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a b s t r a c t

We modify the commonly used invasibility concept for coexistence of species to the stronger concept
of uniform invasibility. For two-species discrete-time competition and predator–prey models, we use
this concept to find broad easily checked sufficient conditions for the rigorous concept of permanent
coexistence. With these results, permanent coexistence becomes a tractable concept for many discrete-
time populationmodels. To understand how these conditions apply to nonpoint attractors, we generalize
the concept of relative nonlinearity and use it to show how population fluctuations affect the long-term
low-density growth rate (‘‘the invasion rate’’) of a species when it is invading the system consisting of the
other species (‘‘the resident’’) at a single-species attractor. The concept of relative nonlinearity defines
circumstances when this invasion rate is increased or decreased by resident population fluctuations
arising from a nonpoint attractor. The presence and sign of relative nonlinearity is easily checked in
models of interacting species. When relative nonlinearity is zero or positive, fluctuations cannot decrease
the invasion rate. It follows that permanence is then determined by invasibility of the resident’s fixed
points. However, when relative nonlinearity is negative, invasibility, and hence permanent coexistence,
can be undermined by resident population fluctuations. These results are illustrated with specific two-
species competition and predator–prey models of generic forms.

Published by Elsevier Inc.
1. Introduction

Determining when competing species coexist in ecological
models is a key issue in theoretical ecology. A classical focus on
equilibrium led to much emphasis on conditions for global and
local stability of equilibria that allow coexistence of interacting
species (May, 1974). A more recent appreciation of the presence
and importance of population fluctuations, both in natural systems
and in dynamical models, has led to a need to understand
species coexistence in models that feature persistent population
fluctuations. In deterministic models, this need dates from the
seminal work on species coexistence by Armstrong and McGehee
(1980), and in stochastic models from the preliminary studies of
May (1974) and more rigorous approaches of Turelli (1981) and
Chesson and Warner (1981).
Most early studies defined coexistence in terms of the invasi-

bility criterion, which requires each species to be able to increase
from low density in the presence of the rest of the community
(Armstrong andMcGehee, 1980; Turelli, 1981). To apply this crite-
rion, each species is set in turn at zero density, where it is called an
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invader, while the other species are unconstrained and are called
residents. The long-term growth rate of each species as an in-
vader is evaluated, and the invasibility criterion is satisfied if these
growth rates are positive. Commonly, the invasibility criterion has
been defined for systems of competing species. There has been
no comparable approach for predator–prey models, limiting stud-
ies of these systems. Here we fill this gap by generalizing the in-
vasibility criterion to predator–prey models. For both systems of
competing species and predator–prey systems, a critical question
is whether this invasibility criterion is a satisfactory condition for
long-term coexistence (Chesson and Ellner, 1989; Hofbauer and
Sigmund, 1998). For deterministic models, the idea of permanent
coexistence, which guarantees convergence on an interior attrac-
tor from any strictly positive initial conditions, is regarded as a
strong form of coexistence. However, permanence has not been
widely used in population models due to the perception that it is
difficult to check. To ameliorate this problem, we develop criteria
for invasibility to imply permanence in two-species competition
and predator–prey models.
Permanence of dynamical systems has been studied by many

researchers using Lyapunov exponents (Schreiber, 2000; Garay
and Hofbauer, 2003; Salceanu and Smith, 2009a,b) and average
Lyapunov functions (Garay and Hofbauer, 2003; Kon, 2004). Garay
and Hofbauer (2003) and Schreiber (2000) have used Lyapunov
exponents and the notions of unsaturated invariant sets (com-
pact invariant repelling sets) and measures for Kolmogorov-type
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systems. Salceanu and Smith (2009a,b) use Lyapunov exponents
to give sufficient conditions for uniform persistence for a large
class of dissipative discrete-time dynamical systems on the posi-
tive orthant of Rn with the property that a nontrivial compact in-
variant set exists on a boundary hyperplane. Kon (2004) uses an
average Liapunov function to study permanence of discrete-time
two-species systems. He showed that the ability of an invader to
increase when the resident is at an equilibrium point is sufficient
for permanence under certain convexity and concavity conditions
on the growth rates of the species. In this paper, we define an
average Lyapunov function in terms of the time average of the
invader growth rate (the long-term low-density growth rate, or in-
vasion rate), thus connecting invasibility concepts to permanence.
We are then able to give a sufficient condition for permanence in
discrete-time two-species systems in terms of the uniform invasi-
bility criterion, a strengthening of the standard invasibility crite-
rion, which we define in Section 2. We make use of the concept of
relative nonlinearity (Chesson, 1994) for discrete-time two-species
models. This concept allows us to fully characterize the effects of
nonlinearities in population growth functions, which are of major
significance in the presence of nonpoint attractors, as discussed
below. We are then able to extend Kon’s (2004) results beyond
convexity and concavity conditions to arbitrary nonlinearities.
Moreover, our sufficient condition for permanence is very easy to
test for a discrete-time two-species system.
The growth rates of two species are relatively nonlinear if the

growth rate of one species is a nonlinear function of the growth
rate of the other (Chesson, 1994). Jensen’s inequality applied to
average population growth rates then means that the two species
will be differentially affected by fluctuating dynamics (Armstrong
andMcGehee, 1980; Alder, 1990; Chesson, 1994; Abrams andHolt,
2002), modifying their ability to coexist. In the present applica-
tion,weuse relative nonlinearity to definewhen long-term invader
growth rates are greater when the resident is on a nonpoint attrac-
tor rather than a point attractor. To do this, we generalize the usual
concept of relative nonlinearity. Originally, one nonlinear relation-
ship between two species growth rateswas used for all densities of
the species. Here, we apply the concept between an invader and a
resident, which means that there is a different nonlinear relation-
ship for each invader–resident scenario. We further generalize the
concept of relative nonlinearity to consider not just competitive
interactions but also predator–prey interactions.
The structure of the rest paper is organized as follows: we first

introduce the system and the fundamental persistence concepts
(Section 2). We then demonstrate a sufficient condition for perma-
nence for a general discrete-time two-species system in terms of
the uniform invasibility criterion (Section 3). Relative nonlinear-
ity is defined and used to derive a sufficient condition for inva-
sibility. These results are then combined with those in Section 3
to obtain a simple sufficient condition for permanence showing
when conditions at equilibrium are sufficient to define perma-
nence, andwhen resident population fluctuations lead tomodifica-
tions of these conditions (Section 4). We then generalize the idea
of relative nonlinearity to predator–prey relationships and show
how this allows permanence to be proved from invasion conditions
in predator–prey systems (Section 5). Finally (Section 6), we ap-
ply our results to specific competition and prey–predator models.
These applications include an example showing how fluctuations
in the resident species can prevent invasion and hence permanent
coexistence. We conclude with a discussion of the broader impli-
cations and prospectus for future work in this area (Section 7).

