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Abstract— Social and economic pressures are inducing the 

proliferation of plug-in electric vehicles (PEVs) in the market. As 

the power grid has a limited supply of electricity, this problem can 

be formulated as a resource allocation problem, minimizing costs 

of charging. In this paper we model the PEV charging problem to 

minimize the total cost of charging, taking into account 

distribution constraints. These constraints model the maximum 

power that distribution-lines can carry as a function of time. 

Moreover, we develop an algorithm to schedule the PEVs aiming 

at minimizing the total charging cost, subject to these 

instantaneous distribution constraints. Although the proposed 

algorithm is a suboptimal one, it is of a polynomial complexity in 

the number of PEVs in the system.   

Index Terms—PEV, resource allocation, electricity markets 

I. INTRODUCTION 

Social and economic pressures are inducing the proliferation 
of plug-in electric vehicles (PEVs). PEV sales have been 
increasing by 80% every year since 2000, causing a shift from 
crude oil demand to electricity demand from the power grid [1], 
[2]. Some sources project that up to 18% of the power grid load 
in 2030 will be PEV load, inherently much more variable than 
traditional loads in the residential and commercial sector [3], [4]. 
Without any changes to the current power grid, such high levels 
of PEV penetration can cause price spikes within the electricity 
market, or even threaten the stability of the power system.  For 
example, PEV owners may choose to immediately charge their 
vehicles after arriving home in the time window of 4-6PM, 
causing a spike in the load profile. As this is already a daily peak 
demand window, this would force more expensive reserves to be 
used, raising overall prices for generation and consumption of 
electricity, and in the worst case, causing frequency and voltage 
fluctuations resulting in a drastically increased probability of 
blackouts [5]. With data from the National Household Travel 
Survey (NHTS), it can be shown that uncontrolled PEV charging 
or even a demand response induced delayed charging method 
would drastically increase the peak consumption in a given 
region [6]. But as, with simple coordination, the PEV load 
profile could be shaped. With sophisticated control algorithms, 
the problem may be eliminated. 

Research into the viability of communicating with and 
controlling a large number of PEVs in a distribution system 
show that mass PEV charging is possible with a low-bandwidth 
broadcast (as infrequent as once every 3 minutes), such that only 
minor modifications to the existing power communication 
infrastructure is needed [7]. With intelligent, bi-directional 
controls that will be implemented using the smart grid’s 

communication infrastructure, algorithms can be devised to 
mitigate the spike and use the PEV batteries to the power system 
operator’s advantage. 

These problems are generally applied in the context of wide 
scale slow-charging of PEVs, assuming that the infrastructure 
and available charging options do not change, as well as ignoring 
the distribution constraints imposed by the power grid. 
Residential distribution systems, including transformers, have 
stringent current limits that are set by physical or economic 
constraints, so a large increase in residential load from PEVs will 
have to be accounted for in problem formulations. Solutions 
such as fast-charging stations and battery-switch stations have 
also been proposed in accommodating heavy penetration of 
PEVs to encourage consumer-confidence in PEV penetration by 
offering a quick and efficient way to charge the vehicle in 
everyday use [8, 9]. These methods, however, only add larger 
power spikes to PEV charging, underscoring the need to form 
efficient algorithms to charge PEVs on a massive scale at the 
distribution level. 

Energy in the power grid can be seen as a limited resource, 
distributed to different clients at different times according to 
pricing, capacity, and other power system constraints. Given a 
certain penetration level of PEVs, the available grid power must 
be efficiently allocated among penetrating PEVs. Thus, the 
problem can be formulated as a resource allocation problem, 
with a focus on minimizing PEV charging cost, minimizing risk 
of load mismatch, or both. 

The rest of this paper is organized as follows: Section II 
discusses the related work in the literature that has been carried 
out before. We formulate the problem in Section III, discuss our 
proposed algorithm in section IV, and mention the simulation 
results in Section V. Finally, the conclusion of the paper is in 
Section VI. 

