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Abstract—An uplink cognitive radio system with a single
primary user (PU) and multiple secondary users (SUs) is con-
sidered. The SUs have an individual average delay constraint
and an aggregate average interference constraint to the PU.
If the interference channels between the SUs and the PU are
statistically different due to the different physical locations of
the SUs, the SUs will experience different delay performances.
This is because SUs located closer to the PU transmit with lower
power levels. A dynamic scheduling-and-power-allocation policy
that uses the dynamic programming, is proposed. The proposed
policy can provide the required average delay guarantees to all
SUs irrespective of their location as well as protect the PU from
harmful interference. The policy is shown to be asymptotically
delay optimal in the light traffic regime. Motivated, by the high
complexity of the dynamic programming algorithm in the optimal
policy we exploit the structure of the problem’s solution to
present an alternative suboptimal policy. Through simulations
we show that in both light and heavy traffic regimes, the delay
performance of the suboptimal policy is within 0.3% from the
optimal policy and both outperforming existing methods.

I. INTRODUCTION

The problem of scarcity in the radio spectrum has led to
a wide interest in cognitive radio (CR) networks. CRs refer
to devices that coexist with the licensed spectrum owners
called the primary users (PUs). CRs are capable of dynam-
ically adjusting their transmission parameters according to the
environment to avoid harmful interference to the PUs.

In real-time applications, such as audio and video con-
ference calls, one of the most effective QoS metrics is the
average time a packet spends in the queue before being
fully transmitted, quantified by average queuing delay. This is
because packets are expected to arrive at the destination before
a prespecified deadline. The average queuing delay needs to
be as small as possible to prevent jitter and to guarantee
acceptable QoS for these applications [1], [2]. This delay
can be controlled via efficient scheduling and power control
algorithms.

The problem of scheduling and/or power control for CR sys-
tems has been widely studied in the literature (see e.g., [3]–[9],
and the references therein). An uplink CR system is considered
in [3] where the authors propose a scheduling algorithm that
minimizes the interference to the PU where all users’ locations
including the PU’s are known to the secondary base station.
The objective in [4] is to maximize the total network’s welfare.
While this could give good performance in networks with users
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having statistically homogeneous channels, the users might
experience degraded QoS when their channels are heteroge-
neous. In [5] a distributed scheduling algorithm that uses an
on-off rate adaptation scheme is proposed. The authors of
[6] propose a closed-form water-filling-like power allocation
policy to maximize the CR system’s per-user throughput. The
work in [9] proposes a scheduling algorithm to maximize the
capacity region subject to a collision constraint on the PUs.
The algorithms proposed in all these works aim at optimizing
the throughput for the SUs while protecting the PUs from
interference. However, providing guarantees on the queuing
delay in CR systems was not the goal of these works. While
[10] proposes joint scheduling-and-power-allocation policy to
minimize the of jobs scheduled at CPUs, power allocation
in the presence of wireless channels is more challenging
since users need to allocate the power based on the fading
coefficient, an aspect that does not exist in CPUs.

In this paper, we consider the joint scheduling and power
control problem of minimizing the sum average delay of SUs
subject to an average interference constraint at the PU, for
the first time in the literature. Our model assumes a general
fading model as opposed to on-off channels considered in the
literature. The novel contributions of this paper include: i)
proposing a joint power-control and scheduling policy that is
optimal with respect to the sum average delay of SUs under
an average interference constraint; ii) proposing a policy using
and Lyapunov analysis to show that it meets the heterogeneous
per-user average delay requirements; and iii) proposing a
suboptimal low complexity alternative that is shown in the
simulations to be close to optimal. Through simulations, we
show that conventional existing algorithms as the max-weight
and the Carrier-Sense-Multiple-Access (CSMA) scheduling
algorithms, if applied directly, can degrade the quality of
service of both SUs as well as the PUs.

The rest of the paper is organized as follows. The system
model and the problem formulation are presented in Section
II. The proposed policy and its optimality and complexity are
presented in Section III. Section IV presents our extensive
simulation results. The paper is concluded in Section V.

II. SYSTEM MODEL AND PROBLEM STATEMENT

We assume a CR system consisting of a single secondary
base station (BS) serving N secondary users (SUs) indexed by
the set N , {1, · · ·N} (Fig. 1). We are considering the uplink
phase. The SUs share a single frequency channel with a single
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Fig. 1. An uplink CR system with N SUs (in this figure N = 2) and one
PU receiver. There exists an interference link between each SU and the PU
that is assumed to be using the channel continuously.