2. Model and definitions

Let xt and yt denote the population sizes of the two species,
called species x and y respectively, in generation t . Their dynamics
over time are specified by the difference equations

xt+1 = xt f (xt , yt) (1)

yt+1 = ytg(xt , yt) (2)

where f and g , the finite rates of increase, are positive twice
continuously differentiable functions of x and y. Throughout, our
interest is when x and y coexist with each other in some reasonable
sense. Permanence, which is a strong sense of coexistence, is our
main focus. To proceed, we need to define coexistence in the
language of permanence theory of nonlinear dynamic systems,
which provides a mathematical framework for investigating long-
term species survival where species densities may vary in any way
(e.g. equilibrium, cycles, chaos), with the persistence requirement
being that the species densities do not remain too close to the
boundary (zero density) of the state space.
For species x and y interacting with each other in an ecological

community, we say that they coexist in the sense of permanence if
and only if there exist positive constants b < B, such that for any
initial condition x0 > 0, y0 > 0,

b ≤ lim inf
t→∞

min{xt , yt} ≤ lim sup
t→∞

max{xt , yt} ≤ B. (3)

This is equivalent to saying that the system (1)–(2) is permanent
in dynamical systems theory. In the rest of this paper, when we
say the system (1) and (2) is ‘‘permanent’’ we mean that the two
species coexist in this sense of permanence, i.e. the populations of
the two species are uniformly bounded both from above and below
eventually. One half of this condition is boundedness from above,
which is generally much easier to prove than boundedness from
below. As a consequence, it is often proved separately, or simply
assumed, in discussions of permanence. For this reason, it is given
a name in its own right, viz dissipativity. This concept also deserves
a formal defintion as we shall use it much. Thus, we say that the
system (1) and (2) is dissipative if there exists a positive constant
B, such that for any initial state, x0, y0 ≥ 0,

lim sup
t→∞

max{xt , yt} ≤ B.

Note that dissipativity is stronger than the boundedness from
above in (3) because the initial conditions for dissipativity allow
one (or trivially both) species to be zero.
To define the uniform invasibility criterion, we need to consider

the dynamics of each species alone. In the language of invasibility
analysis, these are the single-species resident states. If species y is
absent, then we have

xt+1 = xt f (xt , 0). (4)

Similarly, when species y is a resident and x is absent, we have

yt+1 = ytg(0, yt). (5)

We use the notation x∗, y∗ for the equilibrium population sizes
of the two species considered separately, as in (4) and (5). The
quantity ln(xt+1/xt), which we denote as rx(xt , yt), is a suitable
definition of the per capita growth rate of species x from time t
to time t + 1 for the discrete-time case. It is given as

rx(xt , yt) = F(xt , yt) = ln f (xt , yt). (6)

Note that this definition implies that F has the same monotonicity
as f . The average growth rate of species x from time 0 to time t ,
with the initial state (x0, y0), is

r tx(x0, y0) =

t−1∑
i=0
rx(xi, yi)

t
=

ln
(
t−1∏
i=0
f (xi, yi)

)
t

. (7)

Since the lim sup of the sequence {r tx(x0, y0)}
∞

t=0 always exists, we
can define the long-term growth rate as this superior limitwith the
notation
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řx(x0, y0) = lim sup
t→∞

r tx(x0, y0). (8)

If the ordinary limit of r tx(x0, y0) exists, thenwe candefine the long-
term growth rate as

r̄x(x0, y0) = lim
t→∞

r tx(x0, y0). (9)

Similarly, we can define ry(xt , yt) as the per capita growth rate of
species y at (xt , yt)with corresponding definitions of the quantities
defined above in terms of species x. The quantities řx(0, y0) and
řy(x0, 0) (or, r̄x(0, y0) and r̄y(x0, 0) if the limits exist) give the
average invasion speed of the invader (Rand et al., 1994). We use
these invasion rates to define the invasibility criterion. We use
here a stronger sense of invasibility (uniform invasibility) than is
commonly used in the ecological literature, as discussed below.
This stronger sense of invasibility is needed to prove permanence.
Using the notation above, we define that the system (1)–(2) is

uniformly mutually invasible if
A1: r̄x(x0, 0) = 0 for all x0 > 0 and řy(x0, 0) > 0 for all x0 ≥ 0.
A2: r̄y(0, y0) = 0 for all y0 > 0 and řx(0, y0) > 0 for all y0 ≥ 0.
ConditionA1 implies thatwhen species x is a resident and species y
is an invader, the long term growth rate of species x should be zero,
i.e., for all x0 > 0, r̄x(x0, 0) = 0. If species y can successfully invade,
then the supremumgrowth rate řy (shorthand for řy(x0, y0)) should
bepositivewhen y is rare, i.e. řy > 0 for all x0 ≥ 0 and y0 = 0.Here,
řy is the external Lyapunov exponent (Ferriere and Gatto, 1995),
which gives the invasion speed of species y. Condition A2 implies
the same situation when species y is a resident and species x is an
invader.
The requirements řy(x0, 0) > 0, řx(0, y0) > 0 for all x0, y0 ≥ 0,

are critical for proving permanence of the system (1)–(2), i.e., all
the attractors on the x- and y-axes must have positive external
Lyapunov exponents. Positive invasion rates for only some resident
initial values, x0 and y0, are not sufficient for permanence (Ferriere
andGatto, 1995).When the limits of the sequences {r ti }

∞

t=0, i = x, y
exist, the uniform invasibility criterion can be restated as
HOA1: r̄x(x0, 0) = 0 for all x0 > 0 and r̄y(x0, 0) > 0 for all x0 ≥ 0.
HOA2: r̄y(0, y0) = 0 for all y0 > 0 and r̄x(0, y0) > 0 for all y0 ≥ 0.
In general, it cannot be guaranteed that the system (1)–(2) will

have the requirements for HOA1 and HOA2 for all resident initial
conditions. Even if the system (1)–(2) satisfies other conditions
for ergodicity such as requiring the resident dynamics to be given
by S-unimodal maps (Thunberg, 2001), e.g., Ricker’s models and
Hassell’s models (de Melo and van Strien, 1993; Thunberg, 2001;
Avila et al., 2003), all that is assured is that the average growth rate
r̄i(x0, y0), i = x, y exists for almost every initial state (i.e. excepting
a set of Lebsgue measure zero). In this paper, we are able to find
a simple sufficient condition for permanence of the system (1)–(2)
that does not require a check for each initial state, whichmakes the
concept of permanence tractable in practice.
When the invasibility criterion is applied in ecological models

for fluctuating populations, it is in a weaker form than is given
here. Rather than insisting that r̄y(x0, 0) > 0 for all x0 ≥ 0
and r̄x(0, y0) > 0 for all y0 ≥ 0, initial x0 and y0 values from
unstable invariant sets are ignored. Commonly it is assumed that
an ergodic attractor exists that is the ω limit set of almost all
initial values for each species as a resident. These invasion rates
are evaluated by simulation for the resident on this attractor to
the extent that can be determined by simulation methods. As
we shall see later, quite apart of any inaccuracy of simulation,
this definition of invasibility may hold in many important cases
where the permanence criterion is not satisfied. Thus, we refer to
the definition of invasibility used here as ‘‘uniform invasibility’’
to distinguish it from the definition more commonly used in the
ecological literature. For simplicity, however, we use ‘‘invasibility’’
below when in fact we mean ‘‘uniform invasibility’’.
3. Invasibility criterion and permanence

The uniform invasibility criterion A1 and A2 for two species
coexistence requires each species to be able to increase from
low density in the presence of the other species. The quantities
r̄i(x0, y0), i = x, y, when they exist, or more generally, ři(x0, y0),
i = x, y when they do not, are the long-term per capita growth
rates of species x and y, which can be used to quantify species
coexistence (Chesson, 1994). In this section, we show that if
the long-term per capita growth rates of both species x and y
in the dissipative system (1)–(2) satisfy the uniform invasibility
criterion then these two species coexist.