II. RELATED WORK 

One common approach that optimizes of PEV charging cost 
for a power system includes game theoretic models with a 
deregulated energy market, sometimes with a vehicle-to-
aggregator or vehicle-to-grid component that adds bi-directional 
charge capabilities between the PEV and the power grid [10-12].  
More related to this paper is minimizing cost through aggregator 
scheduling under a variety of different scenarios or assumptions. 
For example, the authors in [13] take into account a vehicle-to-
grid system where an aggregator can use the capacity of electric 
vehicles to bid into the real-time energy market, elaborating 
further on the role of ancillary services in scheduling and cost 
optimization in [14]. Other work explores unidirectional 
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scheduling, using time constraints on PEV loads to determine 
optimal load management [15]. 

Optimization of power system cost with an aggregator may 
consider day-ahead prices with an assumption of perfect day-
ahead load forecasting or a stochastic model treating the real-
time load as a random variable. In [6], a framework for 
aggregators of PEVs is formed where load scheduling is 
performed based on day-ahead prices and forecasted load, then 
the dynamic dispatch algorithm is applied.  The proposed 
algorithm tries to minimize the total cost of PEV charging, with 
constraints ensuring that each PEV is fully charged during its 
plug-in period and that the charging rate values do not exceed 
battery constraints. The solution taken in this optimization 
problem was to “rank” (i.e. sort) the available slots (those slots 
between the arrival and departure of user 𝑖 ) according to a 
ranking function. This ranking function ranks the slots in an 
ascending order of their price rates.  

Balancing both the PEV charging cost minimization and the 
load mismatch has been explored in [16]. This charging problem 
was set up as a two-stage optimization problem, separated into 
risk-aware day-ahead scheduling and risk-aware real-time 
dispatch. The authors use the term ‘risk-aware’ to denote that the 
risk of load mismatch is represented in both their scheduling and 
their real-time dispatch, so day-ahead forecasting is not assumed 
perfect. The charging period of each PEV is divided into slots of 
equal length. The supply model assumes a specific amount of 
power scheduled in the day-ahead market for each slot according 
to the day-ahead price and the forecast for the PEV demands. As 
the forecasting is not assumed to be perfect, the actual demand 
will differ from the forecasted demand, resulting in a real-time 
price for bought or canceled excess power, respectively. The risk 

of load mismatch is manifested as the difference between 𝑃𝑡
𝑑𝑎, 

the day-ahead scheduled power, and 𝑃𝑡 . The PEV model 
assumes a different energy demand for each PEV, with a 
maximum charging rate and a set plug-in time and charging 
deadline.  

One assumption in the problem setup is the necessity for the 
aggregator to charge all PEVs to a full charge state before 
disconnecting them from the grid, not allowing for optimization 
using partial charges. Thus, the authors assume that the energy 
demand can be met in the specified time slots. Another 
assumption is that the PEVs will stay connected for the entire 
duration of the 10 PM to 7 AM timeframe, so the problem does 
not have PEV arrival/connection time as a stochastic variable. 
First, the risk-aware day ahead scheduling problem is shown as 
an optimization problem, minimizing cost. Due to the non-
convexity of the objective function, the problem was recast as 
the optimization of a stochastic, two-stage linear program. 

Distribution limits of charging must be considered. Other 
papers have examined charging cost optimization of PEVs 
assuming an upper limit to the charging of the physical battery, 
but not the distribution system limits that would be imposed by 
a few factors, such as transformer power limits combined with 
consumer demand patterns. The study most related to this 
problem appears in a conference paper submitted by both 
Manitoba Hydro and the Electric Power Research Institute 
(EPRI), where the impact of increased PEV penetration was 
examined within the Canadian province of Manitoba with 
collected data and PEV adoption statistics [17]. In this study, the 
authors used the NHTS travel survey data to establish the 

assumptions that characterize the demand of consumer PEVs 
over a day. PEV penetration levels from 0%-20% were studied 
at two different voltage charging levels, 120V and 240V. Also, 
a few main charging scenarios were considered, including 
coincident PEV charging and diversified charging. Coincident 
PEV charging, where the PEVs immediately charge at their 
‘arrival’ time, was split into a peak hour and off-peak hour 
situation, and diversified charging assumed that 20% of the load 
was applied during each of the 5 hours as a type of demand 
response tactic. Emergency ratings of distribution service 
transformers were exceeded for many of the conditions, 
especially for 240V charging situations, and voltage also dipped 
drastically. This study underlines the need for the incorporation 
of distribution constraints into any PEV charging problem, as it 
is shown even at 10% PEV penetration to be a limiting factor in 
charging. 

