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Abstract—An uplink multi secondary user (SU) cognitive
radio system having average delay constraints as well as an
interference constraint to the primary user (PU) is considered.
If the interference channels between the SUs and the PU are
statistically heterogeneous due to the different physical locations
of the different SUs, the SUs will experience different delay
performances. This is because SUs located closer to the PU
transmit with lower power levels. Two dynamic scheduling-and-
power-allocation policies that can provide the required average
delay guarantees to all SUs irrespective of their locations are
proposed. The first policy solves the problem when the inter-
ference constraint is an instantaneous one, while the second is
for problems with long-term average interference constraints.
We show that although the average interference problem is an
extension to the instantaneous interference one, the solution is
totally different. The two policies, derived using the Lyapunov
optimization technique, are shown to be asymptotically delay
optimal while satisfying the delay and interference constraints.
Our findings are supported by extensive system simulations and
shown to outperform existing policies as well as shown to be
robust to channel estimation errors.

Index Terms—Dynamic scheduling algorithm; Lyapunov tech-
nique; statistical delay constraints; uplink multisecondary user
system; Average Interference Constraints; Wireless communica-
tion

I. INTRODUCTION

The problem of scarcity in the radio spectrum has led to
a wide interest in cognitive radio (CR) networks. CRs refer
to devices that coexist with the licensed spectrum owners
called the primary users (PUs). CRs are capable of dynam-
ically adjusting their transmission parameters according to
the environment to avoid harmful interference to the PUs.
CR users adjust their transmission power levels, and their
rates, according to the interference level the PUs can tolerate.
However, this adjustment can be at the expense of quality
of service (QoS) provided to the CR users, if not designed
carefully.

In real-time applications, such as audio and video con-
ference calls, one of the most effective QoS metrics is the
average time a packet spends in the queue before being
fully transmitted, quantified by average queuing delay. This
is because as this amount of queuing delay increases, the
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user receiving the packet will have to wait for the packet
until it is received. This causes intermittent streaming of the
audio and video which is an undesirable feature of these
applications. Hence, the average queuing delay needs to be
as small as possible to prevent jitter and guarantee acceptable
QoS for these applications [2], [3]. Queuing delay has gained
strong attention recently and scheduling algorithms have been
proposed to guarantee small delay in wireless networks (see
e.g., [4] for a survey on scheduling algorithms in wireless
systems). In [5], the authors study joint scheduling-and-power-
allocation to minimize the delay in the presence of an average
power constraint. A power allocation and routing algorithm
is proposed in [6] to maximize the capacity region under an
instantaneous power constraint. In [7] the authors propose a
scheduling algorithm to maximize the cell throughput while
maintaining a level of fairness between the users in the cell.
In a two-queue setup, one with light traffic and one with light
traffic, [8] showed that giving priority to light traffic guarantees
the best tail behavior of the delay distribution for both queues
under on-off wireless channels.

Unfortunately, applying the existing scheduling algorithms
to secondary users (SUs) in CR systems results in undesired
delay performance. This is because SUs located physically
closer to the PUs might suffer from larger delays because
closer SUs transmit with smaller power levels. The SUs should
be scheduled and have their power controlled in such a way
that prevents harmful interference to the PUs since they share
the same spectrum.

The problem of scheduling and/or power control for CR
systems has been widely studied in the literature (see e.g.,
[9]–[16], and the references therein). An uplink CR system
is considered in [9] where the authors propose a scheduling
algorithm that minimizes the interference to the PU where all
users’ locations including the PU’s are known to the secondary
base station. The objective in [13] is to maximize the total
network’s welfare. While this could give good performance in
networks with users having statistically homogeneous chan-
nels, the users might experience degraded QoS when their
channels are heterogeneous. Reference [14] has considered
users with heterogeneous throughput requirements. This model
can be applied best for regular non-real-time applications.
While for real time applications, the secondary users might
suffer high delays even if their throughput was optimum. In
[15] a distributed scheduling algorithm that uses an on-off rate
adaptation scheme is proposed. The authors of [16] propose
a closed-form water-filling-like power allocation policy to
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maximize the CR system’s per-user throughput. The work
in [11] proposes a scheduling algorithm to maximize the
capacity region subject to a collision constraint on the PUs.
The algorithms proposed in all these works aim at optimizing
the throughput for the SUs while protecting the PUs from
interference. However, providing guarantees on the queuing
delay in CR systems was not the goal of these works.

The fading nature of the wireless channel requires adapting
the user’s power and rate according to the channel’s fading
coefficient. Many existing works on scheduling algorithms
consider two-state on-off wireless channels and do not con-
sider multiple fading levels. Among the relevant references
that consider a more general fading channel model are [6]
and [17] which do not include an average interference con-
straint, as well as [18], [19] where the optimization over the
scheduling algorithm was not considered.

From a technical point of view, the closest to our work
is [5] which studies the joint scheduling-and-power-allocation
problem, and assumes that all users process packets with the
same power since it discusses the problem of processing jobs
at a CPU. The CPU problem considered in [5] is a special case
of the wireless channel problem herein. Finally, the problem is
formulated in continuous time in [5] where the packet service
time follows a continuous time distribution that is easier to
analyze than discrete ones. In wireless settings, the fading
coherence time provides a naturally discrete/slotted framework
which brings with it its own combinatorial technical chal-
lenges.
Unlike [20] that studies the effect of heterogeneity among
SUs on the detection of the PU, in this paper, we study
the effect of this heterogeneity on the delay performance of
SUs. We consider the joint scheduling and power control
problem of minimizing the sum average delay of SUs subject
to interference constraints at the PU, for the first time in the
literature. Our model relaxes the equal transmission power
constraint among SUs. Moreover, our algorithm provides
per-user average delay guarantees so that each SU meets
its delay requirements. We consider both instantaneous and
average interference constraints. The technical challenge of
this problem lies in its objective function which is the sum
of average delays. This objective is not a simple function in
the users’ power levels thus making the joint optimization
problem at hand challenging. Moreover, the power allocation
policy needs to protect the PU from interference. The novel
contributions of this paper include: i) proposing two joint-
power-control-and-scheduling policies that are optimal with
respect to the sum of average delays of SUs, a policy for the
problem under instantaneous interference constraint and the
other under average interference constraint; ii) exploiting the
unique structure of the problem to provide an optimal power
allocation algorithm of a lower complexity than exhaustive
search; iii) using Lyapunov analysis to show that the policy
meets the heterogeneous per-user average delay requirements;
iv) proposing an alternative low-complexity suboptimal policy
that is shown to have a near-to-optimal performance with
polynomial complexity in the number of SUs.

The rest of the paper is organized as follows. The network
model and the underlying assumptions are presented in Section
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Fig. 1. The CR system considered is an uplink one with N SUs (in this
figure N = 2) communicating with their BS. There exists an interference
link between each SU and the existing PU. The PU is assumed to be using
the channel continuously.

II. In Section III we formulate the problem mathematically
for both the instantaneous as well as the average interference
constraints. The proposed policies for both scenarios, their
optimality and complexity are presented in Section IV as well
as an alternative suboptimal policy. Section V presents our
extensive simulation results. The paper is concluded in Section
VI.