Theorem 3.1. Assume that the system (1)–(2) is dissipative. Then if
the invasibility criterion A1 and A2 holds, it is permanent.

Note that the uniform invasibility criterion A1 and A2 implies that
the invader y (or x) can invade the resident species x (or y) with
the positive invasion rates řy (or řx), which are positive external
(normal) Lyapunov exponents. Since the system is dissipative,
the theorem follows from Theorem 2.2 of Hutson (1984) by
defining a Lynaponov function P(x, y) = xy. The connection with
invasibility is appreciated when it is noted that the log of the ratio
P(xt , yt)/P(x0, y0) equals r tx(x0, y0)+r

t
y(x0, y0), which is evaluated

in the limit as x0y0 goes to zero, corresponding to each invasion
scenario. The supremum over t of the result needs to be positive
for permanence, which is guaranteed by uniform invasibility. Our
Theorem 3.1 shows that the uniform invasibility criterion is a
sufficient condition for the permanence of the system (1)–(2)when
it is dissipative. This result is similar to Theorem 3.1 of Kon (2004),
but defines the invasion growth rate explicitly for connection with
uniform invasibility. Note, that for this theorem, differentiability
conditions on f and g are not necessary. It is sufficient for these
functions to be continuous.
Theorem 3.1 ensures that invasibility implies permanence of

dissipative systems. Beyond the requirement that invaders have
positive invasion rates, the use of this theorem requires two other
issues to be resolved. First resident long-term growth rates must
be zero, and second the system must be dissipative. We now
demonstrate easily established circumstances in which these two
issues are satisfied, leaving only invasion rates to be checked in
application of the theorem. We first state the full set of conditions
defining these circumstances.
Assume that the system (1)–(2) satisfies the following conditions

C1: f (0, 0) > 1, g(0, 0) > 1 and f (x, y) > 0, g(x, y) > 0 for any
x > 0, y > 0.

C2: limx→∞ f (x, 0) = a1 < 1 and limy→∞ g(0, y) = a2 < 1.
C3: For boundary equilibria (x∗, 0) and (0, y∗) with x∗ > 0, y∗ >
0, f (0, y∗) > 1 and g(x∗, 0) > 1.

C4: All ∂ f (x,0)
∂x ,

∂ f (x,y)
∂y ,

∂g(x,y)
∂x and ∂g(0,y)

∂y are negative for all (x, y) ∈
[0,∞)× [0,∞).

ConditionC1 guarantees that the populations of species x and ywill
move away from the origin (0, 0). Condition C2 implies that both
species x and y have sufficient intraspecific competition to drive
their finite rates of increase below 1 at high abundances, which
keeps their populations bounded in the single-species state. Condi-
tionC3 ensures that both species x and yhave positive growth rates
as invaders at the resident equilibrium. The last condition C4 im-
plies that both species x and y suffer intraspecific and interspecific
competition, and also that the resident equilibria of C3 are unique.
Condition C4, together with C2, ensures dissipativity. In addition,
this last condition implies that both functions f (x, 0) and g(0, y)
have inverses. We do not need all of these conditions for the in-
dividual results, but in general it is obvious which conditions are
needed for which results, and we do not remark on this further.
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The formal results beloware proved inAppendix B. Herewemerely
provide a sketch of the argument.
To prove that the resident long-term growth rates r̄x(x, 0) and

r̄y(0, y) are zero, we introduce the single-species model
xt+1 = xt f (xt),
corresponding to the resident condition for each species. Then we
have the following result.

Lemma 3.1 (Permanence in the Single-species Case). Let xt+1 =
xt f (xt) where the map f : [0,∞)→ [0,∞) is differentiable. If
(a) f (x) > 0 for all x > 0 with f (0) > 1 and
(b) limx→∞ f (x) ≤ a1 < 1.
Then xt is bounded from both infinity and zero by fixed constants, for
t large enough. Hence, it is permanent in {x : x > 0}. Moreover,

r̄x(x0) = 0 for all x0 > 0.

The proof of this lemma is given in Appendix B. Briefly, it involves
noting that with f (0) > 1, xt must grow from low density, and
continuity of the map prevents it from falling below a certain
minimum positive value from high density. Hence, it bounded
from below by a fixed constant for t large enough, for each x0.
Boundedness from above follows similarly. Together, these results
give permanence. This boundedness guarantees that (ln xt −
ln x0)/t converges to 0 as t converges to infinity. Because this
quantity is simply the time average of rx(xt), we see that
r̄x(x0) = 0 for all x0 > 0.

Corollary 3.1 (Average growth rates of competition models). If the
system (1)–(2) satisfies Conditions C1–C4, then

r̄x(x0, 0) = 0 and r̄y(0, y0) = 0 for all x0 ≥ 0, y0 ≥ 0.

Proof. Since the system (1)–(2) satisfies Condition C1–C4, each
species in its resident state satisfies the conditions for Lemma 3.1.
Hence the statement holds. �

Now we are able to show the system is dissipative if it satisfies
Conditions C1–C4 by applying results in Lemma 3.1 and its
corollary.

Lemma 3.2 (Dissipative). If the system (1)–(2) satisfies Conditions
C1–C4, then it is dissipative.
The proof is given in Appendix B by using the fact that the
population of species x cannot be greater than the population
when its competitor y is absent, due to interspecific competition,
i.e. ∂ f (x, y)/∂y < 0. Therefore, if the population of a
resident species is bounded without its competitor present in
the community, then its population must be bounded when the
competitor is in the community. Applying the same reasoning for
y in the presence of x, the system is shown to be dissipative.

4. Relative nonlinearity

In the previous section, we showed that the uniform invasibilty
criterion A1 and A2 is a sufficient condition for the permanence
of the dissipative system (1)–(2). In this section, we introduce
the concept of the relative nonlinearity, which allows us to
answer the question of when fluctuations have a critical role in
species coexistence. Moreover, using this concept we show how
permanence can be demonstrated quite easily in a broad range
of situations. However, we are not able cover all cases that arise
commonly in practice, but we are able to remove the concept of
permanence from amere theoretical possibility when populations
fluctuate to a concept that does have serious practical application.
The term ‘‘relative nonlinearity’’ is normally used to refer to a

species coexistence mechanism that results from different species
having different nonlinear responses to competition together with
fluctuations in time or space in the intensity of competition (Ches-
son, 1994, 2000). However, these factors need not always have a
positive effect on coexistence, i.e., depending on the circumstances,
they might undermine coexistence (Chesson, 2000). Here we con-
sider both positive and negative effects of relative nonlinearity on
species coexistence.
Assume that F(x, 0) and G(0, y) of the system (1)–(2) have

inverse functions for the domains x > 0, y > 0. These functions
are denoted by F−1(rx, 0) and G−1(0, ry). Denote by Fx and Fxx, and
Gy and Gyy, the first and second derivatives respectively of F and
G with respect to x and y. In addition, assume that Fx(x, 0) and
Gy(0, y) are not equal to 0 for any nonnegative x or y. We measure
the nonlinearity of F(x, y)with respect to x and y as

τ Fx =
Fxx(x, 0)
Fx(x, 0)

and τ Fy =
Fyy(0, y)
Fy(0, y)

,

with corresponding definitions of τ Gx and τ
G
y forG(x, y). The relative

nonlinearities of these two functions are now defined as

τ Fy − τ
G
y , (10)

τ Gx − τ
F
x . (11)

These τ differences define howmuch the two functions differ from
being related linearly. For example τ Gx − τ Fx = 0 if and only
if F(x, 0) and G(x, 0) are linearly related to each other. Hence,
τ Gx − τ