III. DISTRIBUTION CONSTRAINTS 

The general optimization problem, without any distribution 
constraints, can be formulated as: 
 

minimize ∆ ∑ ∑ 𝜏𝑘𝑝𝑖,𝑘
𝐾
𝑘=1

𝑁
𝑖=1  

subject to ∑ 𝑝𝑖,𝑘
𝐾
𝑘=1 = 𝑝𝑖𝑙𝑖 

                𝑝𝑖,𝑘 ∈ {0, 𝑝𝑖}          ∀𝑖, 𝑘 

                𝑝𝑖,𝑘 = 0                 ∀ 𝑖, 𝑘,    𝑎𝑖 < 𝑘 ≤ 𝑒𝑖 

variables  {𝑝𝑖,𝑘} 

 

where 𝑝𝑖,𝑘 is the amount of power supplied to PEV i in slot 

k, ∆ is the length of the slot, 𝜏𝑘 is the electricity charging price 
in slot k over a total of K slots, 𝑙𝑖 is the number of slots allocated 
to PEV i, and N is the total number of PEVs to be charged in a 
section of the distribution grid. 

The total amount of power allocated to PEV i through all K 
timeslots must match the number of charging times, as shown in 
(1). The charging rate 𝑝𝑖,𝑘 is either set at a maximum rate 𝑝𝑖  or 

zero from constraints in the charging hardware in (2). The 
constraint (3) shows that charging must be zero in periods when 
PEV i is disconnected from the power grid, or outside of the 
arrival and departure deadlines. 

For this optimization problem, we impose a constraint to 
capture the effect of distribution capabilities. The constraint 
added guarantees that at each time-slot k we have a maximum 
amount of power that the users can totally drive from the power 
grid. This maximum power 𝑃𝑘

𝑚𝑎𝑥 is dictated by the power grid 
according to the time of the day. So, at peak time-slots, the 
distribution lines will have smaller 𝑃𝑘

𝑚𝑎𝑥
 than those at off-peak 

time-slots. The optimization problem with distribution 
constraints becomes, 

 

minimize ∆ ∑ ∑ 𝜏𝑘𝑝𝑖,𝑘
𝐾
𝑘=1

𝑁
𝑖=1  

subject to ∑ 𝑝𝑖,𝑘
𝐾
𝑘=1 = 𝑝𝑖𝑙𝑖 

                𝑝𝑖,𝑘 ∈ {0, 𝑝𝑖}            ∀𝑖, 𝑘 

                𝑝𝑖,𝑘 = 0      ∀ 𝑖, 𝑘,    𝑎𝑖 < 𝑘 ≤ 𝑒𝑖 

 ∑ 𝑝𝑖,𝑘
𝑁
𝑖=1 ≤ 𝑃𝑘

𝑚𝑎𝑥          ∀𝑘 

variables  {𝑝𝑖,𝑘} 

 

where as before,  𝑝𝑖,𝑘  is the amount of power supplied to 

PEV i in slot k, ∆ is the length of the slot, 𝜏𝑘 is the electricity 

(1) 

(2) 

(3) 



charging price in slot k over a total of K slots, 𝑙𝑖 is the number of 
slots allocated to PEV i, and N is the total number of PEVs to be 
charged in a section of the distribution grid. The final constraint 
listed is the added distribution constraint.  

IV. ALGORITHM WITH DISTRIBUTION CONSTRAINTS 

Prior work in PEV dispatch algorithms do not completely 
account for distribution constraints since they allocate the 
timeslots for the arriving users regardless of the transformer or 
distribution line loading. Thus, we devise a new dispatch 
algorithm that minimizes the total power allocated to all users in 
all timeslots incorporating distribution constraints. The proposed 
dispatch algorithm is detailed in Algorithm 1. Algorithm 2 is a 
feasibility check function called by Algorithm 1 that will be 
discussed later in this section. 