In this manuscript, we use bold to indicate vectors X, and
calligraphic font to indicate sets X . All logarithms are to
the natural base e. We use x+ to indicate max(x, 0), x∗ to
indicate the optimum power of x, |X | for the cardinality of
the set X , E [·] to indicate the expected value and EX [·] for
the expectation conditioned on the random vector X.

II. SYSTEM MODEL

We assume a CR system consisting of a single secondary
base station (BS) serving N secondary users (SUs) indexed by
the set N , {1, · · ·N} (Fig. 1). We are considering the uplink
phase where each SU has its own queue buffer for packets that
need to be sent to the BS. The SUs share a single frequency
channel with a single PU that has licensed access to this
channel. The CR system operates in an underlay fashion where
the PU is using the channel continuously at all times. SUs
are allowed to transmit as long as they do not cause harmful
interference to the PU. In this work, we consider two different
scenarios where the interference can be considered as harmful.
The first is an instantaneous interference constraint where the
interference received by the PU at any given slot should not
exceed a prespecified threshold Iinst, while the second is an
average interference constraint where the interference received
by the PU averaged over a large duration of time should not
exceed a prespecified threshold Iavg. Moreover, in order for
the secondary BS to be able to decode the received signal, no
more than one SU at a time slot is to be assigned the channel
for transmission.

A. Channel and Interference Model

We assume a time slotted structure where each slot is of
duration T seconds, and equal to the coherence time of the
channel. The channel between SUi and the BS is block fading,
that is, the instantaneous power gain γ(t)i , at time slot t, is fixed
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within the time slot and changes independently in the follow-
ing time slot. We assume that γ(t)i follows the probability mass
function fγi(γ) with mean γi and independent and identically
distributed (i.i.d.) across time slots, and γmax is the maximum
gain that γ(t)i could take. The channel gain is also independent
across SUs but not necessary identically distributed allowing
heterogeneity among users. SUs use a rate adaptation scheme
based on the channel gain γ(t)i . The transmission rate of SUi

at time slot t is

R
(t)
i = T log

(
1 + P

(t)
i γ

(t)
i

)
bits, (1)

where P (t)
i is the power by which SUi transmits its bits at slot

t. We assume that there exists a finite maximum rate Rmax that
the SU cannot exceed. This rate is dictated by the maximum
power Pmax and the maximum channel gain γmax.

The PU experiences interference from the SUs through
the channel between each SU and the PU. The interference
channel between SUi and the PU, at slot t, has a power gain
g
(t)
i following the probability mass function fgi(g) with mean
gi, and having gmax as the maximum value that g(t)i could take.
These power gains are assumed to be independent among SUs
but not identically distributed. We assume that SUi knows the
value of γ(t)i as well as g(t)i , at the beginning of slot t through
some channel estimation phase [21]. The channel estimation to
acquire g(t)i can be done by overhearing the pilots transmitted
by the primary receiver, when it is acting as a transmitter, to its
intended transmitter [21, Section VI]. The channel estimation
phase is out of the scope of this work, however the effect of
channel estimation errors will be discussed in Section V.

B. Queuing Model

1) Arrival Process: We assume that packets arrive to the
SUi’s buffer at the beginning of each slot. The number of
packets arriving to SUi’s buffer follows a Bernoulli process
with a fixed parameter λi packets per time slot. Following
the literature, packets are buffered in infinite-sized buffers
[22, pp. 163] and are served according to the first-come-first-
serve discipline. Each packet has a fixed length of L bits
that is constant for all users. We note that the analysis of
the random L case [22] would not be significantly different
than the deterministic case, thus we discuss the fixed case for
a better presentation of the paper. In this paper, we study the
case where L � Rmax which is a typical case for packets
with large sizes as video packets [23]. Due to the randomness
in the channels, each packet takes a random number of time
slots to be transmitted to the BS. This depends on the rate of
transmission R(t)

i as will be explained next.
2) Service Process: When SUi is scheduled for transmis-

sion at slot t, it transmits M (t)
i bits of the head-of-line (HOL)

packet of its queue. The remaining bits of this HOL packet
remain in the HOL of SUi’s queue until it is reassigned the
channel in subsequent time slots. The values M (t)

i and Lrem
i (t)

are given by

M
(t)
i , min

(
R

(t)
i , Lrem

i (t)
)

bits, and (2)

Lrem
i (t+ 1) , Lrem

i (t)−M (t)
i , (3)

respectively, where Lrem
i (t) is the remaining number of bits of

the HOL packet at SUi at the beginning of slot t. Lrem
i (t) is

initialized by L whenever a packet joins the HOL position of
SUi’s queue so that it always satisfies 0 ≤ Lrem

i (t) ≤ L, ∀t.
A packet is not considered transmitted unless all its L bits are
transmitted, i.e. unless Lrem

i (t) becomes zero, at which point
SUi’s queue decreases by 1 packet. At the beginning of slot
t+1 the following packet in the buffer, if any, becomes SUi’s
HOL packet and Lrem

i (t+1) is reset back to L bits. The SUi’s
queue evolves as follows

Q
(t+1)
i =

(
Q

(t)
i + |A(t)

i | − S
(t)
i

)+
, (4)

where A(t)
i is the set carrying the index of the packet, if any,

arriving to SUi at slot t, thus |A(t)
i | is either 0 or 1 since at

most one packet per slot can arrive to SUi; the packet service
indicator S(t)

i = 1 if Lrem
i (t) becomes zero at slot t.

The service time si of SUi is the number of time slots
required to transmit one packet for SUi, excluding the service
interruptions. Using the assumption L � Rmax to approxi-
mate (2) with M (t)

i = R
(t)
i , it can be shown that the average

service time E [si] = L/E
[
R

(t)
i

]
time slots per packet where

the expectation is taken over the channel gain γ(t)i as well as
over the power P (t)

i when it is channel dependent and random.
One example of a random power policy is the channel inver-
sion policy as will be discussed later (see (17)). The service
time is assumed to follow a general distribution throughout
the paper that depends on the distribution of P (t)

i γ
(t)
i .

We define the delay W (j)
i of a packet j as the total amount

of time, in time slots, packet j spends in SUi’s buffer from
the slot it joined the queue until the slot when its last bit
is transmitted. The time-average delay experienced by SUi’s
packets is given by [5]

C. Transmission Process

At the beginning of each time slot t, the BS schedules a SU
and broadcasts its index i∗ and its power P (t)

i∗ to all SUs on
a common control channel. SUi∗ , in turn, begins transmission
of M (t)

i∗ bits of its HOL packet with a constant power P (t)
i∗ .

We assume the BS receives these bits error-free by the end
of slot t then a new time slot t + 1 starts. In this paper, our
main goal is the selection of the SUi∗ which is a scheduling
problem, as well as the choice of the power P (t)

i∗ which is
power allocation. We now elaborate further on this problem.

III. PROBLEM STATEMENT

Each SUi has an average delay constraint W i ≤ di
that needs to be satisfied. Moreover, there are two types of
interference constraints that the SU needs to meet in order to
coexist with the PU. Before discussing both types and stating
the problem associated with each one, we first give some
definitions.