F
x measures their relative nonlinearity. These definitions of

relative nonlinearity differ from the original definition of Chesson
(1994, 2000) by defining it specifically for the cases where one
species is an invader (at zero density), whereas Chesson (1994,
2000) restricts it to situations where it can be defined in the same
way at all densities. The definition here in terms of two different
quantities, one for each species as the invader, allowsmore general
situations to be considered.
Assuming now that species x is in the invader state, and species

y is in the resident state, if their population dynamics (1)–(2)
satisfy the uniform invasibility criterion A1 and A2, then r̄y(0, y0)
is necessarily zero. In addition, by doing the exact second Taylor
expansions of the growth functions rx in x and ry in y (Chesson and
Mathias, 2010), the long-term low-density growth rate of species
x with an initial condition x0 = 0, y0 > 0 can be represented as
given in Box I, with {(0, yi)}∞i=0 being the positive orbit with initial
condition with y0 > 0 and
yiv = G

−1 (0, vG(0, yi)) .
[See Appendix A for the detailed derivation.] The first term of (12)
can be considered as the invasion rate of species x from the fixed
point (0, y∗), i.e., the invasion rate in the absence of fluctuations.
Inspection of (13) shows how relative nonlinearity affects the
invasion rate. Relative nonlinearity is only nonzero when the
resident has persistent fluctuations, as otherwise∆x(y0) converges
on 0. It is also only nonzero when the relative nonlinearity
measure (10) is nonzero and so represents the interaction between
these two quantities. Thus, we see that the total effect of
relative nonlinearity on the invasion rate is a combination of the
fluctuations of the resident species, caused by a nonpoint attractor,
and the relative nonlinearity measure. If this quantity (13) is
positive, it indicates that the resident population fluctuations
increase the invasion rate, while if it is negative, the resident
population fluctuations decrease the invasion rate.
From expression (13), we can see that the sign of ∆x(y0) is

determined by the sign of the quantity

Θx(y) = Fy(0, y)
(
τ Gx (0, y)− τ

F
x (0, y)

)
, (14)

provided that the sign of Θx(y) does not change with y. Similarly,
the long-term low-density growth rate (the invasion rate) species
y can be represented as

řy(x0, 0) = G(x∗, 0)+∆y(x0) (15)
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2)

3)
řx(0, y0) = F(0, y∗)+∆x(y0) (1

where

∆x(y0) = lim sup
t→∞

t−1∑
t=0
G2(0, yi)

∫ 1
0
Fy(0,yiv)
Gy(0,yiv)2

(τ Fy (0, y
i
v)− τ

G
y (0, y

i
v))[1− v]dv

t
(1

Box I.
with∆y(x0) defined analogously to∆x(y0) by swapping x and y, F
and G. The sign of∆y(x0) is determined by the quantity

Θy(x) = Gx(x, 0)
(
τ Fy (x, 0)− τ

G
y (x, 0)

)
. (16)

For convenience of nomenclature, we say the system has
positive relative nonlinearities if both (14) and (16) are uniformly
nonnegative. Note that permanence requires the lim inf and
lim sup to be bounded away from zero and infinity for all positive
initial conditions. Similarly, in our definition of invasibility, we
require positive invasion rates řx (or řy) from all y0 > 0 (or x0 > 0).
These both require that G(x∗, 0) > 0 and F(0, y∗) > 0, i.e. each
speciesmust be able to invadewhen the other species is at the fixed
point of its resident state. Assuming these conditions are satisfied,
we now see that positive relative nonlinearity implies invasibility
and hence permanence. Focusing on y invading x, there are three
scenarios:
1. ∆y(x0) > 0, therefore, řy(x0, 0) = G(x∗, 0)+∆y(x0) > 0.
2. ∆y(x0) < 0, but, řy(x0, 0) = G(x∗, 0)+∆y(x0) > 0.
3. ∆y(x0) < 0, and řy(x0, 0) = G(x∗, 0)+∆y(x0) < 0.

The first case represents the case when the invasion rate řy is
always greater for the non-point attractor than for the fixed
point. The second case represents the case when the invasion
rate řy is smaller for the non-point attractor than for the point
attractor but still keeps the positive sign. The first and second
cases have the potential to satisfy the sufficient conditions of the
permanence for the system. The last case represents the casewhen
fluctuations associated with the non-point attractor undermine
permenance because then the invasion rate is lower than that
predicted by the point attractor. In this case, the system has no
permanence due to existing attractors on the x-axis. There are
many models (Kon, 2006; Kang et al., 2008; Kuang and Chesson,
2008) presenting this scenario under some proper parameter
ranges. The uniform invasibility criterion A1 and A2 requires both
(12) and (15) to be positive for all initial positive initial states
of the resident. A system with positive relative nonlinearity then
satisfies the uniform invasibility criterion, and hence is permanent.
For competition models, the derivatives Fy(0, y) and Gx(x, 0) are
negative, and so positive relative nonlinearity means nonpositive
values of the relative nonlinearity measures, (10) and (11). Thus,
we have the following theorem.

Theorem 4.1 (Positive relative nonlinearity and invasion crite-
rion). Assume that the system (1)–(2) satisfies C1–C4. Then, if the sys-
tem has positive relative nonlinearity, i.e.

τ Gx − τ
F
x =

Gxx
Gx
−
Fxx
Fx
≤ 0 (17)

and

τ Fy − τ
G
y =

Fyy
Fy
−
Gyy
Gy
≤ 0. (18)

Then, it satisfies the uniform invasibility criterion A1 and A2.
Therefore, it is permanent.

Proof. Condition C1–C4 implies that the system is dissipative ac-
cording to Lemma 3.2. In addition, Condition C4 gives Gx < 0
and Fy < 0, which indicates that the system has positive rela-
tive nonlinearity when combined with the inequalities (17)–(18).
Therefore, positive relative nonlinearity coupled with positive in-
vader growth at the resident point equilibrium guarantees posi-
tive invader growth from all positive resident initial densities. To
complete the demonstration that the uniform invasibility criterion
holds here, we just need to show that resident long-term growth
rates r̄x(x0, 0) and r̄y(0, y0) are zero from all positive resident ini-
tial states. This directly follows from Corollary 3.1. Then, applying
Theorem 3.1, we see that the system is permanent. �

Note that when the residents have globally stable fixed points, the
second term of the expressions (12) and (15) is zero, i.e., ∆x =
∆y = 0. This implies that positivity of řx(0, y) and řy(x, 0) is
determined by the quantities F(0, y∗) and G(x∗, 0). It follows that
Theorem 4.1 has the simple corollary.

Corollary 4.1 (Fixed Point and Permanence). If the system (1)–(2)
satisfies Condition C1–C4, in addition, both (x∗, 0) and (0, y∗)
are globally attractive in the resident states of x and y, then the
system (1)–(2) is permanent.

These results on relative nonlinearity and permanence general-
ize the results of Kon (2004) for the case of twice differentiable f
and g . We now derive special cases in the following corollary.

Corollary 4.2 (Convexity and concavity). Assume that the sys-
tem (1)–(2) satisfies C1–C4. Then, the system is permanent if both
F(0, y) and G(x, 0) are convex, and, both F(x, 0) and G(0, y) are con-
cave.