 
 

Algorithm 1 Dispatch 

Input:  
a. 𝑇: Set of already-existing users in the system that have 

not completed charging yet. 
b. 𝑠: Current time-slot. 
c. 𝜏𝑘: Charging prices. 
d. 𝑃𝑘

𝑚𝑎𝑥 : Maximum power limit due to distribution 
system requirements for slot 𝑘. 

e. For each user 𝑖: 
i. Remaining charging time-slots 𝑙𝑖. 

ii. Charging-rate 𝑝𝑖 . 
iii. Departure time slot 𝑒𝑖. 

1. Loop (if any new users arrived) Do: 
a. 𝑇 = 𝑇 ∪ {𝑁𝑒𝑤 𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝑠}. 
b. 𝐻𝑖 = {} (Set carrying time slots allocated to user 𝑖). 
c. While (𝑇 is not empty) Do: 

i. Find the user having the maximum charging-rate 𝑝𝑖  

among all users ∈ 𝑇 
𝑖𝑚𝑎𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖∈𝑇𝑝𝑖 . 

ii. Find the set of time-slots 𝑆𝑖𝑚𝑎𝑥
 that are feasible for 

user 𝑖𝑚𝑎𝑥  (i.e. slots that can accommodate 𝑖𝑚𝑎𝑥) 

𝑆𝑖𝑚𝑎𝑥
= {𝑘: 𝑃𝑘

𝑚𝑎𝑥 ≥ 𝑝𝑖𝑚𝑎𝑥
} 

iii. Find the users having deadline before 𝑒𝑖𝑚𝑎𝑥
. 

𝐵 = {𝑖: 𝑒𝑖 < 𝑒𝑖max
} 

iv. While (𝑙𝑖𝑚𝑎𝑥
> 0) Do: 

1. For all the time-slots in 𝑆𝑖𝑚𝑎𝑥
 do: 

a. 𝑘∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑘∈𝑆𝑖𝑚𝑎𝑥−𝐻𝑖𝑚𝑎𝑥
𝜏𝑘 

b. If 
Check_Feasibility

(𝐵, {𝑙𝑖}𝑖∈𝐵 , {𝑝𝑖}𝑖∈𝐵 , {𝑃𝑘
𝑚𝑎𝑥}𝑘<𝑒𝑖𝑚𝑎𝑥

, 𝑝𝑖𝑚𝑎𝑥
)=1 

Then 𝐻𝑖𝑚𝑎𝑥
= 𝐻𝑖𝑚𝑎𝑥

∪ {𝑘∗},  

        𝑙𝑖𝑚𝑎𝑥
= 𝑙𝑖𝑚𝑎𝑥

− 1. 

𝑃𝑘∗
𝑚𝑎𝑥 = 𝑃𝑘∗

𝑚𝑎𝑥 − 𝑝𝑖𝑚𝑎𝑥
 

Exit For-Loop 
c. Else: 𝑆𝑖𝑚𝑎𝑥

= 𝑆𝑖𝑚𝑎𝑥
− 𝑘∗ 

d. End If 
2. End For 

v. End While 
d. 𝑇𝑎 = 𝑇𝑎 − {𝑖𝑚𝑎𝑥} 

e. End While 
2. End Loop 

 

Algorithm 2 Check_Feasibility(𝐵, 𝑙𝑖 , 𝑝𝑖 , 𝑃𝑘
𝑚𝑎𝑥 , 𝑝𝑖𝑚𝑎𝑥

) 

Input: (𝐵, 𝑙𝑖 , 𝑝𝑖 , 𝑃𝑘
𝑚𝑎𝑥 , 𝑝𝑖𝑚𝑎𝑥

)  (Note: variables here are local 

variables only) 
1. Feasible = 1 
2. While (𝐵 is not empty) Do: 

a. 𝐵𝑒𝑎𝑟𝑙𝑦  is the set of users having the earliest departure 

time, i.e. 

