2

we conjecture that this is true for all models that satisfy the assumptions of H13

and H2, i.e. have just one equilibrium for the pure plant dynamics.4

Without any claim to a complete analysis of all types of models, we note a few addi-5

tional features associated with monotone and non-monotone plant growth models.6

(1) Bistability: The paper [16] study plant–herbivore systems of Model II type7

with a Ricker model for the pure plant dynamics, also known as the modified8

Nicholson–Bailey model. It is shown that for a large set of parameters the9

system exhibits bistability between complicated (possibly chaotic) dynamics10

in the interior of the phase space and equally complicated dynamics on the11

boundary (Fig. 7). Kon [20] discusses a similar bistability phenomenon for12

Model I. Since unimodal maps are all topologically equivalent [9], we expect13

bistability to be a defining feature for plant–herbivore models with unimodal14

plant growth models.15

In contrast, models that satisfy the assumptions of H1 and H3, e.g. the16

Beverton–Holt model cannot show bistability since the global attractor either17

is a fixed point on the boundary or some set in the interior of the phase space.18

However, it is conceivable that models that do not satisfy H3, e.g. Holling19

Fig. 7. The interior strange attractor and the stable manifold of the boundary attractor
a = 0.95, r = 3.8.
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type III models, show bistability between an interior attractor and a boundary1

equilibrium that is not the largest equilibrium for the pure plant population.2

(2) Crises of Interior Attractors: All models seem to show some sort of global3

attraction to the boundary dynamics, i.e. extinction of the parasite for large4

growth rates r:5

• Unimodal models show a crisis type of bifurcation whereas the chaotic6

dynamics in the interior collapses and the system becomes globally attracted7

to the boundary dynamics [16]. For instance, the interior strange attractor8

in Fig. 7 that exists for a growth parameter of r = 3.8 will grow and hit the9

stable manifold of the boundary attractor for r = 3.85.10

• Holling type III models show a heteroclinic orbit which breaks and leads to11

global attraction to a boundary fixed point.12

• Conjecture: The Beverton–Holt model does not lead to complete extinction13

according to Theorem 4.5. However, ε in Theorem 4.5 may happen to be14

small which, taking a stochastic effect into account, might lead to extinction15

of herbivores.16
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