Note that if F(x, y) and G(x, y) are both linear functions of x, y,
which makes the model a discrete-time version of the Lotka–
Volterramodel, then the second terms of (12) and (15) are zero too.
In this case, the coexistence of species x and y is determined by the
positivity of F(0, y∗) and G(x∗, 0), as demonstrated previously by
Hofbauer et al. (1987).

5. Relative nonlinearity and permanence of prey–predator
models

In a prey–predator model, the prey growth rate is a decreasing
function of predator density, but the predator growth rate
is an increasing function of prey abundance. Most important,
the predator growth rate is commonly negative at zero prey
abundance. Thus, the predator cannot survive without the prey.
This factmeans that the uniform invasibility criterion, as presented
above for competition models, does not apply. However, we are
able to obtain a suitable invasibility condition for a predator–prey
model by focusing on predator invasion of a resident prey under
conditions that ensure that when the predator is absent, the prey
are permanent. Assume that the system (1)–(2) is a dissipative
prey–predator system where species x is the prey and species y
is the predator with g(0, y) < 1. The uniform invasibility criterion
for a predator–prey system is then
PA r̄x(x0, 0) = 0 and řy(x0, 0) > 0 for all x0 > 0.
A sufficient condition for the system to be permanent can be

stated as follows.
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Theorem 5.1. Assume that the system (1)–(2) is a continuous and
dissipative prey–predator model with

f (0, 0) > 1 and g(0, y) < 1 for all y ≥ 0.

If the system satisfies Condition PA, then it is permanent.

Note that the difference between Condition PA and Condition
A1 is that řy(x0, 0) > 0, x0 > 0 instead of řy(x0, 0) > 0,
x0 ≥ 0, which is due to the fact that řy(0, 0) is not positive.
In order to avoid the fixed point (0, 0), this involves separately
demonstrating permanence of x and y in their joint system. First,
we can show that prey x is persistent in the joint system (1)–(2) by
applying Hutson’s (1984) Theorem 2.2 and its Corollary 2.3 with
the average Lyapunov function P(x, y) = x. Then, we can restrict
the system in the space [b, B] × [0, B].This allows us to apply
Hutson’s (1984) Theorem2.2 to obtain permanence of y in the joint
system by using the average Lyapunov function P(x, y) = y. Note
that differentiability conditions are not required for this theorem.
Continuity of f and g is sufficient.
In competitionmodels, we have seen that positive relative non-

linearity Θy(x) ≥ 0, x ≥ 0 is a sufficient condition for řy(x0, 0) >
0, x0 > 0, when invasion from the resident equilibrium is possi-
ble. Now we define conditions that under which a prey–predator
system (1)–(2) is permanent as follows:

P1: f (x, y) > 0, for any x > 0, y > 0, f (0, 0) > 1 and
limx→∞ f (x, 0) ≤ a1 < 1 for any x > 0.

P2: g(x, y) > 0, 0 ≤ g(0, y) < 1 for all x > 0, y > 0 and

lim
y→∞

g(x, y) = a2(x) < 1 for any given x > 0.

P3: If f (x∗, 0) = 1 with x∗ > 0, then g(x∗, 0) > 1.
P4: ∂ f (x,0)

∂x < 0, ∂ f (x,y)
∂y ≤ 0,

∂g(x,y)
∂x > 0 for all x ≥ 0, y ≥ 0.

Condition P1 guarantees that the prey x is permanent without
the predator y. In P2, the condition 0 < g(0, y) < 1 implies
that the predator goes extinct without the prey; the condition
limy→∞ g(x, y) = a2 < 1 for any given x > 0 implies that for
any given prey population size, x, the finite rate of increase of the
predator drops below 1. Such behavior is normally described as
predator interference, i.e. predator individuals interact negatively
with one another limiting their ability to hunt prey. Alternatively,
this condition might represent intraspecific competition for some
other resource, such as nesting sites, rather than for prey. Condition
P3 ensures that the predator y has a positive growth rate at the
prey’s equilibrium x∗. The last condition P4 says that the prey
species suffers intraspecific competition in the absence of the
predator, and suffers from the presence of the predator, while
the predator benefits from the presence of the prey. Note P4 also
implies that f (x, 0) has an inverse, which additionally implies
uniqueness of the prey equilibrium x∗ in the absence of the
predator.

Lemma 5.1 (Dissipativity). If the system (1)–(2) satisfies condi-
tion P1–P4, then it is dissipative.

That the prey population is bounded is a consequence of
Lemma 3.1. The key difference between competition models and
prey–predator models resides in the fact that the predator popu-
lation growth rate increases as a function of the prey population,
and the predator would go extinct without the prey. Since the prey
population size x is bounded by some positive number B, the finite
rate of increase of the predator y is less than g(B, yt). This allows us
to apply similar arguments to the proof of Lemma 3.2 to show us-
ing Condition P2 that the predator y is bounded. The detailed proof
is given in Appendix B.
The concept of relative nonlinearity applies also to preda-

tor–prey systems, but in this case all we have to consider is
relative nonlinearity with a resident prey species because the
predator cannot be resident without the prey, and the prey pop-
ulation is permanent regardless of the presence of the predator.
The system has positive relative nonlinearity when

Θy = Gx(τ Gx − τ
F
x ) = Gx

(
Gxx
Gx
−
Fxx
Fx

)
= Gxx −

GxFxx
Fx
≥ 0.

Note that here Θy and τ Gx − τ
F
x have the same sign because Gx

is positive in predator–prey models. Thus, we have the following
theorem.

Theorem 5.2. Assume that the system (1)–(2) satisfies P1–P4. If it
has positive relative nonlinearity, i.e.

τ Gx − τ
F
x ≥ 0 for all x > 0,

then the system is permanent.

Proof. According to Lemma 5.1, Condition P1–P4 guarantees that
the system (1)–(2) is dissipative. Condition P1 implies that prey x
is permanent in the absence of the predator. Applying Lemma 3.1,
gives r̄x(x0, 0) = 0 for all x0 > 0. Positive relative nonlinearity
implies Condition PA. Hence from Theorem 5.1, the system is
permanent. �

Kon (2004) used convexity and concavity conditions for preda-
tor–prey systems. If both G(x, 0) and F(0, y) are convex (or linear),
then Gxx ≥ 0 and Fxx ≥ 0. Moreover, Condition P4 implies that
Gx
Fx
≤ 0. Thus, from the equation above forΘy we see that the sys-

tem has positive relative nonlinearity. Hence, a direct corollary of
Theorem 5.2 is

Corollary 5.1. Assume that the system (1)–(2) satisfies P1–P4. If
both G(x, 0) and F(x, 0) are convex, then the system is permanent.

Like the situation with competition models, it is possible for
fluctuating dynamics to undermine coexistence because the quan-
tity ∆y(x) < 0 for almost every x0 > 0, due to prey population
fluctuations. A sufficiently large negative∆y(x) can then make the
predator invasion rate negative even though the predator can in-
vade the prey equilibrium. Permanence fails, and this can lead phe-
nomena such as bistability. For instance, a plant-herbivore model
in Kang et al. (2008) shows bistability between interior attractors
and boundary attractors as a consequence of fluctuating dynam-
ics of the plant population. Also, Kon (2006) shows that there are
multiple attractors between interior attractors and boundary at-
tractors caused by the fluctuating dynamics of the host in a host-
parasitoid model.

6. Applications

In this section, we apply the results to particular competition
and prey–predator models. In addition, we give an example
showing that ∆y(x) < 0 for almost every x > 0 caused by the
fluctuating prey population.