𝐵𝑒𝑎𝑟𝑙𝑦 = argmin
i∈B

𝑒𝑖 

b. Loop: (to check feasibility of each user in 𝐵𝑒𝑎𝑟𝑙𝑦 starting 

with the user having the minimum charging rate 𝑝𝑖) 

i. 𝑖𝑚𝑖𝑛 = argmin
𝑖∈𝐵𝑒𝑎𝑟𝑙𝑦

𝑝𝑖 

ii. 𝐾𝑖𝑚𝑖𝑛
= {𝑘: 𝑃𝑘

𝑚𝑎𝑥 ≥ 𝑝𝑖𝑚𝑖𝑛
} 

iii. If (|𝐾𝑖𝑚𝑖𝑛
| < 𝑙𝑖𝑚𝑖𝑛

) 

Then: Feasible=0, End Loop, End While 

iv. Else:  

1. Rank the slots in 𝐾𝑖𝑚𝑖𝑛
 in ascending order of 𝑃𝑘

𝑚𝑎𝑥. 

Call it 𝑅𝐾𝑖𝑚𝑖𝑛
({𝑃𝑘

𝑚𝑎𝑥}𝑘∈𝐾𝑖𝑚𝑖𝑛
). 

2. 𝑃𝑘
𝑚𝑎𝑥 = 𝑃𝑘

𝑚𝑎𝑥 − 𝑝𝑖𝑚𝑖𝑛
      ∀𝑘 ∈

{𝑘: 𝑅𝐾𝑖𝑚𝑖𝑛
(𝑃𝑘

𝑚𝑎𝑥) ≤ 𝑙𝑖𝑚𝑖𝑛
} 

3. 𝐵𝑒𝑎𝑟𝑙𝑦 = 𝐵𝑒𝑎𝑟𝑙𝑦 − {𝑖𝑚𝑖𝑛} 

4. 𝐵 = 𝐵 − {𝑖𝑚𝑖𝑛} 

v. End If 

c. End Loop 

3. End While 
Return (Feasible) 
 
When new PEVs arrive to the system at slot 𝑠, the algorithm 

allocates timeslots to these new users. The main idea of the 
algorithm stems from the fact that we want to allocate time slots 
to users having higher charging rate 𝑝𝑖  first, giving less priority 
to users having lower charging rates. To understand this, 
consider two users with 𝑝1 = 100  units while 𝑝2 = 10  unit. 
Assume that both users have arrived, and will leave, in the same 
timeslots. If two timeslots are to be allocated to these two users 
(and the cheapest of them can only provide 100 units of power), 
then we would favor user 1 to be assigned to the slot with the 
smaller charging price 𝜏𝑘 . This will yield minimum total 
charging price regardless of the amount of timeslots required by 
each user (i.e. the amount of energy to fully charge their 
batteries). 

However, users who arrive at a given timeslot might not 
depart simultaneously. If user 1 will depart after user 2, the 
system must compromise between meeting user 2’s deadline and 
finding an allocation with the minimum cost. If we do not take 
this compromise into account (i.e. if we assign timeslots based 
on their prices only), then the cheapest timeslots may not be able 
to accommodate both users simultaneously. When those slots are 
assigned to user 1, user 2 may not be allocated any slots, since 
the latter has an earlier departure time. To tackle this problem in 



the algorithm, we choose the user 𝑖𝑚𝑎𝑥  who has the highest 
charging rate 𝑝𝑘, and allocate the user 𝑖 the cheapest timeslots in 
an iterative fashion. During each iteration we Check (using 
Check_Feasibility algorithm) if this assignment will be feasible 
or not. That is, we check if the users who will depart the system 
before user 𝑖𝑚𝑎𝑥  (i.e. users in the set 𝐵 ) can still be 
accommodated in the remaining time-slots after this cheapest 
timeslot is assigned to user 𝑖𝑚𝑎𝑥  or not. If not then the second 
cheapest timeslot is checked, continuing down time-slots until a 
suitable timeslot is found. Once this user is fulfilled (i.e. he is 
allocated all the timeslots he needs), then we move on to the user 
with the second highest charging rate, until assigning time-slots 
to all users. 