PU that has licensed access to this channel. The CR system
operates in an underlay fashion where the PU is using the
channel continuously at all times. SUs are allowed to transmit
as long as the interference received by the PU averaged over a
large duration of time does not exceed a prespecified threshold
Iavg. Moreover, we assume that no more than one SU at a time
slot should be assigned the channel.

A. Channel and Interference Model

We assume a time slotted structure where each slot is of
duration T seconds. The channel between SUi and the BS (and
that between SUi and the PU) is block fading with instanta-
neous power gain γ(t)i (with gain g(t)i ), at time slot t, following
the probability mass function fγi(γ) with mean γi (fgi(g) with
mean gi) and i.i.d. across time slots, and γmax,i (gmax,i) is the
maximum gain γ

(t)
i (g(t)i ) could take. The channel gains are

statistically independent and heterogeneous across SUs. We
assume perfect knowledge of γ(t)i and g(t)i at the beginning of
slot t through some channel estimation phase that is out of the
scope of this work [11, Section VI]. SUs use a rate adaptation
scheme based on the channel gain γ(t)i . The transmission rate
of SUi at time slot t is R(t)

i (P
(t)
i ) , log

(
1 + P

(t)
i γ

(t)
i

)
bits,

where Pmin ≤ P (t)
i ≤ Pmax is the power by which SUi trans-

mits its bits at slot t, for some minimum and maximum values
Pmin and Pmax. We assume that there exists a finite maximum
rate Rmax,i , log (1 + Pmaxγmax,i) that SUi cannot exceed.
Moreover, we define µi(P ) = E

[
R

(t)
i (P )

]
/L packets/slot.

B. Queuing Model

1) Arrival Process: We assume that packets arrive to the
SUi’s buffer at the beginning of each slot. Let A(t)

i be the
number of packets arriving to SUi’s buffer at slot t. We assume
A(t)
i is a Bernoulli process with a fixed parameter λi packets

per time slot. Packets are buffered in infinite-sized buffers and
each packet in the system has a fixed length of L bits where
L � maxi(Rmax,i) which is a typical case for packets with
large sizes as video packets [12, Section 3.1.6.1].

2) Service Process: Packets are served according to the
first-come-first-serve preemptive resume queuing discipline.
Thus at slot t, if SUi is assigned the channel, it transmits

M
(t)
i , min

(
R

(t)
i (P

(t)
i ), Hi(t)

)
bits of the head-of-line

(HOL) packet of its queue, where Hi(t) is the remaining
number of bits of the HOL packet of SUi at the beginning
of slot t and is given by

Hi(t+ 1) ,

{
L1
(
Q

(t)
i + |A(t+1)

i | > 0
)
, Hi(t) = M

(t)
i

Hi(t)−M (t)
i , otherwise

where 1(x) = 1 if the event x occurs and 0 otherwise
while Q(t)

i represents the number of packets in SUi’s queue
at the beginning of slot t that evolves as follows Q(t+1)

i =(
Q

(t)
i + |A(t)

i | − S
(t)
i

)+
where the packet service indicator

S
(t)
i = 1 if Hi(t) = M

(t)
i and 0 otherwise.

The service time si of SUi is the number of time slots
required to transmit one packet for SUi, excluding the service
interruptions. It can be shown that E [si] = E

[
R

(t)
i

]
/L time

slots/packet. Hence, the service time follows a general distribu-
tion that depends on the distribution of γ(t)i . The packet arriv-
ing to SUi at slot t has a delay W (t)

i which is the total amount
of time, in time slots, that this packet spends in the system.
The time-average delay experienced by SUi’s packets is given
by [10] W i , limT→∞ E

[∑T
t=1W

(t)
i

]
/E
[∑T

t=1A
(t)
i

]
C. Frame-Based Policy

The idea behind our policy is to divide time into frames and
update the power allocation and scheduling at the beginning
of each frame. Frame k consists of Tk , |F(k)| consecutive
time-slots, where F(k) is the set containing the indices of
the time slots belonging to frame k. Frame k starts when all
buffers of all users become empty in frame k−1 (see Fig. 2).