6.1. A competition model

We present a simple competition model that conveniently il-
lustrates the concept of relative nonlinearity. This model is studied
by Kon (2004) to illustrate results on permanence from convexity
and concavity conditions. Here we use the model to illustrate rela-
tive nonlinearity, butwe use a different parameterization than Kon
(2004) thatmakes the results simpler andmore ecologicallymean-
ingful. Here the dynamics of x and y are given as follows:

xt+1 = xter1[1−(α11xt )
v11−(α12yt )v12 ] (19)

yt+1 = yter2[1−(α21xt )
v21−(α22yt )v22 ] (20)

where ri > 0, αij > 0, vij > 0, i, j = 1, 2. This model satisfies
Conditions C1, C2 and C4 for a competition model. The boundary
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equilibria are easily seen to be (1/α11, 0), (0, 1/α22). These cor-
respond to the carrying capacities in the standard Lotka–Volterra
competition models as paramaterized by Chesson (2000). More-
over, the conditions for invasion of resident equilibria (Condition
C3) are the same as in the standard Lotka–Volterra model, viz,
α11 > α21 and α22 > α12. However, this is not the standard
Lotka–Volterra model, but a variation on it similar to the sorts of
models suggested byAyala et al. (1973), Hassell andComins (1976).
Of most significance here we can use the concept of relative non-
linearity to see when the system is permanent. The nonlinearity
measures, τ , take simple forms, for example

τ Fx =
v11 − 1
x

, τ Gx =
v21 − 1
x

and the relative nonlinearities are

τ Fy − τ
G
y =

v12 − v22

y
, τ Gx − τ

F
x =

v21 − v11

x
.

It follows that the condition for positive relative nonlinearity (non-
positive τ differences) is vjj ≥ vij > 0, i 6= j, i, j = 1, 2. The follow-
ing corollary gives us the parameter ranges of ri, vij, αij, i, j = 1, 2
so that the system is permanent.

Corollary 6.1. Assume that (19)–(20) satisfies vjj ≥ vij > 0, i 6=
j, i, j = 1, 2 and αij > 0, i, j = 1, 2. Then, the system is permanent,
if

αjj > αij, i 6= j, i, j = 1, 2.

Our competition model is essentially the same as Kon’s (2004),
but we substantially broaden the parameter range for which
permanence is known.

6.2. A prey–predator model

Let xt and yt represent the population densities of prey x and
predator y respectively at generation t . Then, a prey–predator
model can be defined as

xt+1 = xt
(
s1 + b1e−a11x

v11
t −a12y

v12
t

)
(21)

yn+1 = yt
(
s2 + b2ea21x

v21
t −a22y

v22
t

)
(22)

where s1 + b1 > 1, 0 < s1 < 1, 0 < s2 + b2 < 1, aij > 0, vij > 0,
i, j = 1, 2. With these parameter constraints, this system satisfies
Condition P1, P2, P4. For the prey boundary equilibrium, we solve

s1 + b1e−a11x
v11
n = 1

for x. This yields exactly one nontrivial boundary equilibrium equal
to
 ln

(
b1
1−s1

)
a11


1
v11

, 0

 .
Substituting this boundary equilibrium into the finite rate of
increase of the predator, we find that Condition P3 holds when ln

(
b1
1−s1

)
a11


1
v11

>

 ln
(
1−s2
b2

)
a21


1
v21

. (23)

Relative nonlinearity here becomes

τ Gx − τ
F
x =

1
x

(
v21 − v11 +

s2a21v21xv21

s2 + b2ea12x
v12 +

s1a11v11xv11

s1 + b1e−a11x
v11

)
.

This expression converges on (v21−v11)/x for small x, fromwhich
it is clear that the whole expression is positive for all positive x if
and only if v21 > v11. As Gx is always positive, this means that the
condition for positive relative nonlinearity is v21 > v11. Thus, the
following corollary gives a sufficient condition for permanence of
the predator–prey system.

Corollary 6.2. Assume that s1 + b1 > 1, 0 < s1 < 1, 0 < s2 +
b2 < 1, αij > 0, vij > 0, i, j = 1, 2. If v21 ≥ v11 and
inequality (23) holds, then the system (21)–(22) is permanent.

6.3. Resident population fluctuations leading to a negative invasion
rate

The concept of relative nonlinearity allows us to understand
when population fluctuations have critical roles in species coex-
istence. In this subsection, we give an example of when fluctu-
ating dynamics associated with a nonpoint attractor undermine
permenance because they make the invasion rate negative while
the invasion rate from the resident fixed point is positive. Both
models studied in Kon (2006) and Kang et al. (2008) provide
examples. Here we use following host-parasitoid interaction
model studied by Kon (2006):

xt+1 = xter−xt−yt (24)

yt+1 = θxt
[
1− e−yt

]
(25)

where r > 0 is the maximum growth rate of the host and
θ > 0 is the number of parasitoids emerging on average from
each parasitized host. This system is dissipative and the host x is
permanent. To derive the nonlinearity measures, we note that

Fx(x, 0) = −1, Fxx(x, 0) = 0

Gx(x, 0) =
1
x
, Gxx(x, 0) = −

1
x2
.

The predator invasion rate at the host fixed point is G(x∗, 0) =
G(r, 0) = ln(rθ). Using the notation {(xi, 0)}∞i=0 for a positive orbit
for the host as a resident, with initial value x0 > 0, formula (15) for
∆y(x0) gives

řy(x0, 0) = ln(rθ)− lim sup
t→∞

t−1∑
i=0

∫ 1
0

1
(r−vxi)2

[1− v] dv

t
. (26)

As ∆y(x0) is negative here, relative nonlinearity reduces the inva-
sion rate řy. When rθ > 1, the fixed point (r, 0) gives a positive
parasitoid invasion rate, i.e., G(r, 0) = ln(rθ) > 0. For certain
values of r , host population fluctuations can cause the parasitoid
invasion to fail. For instance, in the case r = 3.25, θ = 1/1.05,
řy = −0.105 (Figure 6, Kon, 2006), which implies that the invad-
ing parasitoid y has a negative invasion rate due to a sufficiently
large negative value of ∆y(x0). This means there are boundary
attractors on the x-axis.

7. Discussion

Many authors (e.g., Fonda, 1988; Freedman and So, 1989;
Schreiber, 2000; Salceanu and Smith, 2009a,b) have studied
sufficient conditions for permanence of dynamical systems.
However, these conditions in general are difficult to check. Thus,
in applications, the invasibility criterion is often used to study
the coexistence of two species (Ferriere and Gatto, 1995; Chesson,
1994; Kuang and Chesson, 2008). In this paper, we connect these
two concepts by introducing the idea of uniform invasibility
for discrete-time two-species population models and finding
sufficient conditions for uniform invasibility and permanent
coexistence. Most important, we show that uniform invasibility
implies permanence under mild conditions. Although Kon (2004)
derived similar results based on the seminal work of Hutson
(1984), he did not make explicit connection with invasibility ideas.
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The concept of permanence is of most value in the presence
of nonpoint attractors because then asymptotic sfbility of an
equilibrium is too limited a concept for species coexistence.
However, population fluctuations arising from nonpoint attractors
can have major effects on coexistence itself (Armstrong and
McGehee, 1980; Alder, 1990; Chesson, 1994; Kuang and Chesson,
2008). Here, we study that connection using the concept of relative
nonlinearity, which precisely identifies when the invasion rate
depends on the fluctuating dynamics of the resident species.
When relative nonlinearity is zero, fluctuations have no effect on
this invasion rate, and the invasion rate can be found simply by
substituting the resident equilibrium into the growth rate of the
invader. Our results here lead to simple, easy to check sufficient
conditions for uniform invasibility and permanence applicable to
a broad range of situations. We use these results also to show
when fluctuations can undermine invasibility and permanent
coexistence. These situations occur when relative nonlinearity
makes a sufficiently negative contribution to invader growth.
These results are illustratedwith a two-species competitionmodel
and a predator–prey model, both of which are readily analyzed
by these techniques and have a generic quality. Our results
generalize those of Kon (2004) who used convexity and concavity
assumptions on population growth rates to understand situations
when invasion of resident point equilibria would be sufficient for
permanence.
The notion of relative nonlinearity has most commonly been