A. Frame-Based Policy

In this work, we are interested in frame-based scheduling
policies. The idea of dividing time into frames and assigning
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Fig. 2. Time is divided into frames. Frame k has Tk , |F(k)| slots, each
is of duration T seconds. Different frames can have different number of time
slots.

fixed scheduling and power allocation policy for each frame
was also used in [5]. We divide time into frames where frame
k consists of a random number Tk time slots and update
the power allocation and scheduling at the beginning of each
frame. Where each frame begins and ends is specified by idle
periods and will be precisely defined later in this section.
During frame k, SUs are scheduled according to some priority
list π(k) and each SU is assigned some power to be used
when it is assigned the channel. The priority list and the power
functions are fixed during the entire frame k.

Define π(k) , [π1(k), · · · , πN (k)]T where πj(k) is the
index of the SU who is given the jth priority during frame k.
Given π(k), the scheduler becomes a priority scheduler with
preemptive-resume priority queuing discipline [22, pp. 205].

Frame k consists of Tk , |F(k)| consecutive time-slots,
where F(k) is the set containing the indices of the time slots
belonging to frame k (see Fig. 2). Each frame consists of
exactly one idle period followed by exactly one busy period,
both are defined next.

Definition 1. An idle period is the time interval formed by the
consecutive time slots where all SUs have empty buffers. An
idle period starts with the time slot t1 following the completion
of transmission of the last packet in the system, and ends with
a time slot t2 when one or more of the SUs’ buffer receives one
a new packet to be transmitted (see Fig. 2). In other words,
t1 satisfies

∑
i∈N Q

(t1)
i = 0 and

∑
i∈N Q

(t1−1)
i 6= 0, while t2

satisfies
∑t2−1
t=t1

∑
i∈N Q

(t)
i = 0 and

∑
i∈N Q

(t2)
i 6= 0.

Definition 2. Busy period is the time interval between two
consecutive idle periods.

The duration of the idle period I(k) and busy period B(k)
of frame k are random variables, thus Tk = I(k) + B(k) is
random as well. Since frames do not overlap, if t ∈ F(k1)
then t /∈ F(k2) as long as k1 6= k2. We can write an equation
for the average delay as

W i , lim
K→∞

E
[∑K

k=0

(∑
j∈Ai(k)

W
(j)
i

)]
E
[∑K

k=0 |Ai(k)|
] (5)

where Ai(k) , ∪t∈F(k)A
(t)
i is the set of all packets that arrive

at SUi’s buffer during frame k. We note that the long-term
average delay W i in (5) depends on the chosen priority lists
as well as the power allocation policy, in all frames k ≥ 0.

B. Problem Statement

We are interested to find the optimum scheduling-and-
power-allocation policy that minimizes the sum of SUs’ av-
erage delays subject to per-SU delay constraint as well as
some interference constraints. In this paper, we consider two
kinds of interference constraints: 1) instantaneous interference
constraint; 2) average interference constraint. Since time-slot-
based policies that update the scheduling and power-allocation
each time-slot suffer from curse of dimensionality [5], we
restrict our problem to frame-based scheduling policies as
well as frame-based power allocation policies. The former is
represented by the priority list π(k) discussed earlier. On the
other hand, the latter is defined in the following definition.

Definition 3. A power allocation policy is said to be a frame-
based power allocation policy if, at each time slot t ∈ F(k)

the scheduled user transmits with power P (t)
i on the form

P
(t)
i = min

(
Iinst

g
(t)
i

, Pi(k)

)
, (6)

where Pi(k) is some constant that is fixed ∀t ∈ F(k). We refer
to Pi(k) as the power parameter of SUi.

In future sections, we will show that restricting the power
allocation policy to the frame-based power allocation policy
does not result in loss of optimality.

Consider the following constraints

W i ≤ di ,∀i ∈ N (7)

Pmin ≤ P (t)
i ≤ Pmax ,∀i ∈ N and ∀t ≥ 1,

(8)
N∑
i=1

P
(t)
i g

(t)
i ≤ Iinst ,∀t ≥ 1, (9)

N∑
i=1

1
(
P

(t)
i

)
≤ 1 ,∀t ≥ 1, (10)

I , lim
T→∞

N∑
i=1

1

T

T∑
t=1

P
(t)
i g

(t)
i ≤ Iavg, (11)

where I denotes the long-term average interference received
by the PU while 1(x) , 1 if x 6= 0 and 0 otherwise.
Constraint (7) is the average delay constraint for SUi, (8)
is the maximum power constraint due to the limitations of
SUi’s transmitter as well as the minimum power constraint
that results in finite delays for all SUs (Pmin is some constant
that will be defined later), (9) is the instantaneous interference
constraint for the PU, (10) indicates that no more than a single
SU is to be transmitting at slot t, while the last constraint
(11) is to protect the PU from average interference. The two
optimization problems that we solve in this paper are

minimize
{π(k)},{P(k)}

N∑
i=1

W i (12)

subject to constraints (7), (8), (9) and (10)
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and

minimize
{π(k)},{P(k)}

N∑
i=1

W i (13)

subject to constraints (7), (8), (9), (10) and (11).

We refer to problem (12) as the instantaneous interference
constraint problem, while to (13) as the average interference
constraint problem. In the next section we solve these two
problems and show that their solutions are different.

IV. PROPOSED POWER ALLOCATION AND SCHEDULING
ALGORITHM

We solve problems (12) and (13) by proposing online joint
scheduling and power allocation policies that dynamically
update the scheduling and the power allocation. We show that
these policies have performances that come arbitrarily close to
being optimal. That is, we can achieve a sum of the average
delays arbitrarily close to its optimal value depending on some
control parameter V .

We first discuss the idea behind our policies. Then we
present the proposed policy for each problem, (12) and (13),
separately.

A. Satisfying Delay Constraints

In order to guarantee a feasible solution satisfying the delay
constraints in problems (12) and (13), we set up a “virtual
queue” associated with each delay constraint W i ≤ di. The
virtual queue will be used in both problems (12) and (13). The
virtual queue for SUi at frame k is given by

Yi(k + 1) ,

Yi(k) +
∑

j∈Ai(k)

(
W

(j)
i − ri(k)

)+

(14)

where ri(k) ∈ [0, di] is an auxiliary random variable, that is
to be optimized over and Yi(0) , 0, ∀i. We define Y(k) ,
[Y1(k), · · · , YN (k)]T . Equation (14) is calculated at the end
of frame k− 1 and represents the amount of delay exceeding
the delay bound di for SUi up to the beginning of frame k.
We use the definition of mean rate stability as in [5] to state
the following lemma.

Lemma 1. If {Yi(k)}∞k=0 is mean rate stable, then the time-
average delay of SUi satisfies W i ≤ di.

Proof. Following similar steps as in Lemma 3 in [5], we can
show that

E
[∑K−1

k=0

(∑
j∈Ai(k)

W
(j)
i

)]
E
[∑K−1

k=0 |Ai(k)|
] ≤

E [Yi(K)]

K

K

E
[∑K−1

k=0 |Ai(k)|
] +

∑K−1
k=0 E [|Ai(k)|ri(k)]∑K−1
k=0 E [|Ai(k)|]

.

(15)

Replacing ri(k) by its upper bound di, taking the limit as
K →∞ then using the mean rate stability definition and (5)
completes the proof.