We define π(k) , [π1(k), · · · , πN (k)]T where πj(k) is the
index of the SU who is given the jth priority during frame k.
Given π(k), the scheduler becomes a priority scheduler with
preemptive-resume priority queuing discipline [13, pp. 205].
The idea of dividing time into frames and assigning fixed
priority lists for each frame was also used in [10]. During
frame k, SUs are scheduled according to some priority list
π(k) and each SU is assigned some power to be used when
it is assigned the channel. The priority list and the power
functions are fixed during the entire frame k and are found
at the beginning of frame k based on the history of the SUs’
time-averaged delays and, in the case of (2), the PU’s suffered
interference up to the end of frame k − 1. An equivalent
equation for the average delay W i is

W i , lim
K→∞

E
[∑K

k=0

(∑
j∈Ai(k)W

(j)
i

)]
E
[∑K

k=0 |Ai(k)|
] (1)

where Ai(k) , ∪t∈F(k)A
(t)
i is the set of all packets that arrive

at SU i’s buffer during frame k.

D. Problem Statement

Each SUi has an average delay constraint W i ≤ di
that needs to be satisfied. Moreover, there is an interference
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Fig. 2. Frame k has Tk , |F(k)| slots with T seconds. Different frames
can have different number of slots. Idle period is the time slots where buffers
of all users are empty.

constraint that the SU needs to meet in order to coexist with
the PU. The main objective is to solve the following problem

minimize
{π(k)},{P(k)}

∑N
i=1W i

subject to I , limT→∞
∑N
i=1

1
T

∑T
t=1 P

(t)
i g

(t)
i ≤ Iavg

W i ≤ di , ∀i ∈ N
Pmin ≤ P (t)

i ≤ Pmax , ∀i ∈ N and ∀t ≥ 1,∑N
i=1 1

(
P

(t)
i

)
≤ 1 , ∀t ≥ 1,

(2)
Problem (2) is a joint power allocation and scheduling

problem the solution of which guarantees the desired delay
performances for all SUs. We notice that the objective function
and constraints of (2) are expressed in terms of asymptotic
time averages and cannot be solved by conventional optimiza-
tion techniques. The next section proposes low complexity
update policy to solve this problem and proves its optimality.

III. PROPOSED POLICY

We solve (2) by proposing online joint scheduling and
power allocation policy that dynamically updates the schedul-
ing and the power allocation. We show that this policy has a
performance that comes arbitrarily close to being optimal as
some control parameter V →∞.

To satisfy the delay constraints (interference constraint) in
(2) we set up a “virtual queue” associated with each delay
constraint W i ≤ di (interference constraint I ≤ Iavg). The
virtual queue for W i ≤ di (I ≤ Iavg) at frame k is given by

Yi(k+ 1) ,

Yi(k) +
∑

j∈Ai(k)

(
W

(j)
i − ri(k)

)+

, and (3)

X(k+ 1) ,

X(k) +

N∑
i=1

∑
t∈F(k)

P
(t)
i g

(t)
i − IavgTk

+

, (4)

respectively, where ri(k) ∈ [0, di] is an auxiliary variable,
that is to be optimized over and Yi(0) , 0, ∀i, while Ai(k)
is the set of packets arriving to SUi during frame k. We
define Y(k) , [Y1(k), · · · , YN (k)]T . Y(k + 1) (X(k + 1)),
calculated at the end of frame k, represent the amount of delay
(interference) exceeding di (Iavg) for SUi up to the beginning
of frame k+1. We first give the following definition, then state
a lemma that gives a sufficient condition on Yi(k) (X(k)) for

the delay (interference) constraint W i ≤ di (I ≤ Iavg) to be
satisfied.

Definition 1. A random sequence {Z(k)}∞k=0 is said to be
mean rate stable if and only if limK→∞ E [Z(K)] /K = 0.

Lemma 1. If {Yi(k)}∞k=0 ({X(k)}∞k=0) is mean rate stable,
then the constraint W i ≤ di (I ≤ Iavg) is satisfied.

Proof. Lemma 3 in [10] can be modified to show that

E
[∑K−1

k=0

(∑
j∈Ai(k)W

(j)
i

)]
E
[∑K−1

k=0 |Ai(k)|
]

≤ E [Yi(K)]

K

K

E
[∑K−1

k=0 |Ai(k)|
] +

∑K−1
k=0 E [|Ai(k)|ri(k)]∑K−1
k=0 E [|Ai(k)|]

.