used in the past for the situationwhere the per capita growth rates
of each species can bewritten as a function of a commondynamical
variable, called a competitive factor, which might be a common
resource exploited by each species, or a common predator. The
relative nonlinearity measure, τF − τG, then defines the extent
to which the growth rate of each species is a different nonlinear
function of that competitive factor. In the simplest circumstances,
the competitive factor is written as a function of the densities
of the two species (Alder, 1990). However, the idea that relative
nonlinearity might be defined in terms of multiple competitive
factors was discussed by Chesson (1994), which is in fact what is
done here. The two factors here are the densities of each of the
species. We only need to consider them in the resident–invader
situation, which simplifies their presentation. Study of models
with a single-competitive factor has focused on the case where
τF − τG is of fixed sign, as has been the case in the applications of
interest. In this case, fluctuating dynamics decrease the invasion
rate of one species and increase the invasion rate of the other
species. Under certain circumstances (Chesson, 1994) this allows
both species to increase as invaders. However, this is not sufficient
for uniform invasibility because it normally does not apply for all
initial conditions, as discussed below. Moreover, positive relative
nonlinearity, as defined here is not possible, and so Theorem 4.1
demonstrating permanence does not apply.
Although our results substantially broaden the range of situ-

ations in which permanent coexistence can be demonstrated in
applications, there remain important situations in which there is
no practical technique for demonstrating permanence. These are
the situations where relative nonlinearity is negative or indeter-
minate. Then, relative nonlinearity might reduce an invasion rate
to negative values for some initial values of the resident despite a
positive invasion rate at the resident fixed point, destroying per-
manence. Checking that this does not occur is difficult in general
because, in discrete-timemodels, resident dynamicsmight have an
infinite number of disjoint invariant sets, for example as occurs in
the commonly used Rickermodel andmany othermodels based on
unimodal maps (May and Oster, 1976). In such cases, determining
whether the invasion rate is positive for all positive initial resident
states will often be impractical in the absence of positive relative
nonlinearity. Althoughuniform invasibility continues to imply per-
manence, establishing uniform invasibility is not always a practical
proposition.
The difficulty of establishing uniform invasibility in some cases

highlights a deficiency with permanence as a general notion of
species coexistence. The requirement that both populations be
bounded away from 0 and infinity for all positive initial conditions
is a very strong condition. A weaker condition that exempts a set
of initial conditions of Lebesgue measure zero would be more use-
ful in important applications involving nonpoint attractors. For in-
stance, the original concept of relative nonlinearity (Armstrong and
McGehee, 1980; Chesson, 1994, 2009; Kuang and Chesson, 2008)
for a single competitive factor, as discussed above, was of interest
because it identified situations in which population fluctuations
are essential for coexistence. These cases are characterized by the
feature that invasion from the resident fixed point is impossible
for at least one species. Relative nonlinearity, however, when com-
bined with fluctuating dynamics may allow invasion from initial
values other than the resident fixed point. However, permanence,
and also the uniform invasibility concept used here to prove per-
manence, fail. This means that permanence and uniform invasibil-
ity are inadequate for the study of the kind of coexistence applying
in these situations. In general, these situations have been studied
using an invasibility concept that ignores exceptional points and
assumes a unique attractor of almost all initial values of the resi-
dent. Formodels of the realworld, a concept thatwould fail due ex-
ceptional behavior on sets ofmeasure zero is unlikely to be broadly
useful unless those sets of measure zero have the status of attrac-
tors, because the noise in nature means that the systemwould not
stay in such sets. For this reason, the concept of permanence needs
to be generalized to exclude sets of measure zero. Most impor-
tant, theory allowing practical application of themore general con-
cept is needed. Especially useful would be a permanence concept
and methodology for applications that demonstrate how popula-
tion fluctuations can promote species coexistence (Armstrong and
McGehee, 1980; Chesson, 1994, 2009; Kuang and Chesson, 2008).
Nevertheless, even with a weaker more useful concept, it would
still of value to know when a stronger concept is applicable. The
work described here substantially broadens the range of situations
in which the strong coexistence condition, permanence as defined
here, can be established, and highlights important situations when
it must fail.
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Appendix A. Derivation of relative nonlinearity (12) and (15)

Here we derive the relative nonlinearity measure based on
Chesson and Mathias (2010).
Assuming now that species x is in the invader state, and species

y is in the resident state, if their population dynamics (1)–(2) satisfy
the uniform invasibility criterion A1 and A2, then the r̄y(0, y0) is
necessarily zero, i.e.,

r̄y(0, y0) = lim
t→∞

t−1∑
t=0
G(0, yi)

t
(A.1)

where {(0, yt)}∞t=0 is a positive orbit of the system (1)–(2) with
initial condition y0 > 0.
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řy(x0, 0) = G(x∗, 0)+∆y(x0)

where

∆y(x0) = lim sup
t→∞

t−1∑
i=0
F(xi, 0)2

∫ 1
0 [1− v]

Gx(xiv ,0)

[
Gxx(xiv ,0)
Gx(xiv ,0)

−
Fxx(xiv ,0)
Fx(xiv ,0)

]
F2x
(
xiv ,0

) dv

t

where xiv = F
−1 (vF(xi, 0), 0).

Box II.
Suppose that F(x, 0) and G(0, y) of the system (1)–(2) have inverse
functions for all x > 0, y > 0, which are denoted by F−1 (rx, 0) and
G−1

(
0, ry

)
. In particular, we have the following equalities hold:

ry(0, y) = G(0, y)⇒ y = G−1
(
0, ry

)
. (A.2)

Then applying (A.2) to rx(0, y) = F(0, y), we have the following:

rx(0, y) = F(0, y) = F
(
0,G−1

(
0, ry

))
. (A.3)

For convenience, define rg = G(0, y) = G(y), rf = F(0, y) = F(y).
Then, according to (A.3), we have

rf = F ◦ G−1(rg). (A.4)

In particular, for each (0, yi) ∈ {(0, yt)}∞t=0, we denote

r ig = G(yi) (A.5)

r if = F(0, yi) = F ◦ G
−1(r ig) = F ◦ G

−1
◦ G(yi). (A.6)

Then by doing the exact second Taylor expansion on rf with respect
to rg around rg = 0 according to (A.4), we have

rf = F ◦ G−1(0)+

(
dF ◦ G−1(rg)

drg

∣∣∣∣
rg=0

)
rg

+
(
rg
)2 ∫ 1

0
[1− v]

d2
(
F ◦ G−1(rg)

)
d(rg)2

(vrg)dv. (A.7)