Lemma 1 provides a condition on the virtual queue
{Yi(k)}∞k=0 so that SUi’s average delay constraint W i ≤ di in
(7) is satisfied. That is, if the proposed joint power allocation
and scheduling policy results in a mean rate stable {Yi(k)}∞k=0,
then W i ≤ di. For both problems, the proposed policy depends
on the Lyapunov optimization where the goal is to choose the
joint scheduling and power allocation policy that minimizes
the drift-plus-penalty. In Section IV-B (Section IV-C) we will
show that if problem (12) (problem (13)) is feasible, then the
proposed policy guarantees mean rate stability for the queues
{Yi(k)}∞k=0.

B. Algorithm for Instantaneous Interference Constraint Prob-
lem

We now propose the Delay Optimal with Instantaneous
Interference Constraint (DOIC) policy that solves problem
(12). This policy is executed at the beginning of each frame k
for finding P(t) as well as the optimum list π(k), given some
prespecified control parameter V . Define the random variable
Ri(P ) as (not to be confused with R(t)

i in (1))

Ri(P ) , T log

(
1 + min

(
Iinst

g
(t)
i

, P

)
γ
(t)
i

)
, (16)

where P is some fixed constant argument and define µi(P ) ,
E [Ri(P )] /L where the expectation is taken over g(t)i and γ(t)i .
We now present the DOIC policy, its optimality and then the
intuition behind it.
DOIC Policy (executed at the beginning of frame k):

1) The BS sorts the SUs according to the descending order
of Yi(k)µi(Pmax). The sorted list is denoted by π(k).

2) At the beginning of each slot t ∈ F(k) the BS schedules
SUi∗ that has the highest priority in the list π(k) among
those having non-empty buffers.

3) SUi∗ , in turn, transmits M (t)
i∗ packets as dictated by (2)

where P (t)
i = 0 ∀i 6= i∗ while P (t)

i∗ is calculated as

P
(t)
i∗ = min

(
Iinst

g
(t)
i∗

, Pmax

)
, (17)

4) At the end of frame k, for all i ∈ N the BS updates:
a) ri(k) = di if V < Yi(k)λi, and ri(k) = 0 otherwise,

and then
b) Yi(k + 1) via (14).

Before we discuss the optimality of the DOIC in Theorem 1,
we define the following quantities. Let a , 1−ΠN

i=1 (1− λi)
denote the probability of receiving a packet from a user or
more at a given time slot, while CY ,

∑N
i=1 CYi

with
CYi

,
√
E [A4]E [B4]+d2i E

[
A2
]
, where E

[
A2
]

and E
[
A4
]

are bounds on the second and fourth moments of the total
number of arrivals

∑
i |Ai(k)| during frame k, respectively,

while E
[
B4
]

is a bound on the fourth moment of the busy
period B(k). The finiteness of these moments can be shown to
hold if the first four moments of the service time are finite. In
Appendix B we show that all the service time moments exist
given any distribution for P (t)

i γ
(t)
i . We omit the derivation of

these bounds due to lack of space.



6

Theorem 1. If problem (12) is strictly feasible, then the
proposed DOIC policy results in a time average of the SUs’
delays satisfying the following inequality

N∑
i=1

W i ≤
aCY
V

+

N∑
i=1

W
∗
i , (18)

where W
∗
i is the optimum value of the delay when solving

problem (12), while a and CY are as given above. Moreover,
the virtual queues {Yi(k)}∞k=0 are mean rate stable ∀i ∈ N .

Proof. See Appendix A.

Theorem 1 says that the objective function of problem (12)
is upper bounded by the optimum value

∑
iW
∗
i plus some

constant gap that vanishes as V → ∞. Having a vanishing
gap means that the DOIC policy is asymptotically optimal.
Moreover, based on the mean rate stability of the queues
{Yi(k)}∞k=0, the set of delay constraints of problem (12) is
satisfied.

The intuition behind the DOIC policy comes from the
proof of Theorem 1. In the proof, we follow the Lyapunov
optimization technique to obtain an expression for the drift-
plus-penalty then upper bound this expression (see (31)). The
DOIC policy becomes the one that minimizes this upper bound
or, simply, minimizing Φ which is given by

ΦI ,
N∑
i=1

(V − Yi(k)λi) ri(k)+

N∑
j=1

Yπj
(k)λπj

EU(k)

[
W (j)
πj

]
.

(19)
Minimizing the first summation in ΦI minimizes objective
function in (12), while minimizing the second summation
guarantees that the solution is feasible. We observe that the
first term in (19) can be minimized independent of the second
term. Step 4.a in the DOIC policy minimizes the first term
in (19) while, using the cµ rule [24], the second term is
minimized in Step 1.

In the DOIC policy, the drawback of setting V very large is
that the time needed for the algorithm to converge increases.
This increase is linear in V [25]. That is, if the number of
frames required for the quantity

∑
i Yi(k)/(Nk) to be less

than ε (for some ε > 0) is O(K1), then increasing V to
βV will require O(βK1) frames for it to be less than ε,
for any β > 1. We note that the complexity of the DOIC
policy is O(N) because calculating µi(Pmax) is of O(1), while
the power is closed-form in (17). We note that if problem
(12) is not feasible, then this is because one of two reasons;
either one or more of the constraints is stringent, or otherwise
because

∑N
i=1 λi/µi(Pmax) ≥ 1. If it is the former, then

the DOIC policy will result in a point that is as close as
possible to the feasible region. On the other hand, if it is
the latter, then we could add an admission controller that
limits the average number of packets arriving at buffer i to
λi(1− ε)/

(∑N
i=1 λi/µi(Pmax)

)
for some ε > 0.

C. Algorithm for Average Interference Constraint Problem

We now propose the Delay-Optimal-with-Average-
Interference-Constraint DOAC policy for problem (13). We

first give the following useful definitions. Since the scheduling
scheme in frame k is a priority scheduling scheme with
preemptive-resume queuing discipline, then given the priority
list π we can write the expected waiting time of all SUs in
terms of the average residual time [22, pp. 206] defined as
TR
πj

,
∑j
l=1 λπl

E
[
s2πl

]
/2, where the expectation is taken

over P (t)
πl γ

(t)
πl . The waiting time of SU πj that is given the

jth priority is [22, pp. 206]

Wπj

(
P, µπj

(P ), ρπj
(P ), ρπj−1

, TR
πj

)
,

1(
1− ρπj−1

)
 1

µπj
(P )

+
TR
πj(

1− ρπj−1
− ρπj

(P )
)
 (20)

where ρi(P ) , λi/µi(P ) and ρπj−1
,
∑j−1
l=1 ρπl

(Pπl
).

Moreover, we define

W up
πj

(
P, ρπj

(P ), ρmax
πj−1

, TR
πj

)
,

1(
1− ρmax

πj−1

)
 1

µπj
(P )

+
TR
πj(

1− ρmax
πj−1
− ρπj

(P )
)
 (21)

where ρmax
i is some upper bound on ρi that will be defined

later. We henceforth drop all the arguments of W up
πj

(P, ρmax
πj−1

)
except P and ρmax

πj−1
and all those of Wπj

(P ) except P .
To track the average interference at the PU up to the end of

frame k we set up the following virtual queue that is associated
with the average interference constraint in problem (13) and
is calculated at the BS at the end of frame k.