(5)

Replacing ri(k) by its upper bound di, taking the limit as K →
∞ then using the mean rate stability definition and equation
(1) completes the mean rate stability proof of {Yi(k)}∞k=0.
Similarly we can prove the mean rate stability of {X(k)}∞k=0.

Lemma 1 provides a condition on the virtual queue
{Yi(k)}∞k=0 ({X(k)}∞k=0) so that the average delay (interfer-
ence) constraint W i ≤ di (I ≤ Iavg) in (2) is satisfied. That is,
if the proposed joint power allocation and scheduling policy
results in a mean rate stable {Yi(k)}∞k=0 ({X(k)}∞k=0), then
W i ≤ di (I ≤ Iavg).

A. Optimal Policy

We first give the following useful definitions. Since the
scheduling scheme in frame k is a priority scheduling scheme
with preemptive-resume queuing discipline, then given the
priority list π we can write the expected waiting time of all
SUs in terms of the average residual time [13, pp. 206] TR

πj .
The waiting time of SU πj that is given the jth priority is [13,
pp. 206]

Wπj

(
P, µπj (P ), ρπj (P ), ρπj−1

, TR
πj

)
, 1(

1−ρπj−1

) [ 1
µπj (P ) +

TR
πj(

1−ρπj−1
−ρπj (P )

)] (6)

where ρi(P ) , λi/µi(P ) and ρπj−1
,
∑j−1
l=1 ρπl(Pπl).

Moreover, we define

W̃πj

(
P, ρπj (P ), ρmax

πj−1
, TR
πj

)
, 1(

1−ρmax
πj−1

) [ 1
µπj (P ) +

TR
πj(

1−ρmax
πj−1

−ρπj (P )
)] (7)

where ρmax
πj−1

,
∑j−1
l=1 ρπl

(
P ρ

max

πl

)
, with P ρ

max

πl
,

arg minP ψπl

(
P, ρmax

πl−1

)
. We henceforth drop all the argu-

ments of W̃πj and Wπj except (P, ρmax
πj−1

) and (P ), respec-
tively. Since, we can show that Wπj (P )→ W̃πj (P, ρ

max
πj−1

) in
the light traffic regime, we will use W̃πj (P, ρ

max
πj−1

) to replace
Wπj (P ) in our analysis. Thus the power search problem is



decoupled and becomes N one-dimensional searches as will
be shown later.

Before presenting the DOAC policy, we first discuss the
idea behind it. Intuitively, a policy that solves problem (2)
should allocate SUi’s power and assign its priority such
that SUi’s expected delay and the expected interference to
the PU is minimized. The DOAC policy is defined as the
policy that selects the power parameter vector P(k) ,
[P1(k), · · · , PN (k)]T jointly with the priority list π(k) that
minimizes Ψ ,

∑N
j=1 ψπj (Pπj (k), ρmax

πj−1
) where

ψπj (P, ρ
max
πj−1

) , Yπj (k)λπjW̃πj (P, ρ
max
πj−1

)+X(k)ρπj (P )P ḡπj .
(8)

Since the functions ψπj (Pπj (k), ρmax
πj−1

) are decoupled, of the
vector P(k), for all j ∈ N , we can minimize Ψ, for a fixed
π(k) vector, iteratively starting from j = 1. This allows
the use of the dynamic programming algorithm to find the
optimum π(k). We now present the Delay-Optimal-under-
Average-Interference-Constraint (DOAC) policy and state its
optimality.

DOAC Policy:
1) BS executes Algorithm 1 at the beginning of frame k.
2) At slot t ∈ F(k), schedule i∗(t) who has the highest

priority in the list π∗(k).
3) SUi∗(t) transmits M (t)

i∗(t)
bits where P (t)

i∗(t)
= P ∗

i∗(t)
(k).

4) At end of frame k, BS sets ri(k) = di if V < Yi(k)λi
and 0 otherwise, then updates X(k + 1) and Yi(k + 1),
∀i ∈ N .

The DOAC policy calculates π∗(k) and P∗(k) once at the
beginning of frame k then uses these two vectors throughout
the frame duration. To find π∗(k) and P∗(k) we solve
minπ(k),P(k) Ψ using the dynamic programming in Algorithm
1. Its overall complexity is of O(MN2N ) where M is the
number of iterations in a one-dimensional search. Compared
to the exhaustive search this is a large complexity reduction
although still high if N was large. In Section III-C we propose
a sub-optimal policy with low complexity.