Since G(0, y∗) = 0, then by (A.3), (A.6), (A.5) and (A.7), we have

t−1∑
i=0
r if

t
= F(0, y∗)+

dF ◦ G−1(rg)
drg

∣∣∣∣
rg=0

t−1∑
i=0
r ig

t

+

t−1∑
i=0
(r ig)

2
∫ 1
0 [1− v]

d2F◦G−1

d(rg )2
(vr ig)dv

t
. (A.8)

Since r if = F(0, yi) and r
i
g = G(0, yi), the equality (A.8) can be

rewritten as

t−1∑
i=0
F(0, yi)

t
= F(0, y∗)+

d
(
F ◦ G−1

)
(rg)

drg

∣∣∣∣∣
rg=0

t−1∑
i=0
G(0, yi)

t
(A.9)

+

t−1∑
i=0
G(0, yi)2

∫ 1
0 [1− v]

d2(F◦G−1)
d(rg )2

(vG(0, yi)) dv

t
. (A.10)

Then according to (A.1), the second term of (A.9) goes to 0 as
t →∞; therefore, we have

řx(0, y0) = F(0, y∗)+∆x(y0) (A.11)

where
∆x(y0) = lim sup
t→∞

t−1∑
i=0
G(0, yi)2

∫ 1
0 [1− v]

d2(F◦G−1)
d(rg )2

(vG(0, yi)) dv

t
.

Since

d
(
F ◦ G−1

)
(rg)

d(rg)
=
Fy
(
G−1(rg)

)
Gy
(
G−1(rg)

) ,
we have

d2
(
F ◦ G−1

)
(rg)

d(rg)2
=

Fyy
(
G−1(rg)

)
−
Gyy(G−1(rg ))Fy(G−1(rg ))

Gy(G−1(rg ))

G2y
(
G−1(rg)

)
=

Fy
(
G−1(rg)

) [ Fyy(G−1(rg ))
Fy(G−1(rg ))

−
Gyy(G−1(rg ))
Gy(G−1(rg ))

]
G2y
(
G−1(rg)

) .

Therefore, we can rewrite∆x(y0) as

∆x(y0) = lim sup
t→∞

t−1∑
i=0
G(0, yi)2

∫ 1
0 [1− v]

Fy(yiv)

[
Fyy(yiv)
Fy(yiv)

−
Gyy(yiv)
Gy(yiv)

]
G2y
(
yiv
) dv

t

where yiv = G−1 (vG(0, yi)). Similarly, let {(xi, 0)}∞i=0 be the
positive orbit with the initial condition x0 > 0, then we can derive
the long-term low-density growth rate (the invasion rate) of the
invading species y, in the presence of its competitor, species x, as
given in Box II.

Appendix B. Useful lemmas

Lemma B.1. Let xt+1 = xt f (xt) where the map f : [0,∞) →
[0,∞) is differentiable. If

(a) f (x) > 0 for all x > 0 and f (0) > 1 and
(b) there exists a B > 0 such that for any initial condition x0 > 0, we
have

lim sup
t→∞

xt < B.

Then the system is permanent in {x : x > 0}, i.e., there exists a b > 0,
such that for any initial condition x0 > 0, we have

lim inf
t→∞

xt > b.

Moreover, this implies that

r̄x(x0) = 0 for all x0 > 0.

Proof. Define zt = ln(xt). Since we know that eventually xt < B,
rmin = inf0≤x≤B ln(f (x)) < 0 is finite because f (x) is continuous
and strictly positive for all x > 0. Since the growth rate ln(f (x))
is continuous, it is positive at low values of x. Thus, defining ε =
min{x : f (x) = 1} and b = εermin , we have 0 < b < ε < B.
Beginning with x below ε, each step zt must increase until it hits
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or exceeds ln(ε). However, by Condition (b) zt can never exceed
ln(B). Thus, zt can never decrease by more than rmin in one step.
This means that after zt has exceeded ln(ε) it can never fall below
rmin+ln(ε) before its growth rate is positive again. It follows that zt
cannot fall below rmin+ ln(ε). Hence, xt ≥ εermin if t is large enough
and x0 > 0.
Let (xi)∞i=0 to be the positive orbit of the map starting at x0 > 0,

then we have

lim inf
t→∞

ln b
x0

t
≤ lim inf

t→∞

ln xtx0
t
≤ lim sup

t→∞

ln xtx0
t
≤ lim sup

t→∞

ln Bx0
t
.

As both ends of this string of inequalities are zero, and r tx(x0) =
(ln xt/x0)/t , we see that r̄x(x0) exists and equals 0 for all
x0 > 0. �

Proof of Lemma 3.1. Define rmax = supx≥0 ln(f (x)). This is finite
because f is continuous and converges on a finite constant at
infinity. Let zn = ln(xn). Since f (x) converges to a1 < 1 as x goes
to infinity, there is a K and an ε such that ln(a1) < −ε < 0 and

ln(f (x)) < −ε for x > K .

Thus,

zn+1 < zn − ε, for zn > ln(K),

and

zn+1 ≤ rmax + ln(K) = ln(B), for zn ≤ ln(K).

Now let us consider the following two cases:

1. If z0 ≤ ln(K), then zn ≤ ln(B) for all n because z1 ≤ ln(B) and
if zn ≤ ln(B) either zn < ln(K) or zn+1 < zn. Hence zn+1 ≤
ln(B).Thus by induction, zn remains below ln(B) if z0 ≤ ln(K).

2. If z0 > ln(K), then there is a k such that zk < ln(K). Here k can
be calculated explicitly as less than z0−ln(K)

ε
. Using k in place of

0 in case 1, we see that zn < ln(B) for n > k.

Combining this result with Lemma B.1 completes the proof. �

Proof of Lemma 3.2. We want to show that for any nonnegative
initial condition (x0, y0), xt is bounded for t large enough. From
Condition C4 ∂ f (x,y)

∂y < 0, we have

xt+1 = xt f (xt , yt) ≤ xt f (xt , 0).

Define rm = sup(x≥0,y≥0) ln(f (x, y)) = supx≥0 ln(f (x, 0)). This is
finite because f is continuous and converges on a finite constant
at infinity. Let zn = ln(xn). Since f (x, y) ≤ f (x, 0) and
limx→∞ f (x, 0) = a1 < 1, there is a K and an ε such that

ln(f (x, y)) < −ε < 0 for any x > K , y ≥ 0.

Thus,

zn+1 < zn − ε, for zn > ln(K),

and

zn+1 ≤ rm + ln(K) = ln(B), for zn ≤ ln(K).

Then applying a similar argument to the proof of Lemma 3.1, we
can conclude that xt is bounded for t large enough. Reciprocally,
yt is bounded for t large enough. Therefore, the system is
dissipative. �

Proof of Lemma 5.1. Since the system satisfies Condition P1-P4,
the same proof as Lemma 3.2 proves the boundness of prey x,
i.e., there exists B > 0 such that for any nonnegative initial
condition (x0, y0), we have

lim sup
t→∞

xt < B.
Due to the condition ∂g(x,0)
∂x > 0, we gain the following inequality:

yt+1 = ytg(xt , yt) ≤ ytg(B, yt).

If g(B, 0) ≥ 1, then the argument used to prove Lemma 3.2,
applies to show the boundedness of the predator y. In the case that
g(B, 0) < 1, the predator population cannot grow once the prey
has fallen below B, after which it in fact decreases monotonically
to zero. Therefore, the population of species y is also bounded for
large t , which implies that the system is dissipative. �
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