X(k + 1) ,

X(k) +

N∑
i=1

∑
t∈F(k)

P
(t)
i g

(t)
i − IavgTk

+

,

(22)
where the term

∑N
i=1

∑
t∈F(k) P

(t)
i g

(t)
i represents the aggre-

gate amount of interference energy received by the PU due
to the transmission of the SUs during frame k. Hence, this
virtual queue is a measure of how much the SUs have exceeded
the interference constraint above the level Iavg that the PU
can tolerate. Lemma 2 provides a sufficient condition for the
interference constraint of problem (13) to be satisfied.

Lemma 2. If {X(k)}∞k=0 is mean rate stable, then the time-
average interference received by the PU satisfies I ≤ Iavg.

Proof. The proof is similar to that of Lemma 1 and is omitted
for brevity.

Lemma 2 says that if the power allocation and scheduling
algorithm results in mean rate stable {X(k)}∞k=0, then the
interference constraint of problem (13) is satisfied.

Before presenting the DOAC policy, we first discuss the
idea behind it. Intuitively, a policy that solves problem (13)
should allocate SUi’s power and assign its priority such
that SUi’s expected delay and the expected interference to
the PU is minimized. The DOAC policy is defined as the
policy that selects the power parameter vector P(k) ,
[P1(k), · · · , PN (k)]T jointly with the priority list π(k) that
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minimizes Ψ ,
∑N
j=1 ψπj

(Pπj
(k), ρmax

πj−1
) where

ψπj
(P, ρmax

πj−1
) , ψD

πj
(P, ρmax

πj−1
) + ψI

πj
(P ), (23)

with ψD
πj

(P, ρmax
πj−1

) , Yπj
(k)λπj

W up
πj

(P, ρmax
πj−1

) while
ψI
πj

(P ) , X(k)ρπj
(P )P ḡπj

. The function ψD
πj

(P, ρmax
πj−1

)

(and ψI
πj

(P )) represents the amount of delay (interference)
that SU πj is expected to experience (to cause to the PU)
during frame k.

The brute search of P(k) and π(k) that minimizes Ψ is ex-
ponentially high. To minimize Ψ in a computationally efficient
way, we need the functions ψπj

(Pπj
(k), ρmax

πj−1
) to become

decoupled for all j ∈ N . That is, we want ψπj
(Pπj

(k), ρmax
πj−1

)
not to depend on Pπl

(k) as long as l 6= j. Hence, we set the
function ρmax

πj−1
to some function that does not depend on the

optimization power variables Pπl
(k) for all l ≤ j − 1 but

otherwise on some other fixed parameters. We need to choose
these parameters such that the bound

ρmax
πj−1

≥ ρπj−1
,

j−1∑
l=1

ρπl
(Pπl

) (24)

is satisfied. Thus, these functions, are given by

ρmax
πj−1

,
j−1∑
l=1

ρπl

(
P ρ

max

πl

)
, (25)

where
P ρ

max

πl
, arg min

P
ψπl

(
P, ρmax

πl−1

)
. (26)

With ρmax
πj−1

given by (25), ψπj
(Pπj

(k), ρmax
πj−1

) is a function in
Pπj (k) only. Before we show that the choice of (25) and (26)
guarantees that (24) is satisfied, we note that (25) dictates
that in order to find ρmax

πj−1
we need to find P ρ

max

πl
for all

l < j − 1. Hence, we find P ρ
max

πj
recursively starting from

j = 1 at which ρmax
π0

= 0 by definition. It is shown in [26,
Lemma 5, pp. 55] that ρmax

πj
is an upper bound on ρπj

. ρmax
πj

has an advantage over ρπj
(and hence ψπj

(
Pπj , ρ

max
πj−1

)
over

ψπj

(
Pπj

, ρπj−1

)
) which is that it is not a function in Pπl

for
l 6= j. This decouples the power search optimization problem
to N one-dimensional searches.

After reducing the search complexity of the power vector,
we reduce the search complexity of the priority list from N ! to
2N . To do this, we use the dynamic programming illustrated in
Algorithm 1 that solves minπ(k),P(k) Ψ. Its search complexity
is of O(MN2N ) where M is the number of iterations in
a one-dimensional search, while O(1) is the complexity of
calculating Ψ for a given priority list π(k) and a given power
vector P(k). Compared to the complexity of O(MN · N !)
which is that of the N -dimensional power search along with
the brute-force of all N ! permutations of priority list π(k), this
is a large complexity reduction. However, the O(MN2N ) is
still high if N was large. Finding an optimal algorithm with
a lower complexity is extremely difficult since the scheduling
and power control problem are coupled. In other words, in
order to find the optimum scheduler we need to know the
optimum power vector and vice versa. In Section IV-D we
propose a sub-optimal policy with a very low complexity and

Algorithm 1 DOAC-Pow-Alloc: Optimization-problem-
solution algorithm called by the DOAC policy at the
beginning of frame k to solve for P∗(k) as well as π∗(k).

1: Define S as the set of all sets formed of all subsets of N
and define the auxiliary functions

Ψ̃(·, ·) : N × S → R+

ρ̃(·) : S → [0, 1],

S̃(X ) : S → N |X |,
P̃πj (X ) : S → [0, Pmax]|X |,

P (·, ·) : S ×N → [0, Pmax].

2: Initialize Ψ̃(0, ·) = 0, ρ̃(φ) = 0, S̃(φ) = [ ] and P̃πj
(φ) =

[ ], where φ is the empty set.
3: for i = 1, · · · , N do
4: In stage i, the first i priorities have been assigned

to i users. The corresponding priority list is denoted
[π1, · · · , πi]. In stage i we have

(
N
i

)
states each cor-

responds to a set j formed from all possible com-
binations of i elements chosen from the set N . We
calculate Ψ̃(i, j) associated with each state j in terms
of Ψ̃(i− 1, ·) obtained in stage i− 1 as follows.

5: for j ∈ all possible i-element sets do
6: At state j , {π1, · · · , πi}, we have i transitions,

each connects it to state j′ in stage i − 1, where
j′ , j\l with l ∈ j. Find the power associ-
ated with each transition l ∈ j denoted P (j, l) ,
arg minP ψl(P, ρ̃(j\l)).

7: Set

l∗ = arg min
l∈j

Ψ̃ (i− 1, j\l) + ψl
(
P (j, l), ρ̃(j\l)

)
,

Ψ̃(i, j) = Ψ̃(i− 1, j\l∗) + ψl∗
(
P (j, l∗), ρ̃(j\l∗)

)
,

ρ̃(j) = ρ̃ (j\l∗) + ρ
(
P (j, l∗)

)
,

S̃(j) =
[
S̃ (j\l∗) , l∗

]T
,

P̃πj (j) =
[
P̃πj (j\l∗) , P (j, l∗)

]T
.

8: end for
9: end for

10: Set π∗(k) = S̃ (N ) and P∗(k) = P̃πj
(N ).

little degradation in the delay performance. We now present
the DOAC policy that the BS executes at the beginning of
frame k.

DOAC Policy (executed at the beginning of frame k):

1) The BS executes DOAC-Pow-Alloc in Algorithm 1 to
find the optimum power parameter vector P∗(k) ,
[P ∗1 (k), · · · , P ∗N (k)]T as well as the optimum priority list
π∗(k) , [π∗1(k), · · · , π∗N (k)]T that will be used during
frame k.