B. Motivation of DOAC

We define U(k) , [X(k),Y(k)]T , the Lyapunov function
as L(k) , 1

2X
2(k)+ 1

2

∑N
i=1 Y

2
i (k) and Lyapunov drift to be

∆(k) , EU(k) [L(k + 1)− L(k)] . (9)

Squaring equation (3) and (4) then taking the conditional
expectation we can get the bounds

1
2 EY(k)

[
Y 2
i (k + 1)− Y 2

i (k)
]
≤ CYi+

Yi(k)EY(k) [Tk]λi

(
EY(k)

[
W

(j)
i

]
− ri(k)

)
, and

(10)
1
2 EU(k)

[
X2(k + 1)−X2(k)

]
≤ CX+

X(k)
(
EU(k)

[∑
t∈F(k) P

(t)
i g

(t)
i

]
− Iavg EU(k) [Tk]

)
,

(11)

where we use the bounds EY(k)

[(∑
j∈Ai(k)W

(j)
i

)2]
+

EY(k)

[(∑
j∈A(k)

ri(k)
)2]

< CYi and

Algorithm 1 to find P∗(k) and π∗(k)

1: Define S as the set of all sets formed of all subsets of N
and define the auxiliary functions Ψ̃(·, ·) : N ×S → R+,
ρ̃(·) : S → [0, 1], S̃(X ) : S → N |X |, P̃(X ) : S →
[0, Pmax]|X | and P (·, ·) : S ×N → [0, Pmax].

2: Initialize Ψ̃(0, ·) = ρ̃({}) = 0, S̃({}) = P̃({}) = [ ].
3: for i = 1, · · · , N do
4: In stage i, the first i priorities have been assigned

to i users. The corresponding priority list is denoted
[π1, · · · , πi]. In stage i we have

(
N
i

)
states each cor-

responds to a set j formed from all possible com-
binations of i elements chosen from the set N . We
calculate Ψ̃(i, j) associated with each state j in terms
of Ψ̃(i− 1, ·) obtained in stage i− 1 as follows.

5: for j ∈ all possible i-element sets do
6: At state j , {π1, · · · , πi}, we have i transitions,

each connects it to state j′ in stage i − 1, where
j′ , j\l with l ∈ j. Find the power associ-
ated with each transition l ∈ j denoted P (j, l) ,
arg minP ψl(P, ρ̃(j\l)).

7: Set

l∗ = arg min
l∈j

Ψ̃ (i− 1, j\l) + ψl
(
P (j, l), ρ̃(j\l)

)
,

Ψ̃(i, j) = Ψ̃(i− 1, j\l∗) + ψl∗
(
P (j, l∗), ρ̃(j\l∗)

)
,

ρ̃(j) = ρ̃ (j\l∗) + ρ
(
P (j, l∗)

)
,

S̃(j) =
[
S̃ (j\l∗) , l∗

]T
,

P̃(j) =
[
P̃ (j\l∗) , P (j, l∗)

]T
.

8: end for
9: end for

10: Set π∗(k) = S̃ (N ) and P∗(k) = P̃ (N ).

EU(k)

[(∑N
i=1

∑
t∈F(k) P

(t)
i g

(t)
i

)2
+ (IavgTk)

2

]
< CX

and omit their derivation (see [14] for more details). Given
some fixed control parameter V > 0, we add the penalty
term V

∑
i EU(k) [ri(k)Tk] to both sides of (9). Using the

bounds in (10) and (11), the drift-plus-penalty term becomes
bounded by

∆ (U(k)) + V

N∑
i=1

EU(k) [ri(k)Tk] ≤ C + EU(k) [Tk]χ(k),

(12)
where

χ(k) ,
N∑
j=1

[
(V − Yj(k)λj) rj(k) + ψπj (Pπj (k), ρmax

πj−1
)
]
,

(13)
with ψπj (Pπj (k), ρmax

πj−1
) defined in (8). We define the DOAC

policy to be the policy that jointly finds r(k), P(k) and
π(k) that minimize χ(k) subject to the maximum power and
the single-SU-per-time-slot constraints in problem (2). The
updates of ri(k) in Step 4 of the DOAC policy minimize the



first summation of χ(k). Using the fact that EU(k)

[
W

(j)
πl

]
=

W up
πl

(Pπl(k)), in the light traffic regime, we get
∑N
l=1 φπl .