With this in mind, in order to implement the algorithm 
online, we need to not only allocate time slots to the newly 
arriving users but to the old users in the system as well. That is, 
we must take into consideration the users that have arrived in 
previous time slots and have not completed their charging yet. 
Those users have already been allocated time slots before slot 𝑠 
(that they have already used), as well as slots after 𝑠 that they 
haven’t used yet. Those latter may not be the optimum allocation 
given the newly arriving EVs. Thus, to take these old users into 
consideration, we consider them as newly arriving users, but the 
amount of power they require is the amount of power remaining 
to fully charge their batteries at this time slot 𝑠 (𝑙𝑖). Although 
this algorithm satisfies all the constraints of the aforementioned 
optimization problem, it is a sub-optimal algorithm with respect 
to minimizing the objective function. 

V. SIMULATION RESULTS 

We have simulated the system assuming a slotted structure, 

where each time-slot is 0.5 hours, for one day (i.e. 𝐾 = 48 

time-slots in the system), while the number of users is set at 

𝑁 = 20  users. The maximum distribution power constraint 

𝑃𝑘
𝑚𝑎𝑥 is chosen with a uniformly random distribution over the 

interval [1,1000] units (∀𝑘). The charging power rate 𝑝𝑖 , the 

departure time-slot 𝑒𝑖, and the number of time-slots 𝑙𝑖 to fully 

charge user 𝑖  are all assigned with a uniformly random 

distribution between [1, 200]  units, [1,K], and [1, 𝑒𝑖] 
respectively. In Fig. 1, we can find that the maximum load of 

the EV charging on the distribution system, after time-slot 

allocation via the proposed algorithm, has not exceeded the 

power distribution constraint that is set by the distribution 

system. On the same figure, we plot the load curve after 

allocating the time-slots in the same system but with ignoring 

the distribution constraints. In other words, allocating the time-

slots to minimize the total charging cost of the aggregate users. 

This latter indeed is optimum with respect to minimizing the 

total cost, but we can see that there are some particular time-

slots of the day (e.g. 4-5 am in Fig. 1) where the load exceeded 

the maximum value that the distribution lines can hold. 

The total power due to the proposed algorithm is found to be 

about 30% more than that when ignoring the distribution 

constraints. This comes with the advantage of protecting the 

distribution system from getting over-loaded, including the 

safety of the transformers, lines, and protection hardware spread 

about the system. 

To calculate the complexity order of the proposed algorithm, 

we can find that we loop over 𝑁 users, assigning the user up to 

𝐾  time-slots. For each assigned time-slot, we call the 

Check_Feasibility algorithm up to 𝐾  times. 

Check_Feasibility has complexity of 𝑂(𝑁𝐾) . Thus, the 

complexity of the proposed algorithm is of 𝑂(𝑁2𝐾3), which is 

a polynomial-time complexity. Although the complexity seems 

fifth order complexity, we expect that the future EV charging 

system will increase dramatically in the number of users 𝑁 , 

while the number of time-slots 𝐾  will be limited. This is 

because a single user is not expected to be charging, plugged-in 

for more than a few hours, even with a large number of PEVs 

in the system. Thus the complexity of the system is expected to 

be of 𝑂(𝑁2) (i.e. quadratic complexity). 

 

 

Fig. 1. Allocated loads from the algorithm from simulation 

VI. CONCLUSIONS 

The resource allocation problem for PEV charging is 
inherently a non-convex, stochastic optimization problem. 
However, the problem can be restructured and reformulated to 
arrive at near-optimal solutions. Research shows that with 
enough electric vehicle penetration, charging PEVs will create a 
spike in demand, which is especially harmful to the stability and 
economic efficiency of the power system during peak load 
hours. One solution to this problem is to allow an aggregator to 
coordinate the charging of the PEVs, aimed at minimizing the 
charging cost. This will automatically impose the PEVs to be 
charged in the valley of the current power load profile, or at least 
will not result in an overload to the power grid. Prior work finds 
the scheduling and dispatch algorithm that minimizes the total 
PEV charging cost based on the day-ahead expected prices and 
load, introducing the risk of load-imbalance in the optimization 
formulation. Presented is an algorithm that finds allocates the 
time slots of users in system where the distribution-line 
constraints must be taken into consideration.  With polynomial 
complexity, this algorithm will be able to serve as a basis for 
realistic charging algorithms that will tackle the problems 
inherent in power systems with heavy amounts of PEV charging. 
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