2) The BS broadcasts the vector P∗(k) to the SUs.
3) At the beginning of each slot t ∈ F(k), the BS schedules

SUi∗(t) that has the highest priority in the list π∗(k)
among those having non-empty buffers.

4) SUi∗(t) , in turn, transmits M (t)

i∗(t)
bits as dictated by (2)
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where P (t)
i = 0 for all i 6= i∗(t) while P (t)

i∗(t)
is given by

(6).
5) At the end of frame k, for all i ∈ N the BS updates:

a) ri(k) = di if V < Yi(k)λi, and ri(k) = 0 otherwise.
b) X(k + 1) via (22).
c) Yi(k + 1) via (14), ∀i ∈ N .

Define CX ,
(
(1− a)(2 + a) + E

[
B2
]

+ 2E [B] (a− a2)
)
×(

P 2
maxg

2
max + I2avg

)
/a2 and C , CY + CX where E [B] is a

bound on the mean of B(k). It can be shown that E [B] and
E
[
B2
]

are finite since the first two moments of the service
time are finite (see Appendix B). Thus, CX is finite. Next, we
state Theorem 2 that discusses the optimality of the DOAC
policy.

Theorem 2. If (13) is strictly feasible and the BS executes
the DOAC policy, the time average of the SUs’ delays satisfy
the following inequality in the light traffic regime

N∑
i=1

W i ≤
aC

V
+

N∑
i=1

W
∗
i , (27)

where W
∗
i is the optimum value of the delay when solving

problem (13). Moreover, the virtual queues {X(k)}∞k=0 and
{Yi(k)}∞k=0 are mean rate stable ∀i ∈ N .

Proof. See Appendix C.

Similar to Theorem 1, Theorem 2 says that the interference
and delay constraints of problem (13) are satisfied since
the virtual queues {X(k)}∞k=0 and {Yi(k)}∞k=0 are mean
rate stable. Hence, the performance of the DOAC policy is
asymptotically optimal.

The intuition behind the DOAC policy is similar to that
behind the DOIC policy with some differences stated here.
When upper bounding the drift-plus-penalty term, we obtain
the expression

∑N
i=1 (V − Yi(k)λi) ri(k) + Ψ where Ψ is

defined before (23). Minimizing the first term in this bound is
carried out in Step 5.a of the DOAC policy. On the other hand,
minimizing Ψ is carried out using the dynamic programming
in Algorithm 1. The dynamic programing finds the optimum
values of the two vectors π(k) and P(k) in an efficient
way of complexity O(NM2N ) without having to calculate
the objective function Ψ for the whole sample space of size
N !×MN . The reason we were able to use this algorithm is
because we were able to find an upper bound W up

πj
that does

not depend on the vector π(k), a property that is necessary
for the dynamic programming and that is absent in Wπj .

D. Near-Optimal Low Complexity Algorithm for Average In-
terference Constraint Problem

As seen in the DOAC policy, the complexity of finding the
optimal power vector and priority list can be high when the
number of SUs N is large. This is mainly due to the large
complexity of Algorithm 1. In this subsection we propose a
suboptimal solution with an extreme reduction in complexity
and with little degradation in the performance. This solution
solves for the power allocation and scheduling algorithm, thus
it replaces the Algorithm 1.

The challenges in Algorithm 1 are three-fold. First finding
the priority list (scheduling problem) requires the search over
N ! possibilities. Second, even with a genie-aided knowledge of
the optimum list, we still have to carry-out N one-dimensional
searches to find P∗(k) (power control problem). Third, the
scheduling and power control problems are coupled. We tackle
the latter two challenges first, by finding a low-complexity
power allocation policy that is independent of the scheduling
algorithm. Then we use the cµ rule [24] to find the priority
list. The cµ rule is a policy that gives the priority list that
minimizes the quantity

∑N
i=1 Yi(k)λiWi(Pi(k)), given some

power allocation vector P(k).
For each priority list π Algorithm 1 minimizes ψπj (P ) ,

ψD
πj

(P ) + ψI
πj

(P ) for each SUi. Define Pmin to be the mini-
mum power that satisfies

∑N
j=1 ρπj

(Pmin) < 1. Intuitively, if,
for some πj ∈ N , X(k)� Yπj

(k) then P ∗πj
(k) is expected to

be close to Pmin since the interference term ψI
πj

(P ) dominates
over ψD

πj
(P ) in the πj th term of the summation in (23). On

the other hand, if X(k) � Yπj (k) then P ∗πj
(k) ≈ Pmax.

We propose the following power allocation policy for SUπj

∀πj ∈ N

P̂πj
(k) =

{
Pmin if X(k) > Yπj

(k)
Pmax otherwise. (28)

We can see that the power allocation policy in (28) does not
depend on the position of SUi in the priority list as opposed to
Algorithm 1 which requires the knowledge of SUπj

’s priority
position. In other words, P̂πj

(k) is a function of πj but it is
not a function of j. Before proposing the scheduling policy,
we note the following two properties based on the knowledge
of the power P∗(k). First, when X(k) = 0, the solution to
the minimization problem minπ Ψ is given by the cµ rule
[24] that sorts the SUs according to the descending order of
Yπj

(k)µπj
(P̂πj

(k)). Second, when Yπj
(k) = 0 ∀πj ∈ N , any

sorting order would not affect the objective function Ψ.
The two-step scheduling and power allocation algorithm that

we propose is 1) allocate the power vector P(k) according to
(28), then 2) assign priorities to the SUs in a descending order
of Yπj

(k)µπj
(P̂πj

(k)) (the cµ rule). The complexity of this
algorithm is that of sorting N numbers, namely O(N log(N)).
This is a very low complexity if compared to that of the DOAC
policy of O(MN ·N !). In Section V we will demonstrate that
this huge reduction of complexity causes little degradation to
the delay performance.

V. SIMULATION RESULTS

We simulated a system of N = 5 SUs. Unless otherwise
specified, Table I lists all parameter values for both scenarios;
the instantaneous as well as the average interference constraint.
SUi’s arrival rate is set to λi = iλ for some fixed parameter λ.
All SUs are having homogeneous channel conditions except
SU5 who has the highest average interference channel gain.
Thus SU5 is statistically the worst case user. We assume that
the SUs’ delay constraints are di = 60 ∀i ≤ 4, and d5 = 45. In
practice, T is around 1ms. We have chosen the values of di to
provide stringent QoS guarantees based on the 150ms average
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TABLE I
SIMULATION PARAMETER VALUES

Parameter Value Parameter Value
(d1, · · · d4, d5) (60, · · · , 60, 45)T γi 1

γmax 10γi Iinst 20
gmax 10gi Pmax 100
fγi(γ) exp (−γ/γi)/γi α 0.1
fgi(g) exp (−g/gi)/gi ε 0.1
L 1000 bits/packet V 100

(g1, · · · g4, g5) (0.1, · · · , 0.1, 0.4) Iavg 5

delay value for video packets recommended by CISCO (see
[27]).