For {P(k)} and π(k), we can see that
∑N
l=1 φπl is the only

term in the right side of equation (13) that is a function of the
power allocation policy {P(k)}, ∀t ∈ F(k). Consequently,
P∗(k) and π∗(k), the optimum values for P(k) and π(k)
respectively, are ones that minimize

∑N
l=1 φπl as given by

Algorithm 1.

Theorem 1. If (2) is strictly feasible, then for any V > 0
there exists a constant C < ∞ such that, in the light traffic
regime, the performance of the DOAC policy satisfies

N∑
i=1

W i ≤
C

V
+

N∑
i=1

W
∗
i (14)

where W
∗
i is SUi’s the optimum delay when solving (2).

Moreover, the virtual queues {X(k)}∞k=0 and {Yi(k)}∞k=0 are
mean rate stable ∀i ∈ N .

Proof. When evaluating by the optimum policy that solves
(2) and by the genie-aided values of ri(k) = W ∗i in the right-
hand-sides (r.h.s.) of (10), (11) and (13), the second line of
both (10) and (11) become negative, since the optimum policy
satisfies the delay and interference constraints, respectively,
while (13) becomes χopt , V

∑N
i=1W

∗
i . Replacing χ(k)

with χopt in the r.h.s. of (12) we get the bound ∆ (U(k)) +
V
∑N
i=1 EU(k) [ri(k)Tk] ≤ C + EU(k) [Tk]V

∑N
i=1W

∗
i . Tak-

ing E [·] over this inequality, summing over k = 0, · · · ,K−1,
denoting X(0) , Yi(0) , 0 for all i ∈ N , and dividing by
V
∑K−1
k=0 E [Tk] we get

E
[
X2(K)

]∑K−1
k=0 E [Tk]

+

N∑
i=1

E
[
Y 2
i (K)

]∑K−1
k=0 E [Tk]

+

N∑
i=1

∑K−1
k=0 E [ri(k)Tk]∑K−1
k=0 E [Tk]

(a)

≤ aC

V
+

N∑
i=1

W
∗
i , C1. (15)

where in the r.h.s. of inequality (a) we used E [Tk] ≥
E [I(k)] = 1/a, and C1 is some constant that is not a
function in K. To prove the mean rate stability of the sequence
{Yi(k)}∞k=0 for any i ∈ N , we remove the first and third terms
in the left-side of (15) as well as the summation operator from
the second term to obtain E

[
Y 2
i (K)

]
/K ≤ C1 ∀i ∈ N . Using

Jensen’s inequality we note that

E [Yi(K)]

K
≤
√

E [Y 2
i (K)]

K2
≤
√
C1

K
. (16)

Finally, taking the limit when K → ∞ completes the mean
rate stability proof of {Yi(k)}∞k=0. Similarly we can proof the
mean rate stability of {X(k)}∞k=0. On the other hand, to prove
the upper bound in Theorem 1, we use the fact that ri(k)
and |Ai(k)| are independent random variables (see step 4 in
the DOAC) to replace E [|Ai(k)|ri(k)] by λi E [Tkri(k)] in
equation (5), then we take the limit of (5) as K →∞, use the

TABLE I
SIMULATION PARAMETER VALUES

Parameter Value Parameter Value
L 1000 bits/packet Pmax 100

fγi(γ) exp (−γ/γi)/γi γi, ∀i 1
fgi(g) exp (−g/gi)/gi gi, i = 1, 2, 3, 4 0.1
V 100 g5 0.4

mean rate stability theorem and sum over i ∈ N to get∑N
i=1

E
[∑K−1

k=0

(∑
j∈Ai(k)

W
(j)
i

)]
E[
∑K−1
k=0 |Ai(k)|]

≤
∑N
i=1

∑K−1
k=0 E[ri(k)Tk]∑K−1
k=0 E[Tk]

(b)

≤ aCY
V +

∑N
i=1W

∗
i ,

(17)

where inequality (b) comes from removing the first summation
in the left-side of (15). Taking the limit when K → ∞ and
using equation (1) completes the proof.