A. Per-user Performance

We first consider problem (13) since it is more general. Fig.
3 plots average per-SU delay W i, from (5), versus λ assuming
perfect knowledge of the direct and interference channel state
information (CSI), namely γ

(t)
i and g

(t)
i . The plot is for the

DOAC policy for two cases; the first being the constrained
case where d5 = 45T , while the second is the unconstrained
case where d5 = 60T . We call it the unconstrained problem
because the average delay of all SUs is strictly below 45T , thus
all delay constraints are inactive. We choose to compare these
two cases to show the effect of an active versus an inactive
delay constraint. From Fig. 3 we can see that SU5 has the
worst average delay. However, for the constrained case, the
DOAC policy has forced W 5 to be smaller than 45T for all
λ values. This comes at the cost of another user’s delay. We
conclude that the delay constraints in problem (12) can force
the delay vector of the SUs to take any value as long as it is
strictly feasible.

B. Total System’s Delay Performance

In Fig. 4, we compare the aggregate delay performance
of seven different schemes following the parameters in Table
I unless otherwise specified; 1) Cognitive Network Control
policy proposed in [11] which is a version of the MaxWeight
scheduling; 2) Carrier-Sense-Multiple-Access (CSMA) that
assigns the channel equally likely to all users while allocating
the same power as the DOAC policy (genie-aided power allo-
cation), 3) DOAC in the presence of channel state information
(CSI) errors; 4) Suboptimal policy proposed in Section IV-D,
5) The constrained DOAC case (or simply the DOAC), 6) The
DOIC policy that neglects the average interference constraint;
and 7) The Unconstrained DOAC case having d5 = 60T . In the
presence of CSI errors, we assumed that each SU has an error
of α = 10% in estimating each of γ(t)i and g(t)i . The actual and
observed values of γ(t)i and g(t)i are related by γ(t)i =

γobs
i (t)

1+α/2

and g
(t)
i =

gobs
i (t)

1−α/2 , respectively. In order to avoid outage we

substitute by γ
(t)
i in (1) while to guarantee protection to the

PU from interference, we substitute g(t)i in (6) for the DOAC
policy.

In Fig. 4 the relative delay gap between the perfect and
imperfect CSI is around 5% and 9% at light and high traffic,
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Fig. 3. Average per-SU delay for both the constrained and unconstrained
cases. Both cases are simulated using the DOAC policy. SU5 is the user
with the worst channel statistics and the largest arrival rate. The DOAC can
guarantee a bound on W 5.

respectively. The performance of this error model represents
an upper bound on the actual difference since α = 10% is
usually an upper bound on the actual estimation error. When
implementing the suboptimal algorithm we find that the sum
delay across SUs is very close to its optimal value found via
Algorithm 1. This holds for both light and heavy traffics with
delay performance gaps 0.06% and 0.3%, respectively and
they both outperform the CSMA and the CNC. This is because
the proposed policies prioritize the users based on their delay
and interference realizations. On the other hand, the CSMA
allocates the channel to guarantee fairness of allocation across
time and the CNC’s goal is to maximize the achievable rate
region [5].

Problem (12) differs than problem (13) in the average
interference constraint. Thus the DOIC is a lower bound on
both the constrained and the unconstrained DOAC as shown
in Fig. 4. However, since the problem is delay limited and not
interference limited, this delay increase is minor.

VI. CONCLUSION

We have studied the joint scheduling and power allocation
problem of an uplink multi SU CR system. We formulated the
problem as a delay minimization problem in the presence of
average and instantaneous interference constraints to the PU,
as well as an average delay constraint for each SU. Most of
the existing literature that studies this problem either assume
on-off fading channels or do not provide a delay-optimal
algorithm which is essential for real-time applications.

We proposed a dynamic algorithm that schedules the SUs
by dynamically updating a priority list based on the channel
statistics, history of arrivals, departures and channel realiza-
tions. The proposed algorithm updates the priority list on a per-
frame basis while controlling the power on a per-slot basis. We
showed, through the Lyapunov optimization, that the proposed
DOAC policy is asymptotically delay optimal.
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Fig. 4. The average delay performance of seven schemes. The DOAC and
the suboptimal policies are within 0.3%, while both outperform the CSMA
and the CNC by more than 8.2% and 83%, respectively. The DOAC under
CSI errors experiences less than 9% increase in the delay.

When the number of SUs N in the system is large, the com-
plexity of the DOAC policy scales as O(MN ·2N ), where M is
the number of iterations required to solve a one-dimensional
search. Hence, we proposed a suboptimal algorithm with a
complexity of O(N log(N)) that does not sacrifice the perfor-
mance significantly. Simulation results showed the robustness
of the DOAC policy against CSI estimation errors.

APPENDIX A
PROOF OF THEOREM 1

Proof. In this proof, we show that the drift-plus-penalty under
this algorithm is upper bounded by some constant, which
indicates that the virtual queues are mean rate stable [28],
[29].

We define U(k) = Y(k) and the Lyapunov function as
L(k) , 1

2

∑N
i=1 Y

2
i (k) and Lyapunov drift to be

∆(k) , EU(k) [L(k + 1)− L(k)] , (29)

Squaring (14) then taking the conditional expectation we can
write the following bound

1

2
EU(k)

[
Y 2
i (k + 1)− Y 2

i (k)
]
≤

Yi(k)EU(k) [Tk]λi

(
EU(k)

[
W

(j)
i

]
− ri(k)

)
+ CYi , (30)

where we use the bound EU(k)

[(∑
j∈Ai(k)

W
(j)
i

)2]
+

EU(k)

[(∑
j∈A(k)

ri(k)
)2]

< CYi . We omit the derivation of

this bound due to lack of space. Given some fixed control pa-
rameter V > 0, we add the penalty term V

∑
i EU(k) [ri(k)Tk]

to both sides of (29). Using the bound in (30) the drift-plus-
penalty term becomes bounded by

∆ (k) + V

N∑
i=1

EU(k) [ri(k)Tk] ≤ CY + EU(k) [Tk] ΦI (31)

where ΦI is given by equation (19). We define the DOIC policy
to be the policy that finds the values of π(k), {P(t)} and r(k)
vector that minimize ΦI subject to the instantaneous inter-
ference, the maximum power and the single-SU-per-time-slot
constraints in problem (12). We can observe that the variables
r(k), {P(t)} and π(k) can be chosen independently from each
other. Step 4.a in the DOIC policy finds the optimum value of
ri(k), ∀i ∈ N . Moreover, since EU(k)

[
W

(j)
i

]
is decreasing in

P
(t)
i ∀t ∈ F(k), the optimum value for P (t)

i is (17). Finally,
from [24] the cµ-rule can be applied to find the optimum
priority list π(k) which is given by Step 1 in the DOIC policy.

Now, since the proposed DOIC policy minimizes ΦI, this
gives a lower bound on ΦI compared to any other policy
including the optimal policy that solves (12). Hence, we now
evaluate ΦI at the optimal policy that solves (12) with the
help of a genie-aided knowledge of ri(k) = W

∗
i yielding

Φopt
I = V

∑N
i=1W

∗
i , where we use EU(k)

[
W

(j)
i

]
= W

∗
i .

Substituting by Φopt
I in the right-hand-side (r.h.s.) of (31) gives

an upper bound on the drift-plus-penalty when evaluated at the
DOIC policy. Namely

∆ (k) +V

N∑
i=1

EU(k) [ri(k)Tk] ≤ CY +V

N∑
i=1

W
∗
i EU(k) [Tk] .