Theorem 1 says that the DOAC policy is optimal as V →∞,
and the interference and delay constraints of (2) are satisfied
since {X(k)}∞k=0 and {Yi(k)}∞k=0 are mean rate stable.

C. Near-Optimal Low Complexity Algorithm

The suboptimal policy we present here depends on de-
coupling the search over P(k) and π(k). Define Pmin ,
min{P :

∑N
i=1 ρi(P ) < 1}. Intuitively, if, for some πj ∈ N ,

X(k) � Yπj (k) then P ∗πj (k) is expected to be close to
Pmin since the second term of ψπj (P, ρ

max
πj−1

) dominates over
the first term. Otherwise P ∗πj (k) ≈ Pmax. We propose the
following two-step scheduling and power allocation algorithm:
1) for each SUi set Pi(k) = Pmin if X(k) > Yπj (k) and
Pi(k) = Pmax otherwise; then 2) assign priorities to the SUs
in a descending order of Yi(k)µi(Pi(k)) (the cµ rule). The
complexity of this algorithm is that of sorting N numbers,
namely O(N log(N)). Simulations will show that this causes
little degradation to the average delay.

IV. SIMULATION RESULTS

We simulated a system of N = 5 SUs (Table I lists all
parameter values). SUi’s arrival rate is set to λi = iλ for
some fixed parameter λ. All SUs are having homogeneous
channel conditions except SU5 who has the highest average
interference channel gain. Thus SU5 is statistically the worst
case user. We assume that the SUs’ delay constraints are di =
60T ∀i ≤ 4, and d5 = 45T . Fig. 3 plots the per-user delay W i

using the DOAC policy for two cases; the first is with d5 =
45T while the second is with d5 = 60T , to show the effect
of an active versus an inactive delay constraint. In the active
constrained case, the DOAC policy guarantees that W 5 ≤ d5.
We conclude that the delay constraints in problem (2) can
force the SUs’ delays to take any strictly feasible value.

In Fig. 4 we compare the delay of the DOAC and suboptimal
policies to the Carrier-Sense-Multiple-Access (CSMA) policy
and the Cognitive Network Control (CNC) policy proposed in
[9]. The CSMA assigns the channel equally likely to all users
while allocating the power as the DOAC using a genie-aided
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SU5, d5 = 60T
SU5, d5 = 45T
SU4, d4 = 60T
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SU3, d3 = 60T
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Fig. 3. Average per-SU delay for both the active and inactive delay-constraint
cases. Both cases are simulated using the DOAC policy. SU5 is the user
with the worst channel statistics and the largest arrival rate. The DOAC can
guarantee a bound on W 5.
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Fig. 4. DOAC compared to the CSMA, CNC [9] and the suboptimal algorithm.

knowledge. The CNC is a version of the MaxWeight policy.
The DOAC and the suboptimal policies outperform the CSMA
and the CNC. This is because the proposed policies prioritize
the users based on their delay and interference realizations. On
the other hand, the CSMA allocates the channel to guarantee
fairness of allocation across time and the CNC’s goal is
to maximize the achievable rate region [10]. Moreover, the
suboptimal policy is within 0.3% of the DOAC policy.

V. CONCLUSION

We have studied the joint scheduling and power allocation
problem of an uplink multi SU CR system. We formulated the
problem as a delay minimization problem in the presence of an
average interference constraint to the PU, and an average delay
constraint for each SU. Most of the existing literature that
study this problem either assume on-off fading channels or do
not provide delay guarantees to SUs. We proposed a dynamic

policy that schedules the SUs by dynamically updating a
priority list based on the channel statistics as well as the history
of the arrivals, departures and channel fading realizations.
The proposed policy, referred to as the DOAC policy, updates
the priority list and power allocation through a dynamic
programming on a per-frame basis where a single frame
consists of multiple slots. We showed, through the Lyapunov
optimization, that the DOAC policy is asymptotically delay
optimal. That is, it minimizes the sum of average delays of
the SUs as well as satisfying the average interference and delay
constraints.

Motivated by the exponential complexity of the dynamic
programming, we proposed an alternative suboptimal policy
with complexity O(N log(N)). Through simulations we com-
pared this policy to the DOAC, the CSMA and the CNC [9]
which is a version of the MaxWeight Algorithm. Simulations
show that the difference in rate between the suboptimal and
the DOAC policies is not more than 0.3%. Moreover, both
policies outperform the CSMA and the CNC.
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