(32)
Taking E [·], summing over k = 0, · · · ,K − 1, denoting
Yi(0) , 0 for all i ∈ N , and dividing by V

∑K−1
k=0 E [Tk]

we get

N∑
i=1

E
[
Y 2
i (K)

]∑K−1
k=0 E [Tk]

+

N∑
i=1

∑K−1
k=0 E [ri(k)Tk]∑K−1
k=0 E [Tk]

(a)

≤

aCY
V

+

N∑
i=1

W
∗
i , C1. (33)

where in the r.h.s. of inequality (a) we used E [Tk] ≥
E [I(k)] = 1/a, and C1 is some constant that is not a
function in K. To prove the mean rate stability of the sequence
{Yi(k)}∞k=0 for any i ∈ N , we remove the first and third terms
in the left-side of (33) as well as the summation operator
from the second term to obtain E

[
Y 2
i (K)

]
/K ≤ C1 ∀i ∈

N . Using Jensen’s inequality we note that E [Yi(K)] /K ≤√
E [Y 2

i (K)] /K2 ≤
√
C1/K. Finally, taking the limit when

K →∞ completes the mean rate stability proof. On the other
hand, to prove the upper bound in Theorem 1, we use the fact
that ri(k) and |Ai(k)| are independent random variables (see
step 4-a in DOIC) to replace E [|Ai(k)|ri(k)] by λi E [Tkri(k)]
in (15), then we take the limit of (15) as K → ∞, use the
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mean rate stability theorem and sum over i ∈ N to get

N∑
i=1

E
[∑K−1

k=0

(∑
j∈Ai(k)

W
(j)
i

)]
E
[∑K−1

k=0 |Ai(k)|
] ≤

N∑
i=1

∑K−1
k=0 E [ri(k)Tk]∑K−1
k=0 E [Tk]

(b)

≤ aCY
V

+

N∑
i=1

W
∗
i , (34)

where inequality (b) comes from removing the first summation
in the left-side of (33). Taking the limit when K → ∞ and
using (5) completes the proof.

APPENDIX B
EXISTENCE OF THE SERVICE TIME MOMENTS

Lemma 3. Given any distribution for P (t)
i γ

(t)
i the inequality

E [sni ] <∞ holds ∀n ≥ 1.

Proof. Given some, possibly random, power allocation policy
P

(t)
i let the random variable sBi , sNB

i + L where sNB
i is a

random variable following the negative binomial distribution
[30, pp. 297] with success probability 1 − Pr

[
R

(t)
i = 0

]
while number of successes equals L. We can show that
Pr [si ≤ x] ≥ Pr

[
sBi ≤ x

]
. Hence, according to the theory

of stochastic ordering, the moments of si are upper bounded
by their respective moments of sBi [31, equation (2.14) pp.
16]. The lemma holds since all the moments of sBi exist, a
fact that is based on the fact that the moments of the negative
binomial distribution exist [30, pp. 297].

APPENDIX C
PROOF OF THEOREM 2

Proof. This proof is similar to that in Appendix A. We
define U(k) , [X(k),Y(k)]T , the Lyapunov function as
L(k) , 1

2X
2(k) + 1

2

∑N
i=1 Y

2
i (k) and Lyapunov drift as in

(29). Following similar steps as in Appendix A and using the

bound EU(k)

[(∑N
i=1

∑
t∈F(k) P

(t)
i g

(t)
i

)2
+ (IavgTk)

2

]
<

CX , where CX is defined before Theorem 2, we get the
following bound on the drift-plus-penalty term

∆ (U(k)) + V

N∑
i=1

EU(k) [ri(k)Tk] ≤ C + EU(k) [Tk]χ(k),

(35)
where

χ(k) ,
N∑
i=1

(V − Yi(k)λi) ri(k) + ΦA, (36)

with

ΦA ,
N∑
l=1

(
Yπl

(k)λπl
EU(k)

[
W (j)
πl

]
+

X(k)

EU(k)

[∑
t∈F(k) P

(t)
πl g

(t)
πl

]
EU(k) [Tk]

− Iavg

 (37)

We define the DOAC policy to be the policy that jointly
finds r(k), {P(t)} and π(k) that minimize χ(k) subject to

the instantaneous interference, the maximum power and the
single-SU-per-time-slot constraints in problem (13). Step 5-a
in the DOAC policy minimizes the first summation of χ(k).
For {P(t)} and π(k), we can see that ΦA is the only term in
the right side of (36) that is a function of the power allocation
policy {P(t)}, ∀t ∈ F(k). For a fixed priority list π(k), using
the Lagrange optimization to find the optimum power alloca-
tion policy that minimizes ΦA subject to the aforementioned
constraints yields (6), where Pπj (k), ∀i ∈ N , is some fixed
power parameter that minimizes ΦA subject to the maximum
power constraint only. Substituting by (6) in ΦA and using
the bound EU(k)

[
W

(j)
πl

]
= Wπl

(Pπl
(k)) ≤W up

πl
(Pπl

(k)) we
get Ψ that is defined before (23). Consequently, P∗(k) and
π∗(k), the optimum values for P(k) and π(k) respectively,
are the ones that minimize Ψ as given by Algorithm 1.

Since the optimum policy that solves (13) satisfies the inter-
ference constraint, i.e. satisfies EU(k)

[∑
t∈F(k) P

(t)
πl g

(t)
πl

]
≤

EU(k) [Tk] Iavg, we can evaluate χ(k) at this optimum pol-
icy with a genie-aided knowledge of ri(k) = W

∗
i to get

χopt , V
∑N
i=1W

∗
i . Replacing χ(k) with χopt in the r.h.s. of

(35) we get the bound ∆ (U(k))+V
∑N
i=1 EU(k) [ri(k)Tk] ≤

C + EU(k) [Tk]V
∑N
i=1W

∗
i . Taking E [·] over this inequality,

summing over k = 0, · · · ,K−1, denoting X(0) , Yi(0) , 0
for all i ∈ N , and dividing by V

∑K−1
k=0 E [Tk] we get

E
[
X2(K)

]∑K−1
k=0 E [Tk]

+

N∑
i=1

E
[
Y 2
i (K)

]∑K−1
k=0 E [Tk]

+

N∑
i=1

∑K−1
k=0 E [ri(k)Tk]∑K−1
k=0 E [Tk]

≤ CK

V
∑K−1
k=0 E [Tk]

+

N∑
i=1

W
∗
i . (38)

Similar steps to those in Appendix A can be followed to prove
the mean rate stability of {X(k)}∞k=0 and {Yi(k)}∞k=0 as well
as the bound in Theorem 2, and thus are omitted here.
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Prof. Tepedelenlioğlu was awarded the NSF (early) Career grant in 2001,
and has served as an Associate Editor for several IEEE Transactions including
IEEE Transactions on Communications, IEEE Signal Processing Letters, and
IEEE Transactions on Vehicular Technology. His research interests include
statistical signal processing, system identification, wireless communications,
estimation and equalization algorithms for wireless systems, multi-antenna
communications, OFDM, ultra-wideband systems, distributed detection and
estimation, and data mining for PV systems.


